首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As Be stars are restricted to luminosity classes III‐V, but early B‐type stars are believed to evolve into supergiants, it is to be expected that the Be phenomenon disappears at some point in the evolution of a moderately massive star, before it reaches the supergiant phase. As a first stage in an attempt to determine the physical reasons of this cessation, a search of the literature has provided a number of candidates to be Be stars with luminosity classes Ib or II. Spectroscopy has been obtained for candidates in a number of open clusters and associations, as well as several other bright stars in those clusters. Among the objects observed, HD 207329 is the best candidate to be a high‐luminosity Be star, as it appears like a fast‐rotating supergiant with double‐peaked emission lines. The lines of HD 229059, in Berkeley 87, also appear morphologically similar to those of Be stars, but there are reasons to suspect that this object is an interacting binary. At slightly lower luminosities, LS I +56°92 (B4 II) and HD 333452 (O9 II), also appear as intrinsically luminous Be stars. Two Be stars in NGC 6913, HD 229221 and HD 229239, appear to have rather higher intrinsic magnitudes than their spectral type (B0.2 III in both cases) would indicate, being as luminous as luminosity class II objects in the same cluster. HD 344863, in NGC 6823, is also a rather early Be star of moderately high luminosity. The search shows that, though high‐luminosity Be stars do exist, they are scarce and, perhaps surprisingly, tend to have early spectral types. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Charge exchange occurs between charged ions with enough energy to overcome Coulomb repulsion, a condition satisfied for collisions at velocities like those of the winds driven from hot stars by radiation pressure. X‐ray line ratios in some hot stars are inconsistent with those expected from thermal plasmas excited by electron impact. Ion‐ion interactions including charge exchange might be responsible instead if high‐velocity collisions between ions are enabled by the presence of a magnetic field in the wind, suggesting a possible alternative mechanism to the widely accepted instability‐driven shock model. The nature of a plasma in charge‐exchange equilibrium is yet to be determined (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
At high redshift the ubiquity of outflows and winds in strongly star‐forming galaxies has been demonstrated using rest frame UV absorption lines. In the cases with optical emission lines, the studies mostly had to rely on low and intermediate dispersion spectra. This implies that for detailed studies of galactic wind physics we have to use local objects. In particular, dwarf galaxies are well suited to extrapolation to high redshift protogalaxies. Several kinematic studies of strongly starforming dwarf galaxies using Fabry‐Pérot and IFU spectrographs exist. Unfortunately, similar as for high redshift galaxies the employed spectral resolution is often significantly higher that the thermal line width. As a result faint high velocity features and details of the turbulent motion are hidden or unresolved. Here we will present an analysis of the ionized gas kinematics of the prototypical star‐forming irregular galaxy NGC 4449 using long‐slit, high‐dispersion échelle spectra. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The Herschel Space Observatory is well suited to address several important questions in star‐ and planet formation, as is evident from its first year of operation. This paper focuses on observations of water, a key molecule in the physics and chemistry of star‐formation. In the WISH Key Program, a comprehensive set of water lines is being obtained with the HIFI and PACS instruments toward a large sample of well‐characterized protostars, covering a wide range of luminosities and evolutionary stages. Lines of H2O, CO and their isotopologues, as well as chemically related hydrides, [O I] and [C II] are observed. Together, the data determine the abundance of water in cold and warm gas, reveal the entire CO ladder up to 4000 K above ground, elucidate the physical processes responsible for the warm gas (passive heating, UV or X‐ray‐heating, shocks), quantify the main cooling agents, and probe dynamical processes associated with forming stars and planets (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Charge‐transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge‐transfer with respect to the dynamics and the structure of neutral gas‐plasma interfaces. We consider the following phenomena: (1) the heliospheric interface ‐ region where the solar wind plasma interacts with the partly‐ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so‐called “Local Bubble”. In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two‐component model of the cloud‐plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud‐plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X‐ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X‐ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge‐transfer X‐ray emission from the neutral cloud‐plasma interface may be comparable to the diffuse thermal X‐ray emission from the million degree gas cavity itself (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We present preliminary results of our X‐shooter survey in star forming regions. In this contribution we focus on subsamples of young stellar and sub‐stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X‐shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low‐mass (VLM) and sub‐stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X‐shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near‐IR, avoiding ambiguities due to possible YSO variability (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We report on advances in the study of the cores of NGC 6302 and 6537 using infrared grating and echelle spectroscopy. In NGC 6302, emission lines from species spanning a large range of ionization potential, and in particular [Si  ix ] 3.934 μm, are interpreted using photoionization models (including cloudy ), which allow us to re-estimate the temperature of the central star to be about 250 000 K. All of the detected lines are consistent with this value, except for [Al  v ] and [Al  vi ]. Aluminium is found to be depleted to one hundredth of the solar abundance, which provides further evidence for some dust being mixed with the highly ionized gas (with photons harder than 154 eV). A similar depletion pattern is observed in NGC 6537. Echelle spectroscopy of IR coronal ions in NGC 6302 reveals a stratified structure in ionization potential, which confirms photoionization to be the dominant ionization mechanism. The lines are narrow (<22 km s−1 FWHM), with no evidence of the broad wings found in optical lines from species with similar ionization potentials, such as [Ne  v ] 3426 Å. We note the absence of a hot bubble, or a wind-blown bipolar cavity filled with a hot plasma, at least on 1 arcsec and 10 km s−1 scales. The systemic heliocentric velocities for NGC 6302 and 6537, measured from the echelle spectra of IR recombination lines, are found to be −34.8±1 km s−1 and −17.8±3 km s−1. We also provide accurate new wavelengths for several of the infrared coronal lines observed with the echelle.  相似文献   

8.
We report the results of our search for magnetic fields in a sample of 16 field Be stars, the binary emission‐line B‐type star υ Sgr, and in a sample of fourteen members of the open young cluster NGC3766 in the Carina spiral arm. The sample of cluster members includes Be stars, normal B‐type stars and He‐strong/He‐weak stars. Nine Be stars have been studied with magnetic field time series obtained over ∼1 hour to get an insight into the temporal behaviour and the correlation of magnetic field properties with dynamical phenomena taking place in Be star atmospheres. The spectropolarimetric data were obtained at the European Southern Observatory with the multi‐mode instrument FORS1 installed at the 8m Kueyen telescope. We detect weak photospheric magnetic fields in four field Be stars, HD 62367, μ Cen, o Aqr, and ε Tuc. The strongest longitudinal magnetic field, 〈Bz〉 = 117 ± 38 G, was detected in the Be star HD 62367. Among the Be stars studied with time series, one Be star, λ Eri, displays cyclic variability of the magnetic field with a period of 21.12 min. The binary star υ Sgr, in the initial rapid phase of mass exchange between the two components with strong emission lines in the visible spectrum, is a magnetic variable star, probably on a timescale of a few months. The maximum longitudinal magnetic field 〈Bz〉 = –102 ± 10 G at MJD 54333.018 was measured using hydrogen lines. The cluster NGC3766 seems to be extremely interesting, where we find evidence for the presence of a magnetic field in seven early B‐type stars out of the observed fourteen cluster members (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present Australia Telescope Compact Array observations towards six massive star formation regions, which, from their strong 24 GHz continuum emission but no compact 8 GHz continuum emission, appeared good candidates for hypercompact H  ii regions. However, the properties of the ionized gas derived from the 19 to 93 GHz continuum emission and  H70α+ H57α  radio recombination line data show the majority of these sources are, in fact, regions of spatially extended, optically thin free–free emission. These extended sources were missed in the previous 8 GHz observations due to a combination of spatial filtering, poor surface brightness sensitivity and primary beam attenuation.
We consider the implications that a significant number of these extended H  ii regions may have been missed by previous surveys of massive star formation regions. If the original sample of 21 sources is representative of the population as a whole, the fact that six contain previously undetected extended free–free emission suggests a large number of regions have been mis-classified. Rather than being very young objects prior to UCH  ii region formation, they are, in fact, associated with extended H  ii regions and thus significantly older. In addition, inadvertently ignoring a potentially substantial flux contribution (up to ∼0.5 Jy) from free–free emission has implications for dust masses derived from sub-mm flux densities. The large spatial scales probed by single-dish telescopes, which do not suffer from spatial filtering, are particularly susceptible and dust masses may be overestimated by up to a factor of ∼2.  相似文献   

10.
The northern section of the molecular cloud complex NGC 6334 has been mapped in the CO and CS spectral line emission and in continuum emission at a wavelength of 1300 μm. Our observations highlight the two dominant sources, I and I(N), and a host of weaker sources. NGC 6334 I is associated with a cometary ultracompact H  ii region and a hot, compact core ≤10 arcsec in size. Mid-infrared and CH3OH observations indicate that it is also associated with at least two protostellar sources, each of which may drive a molecular outflow. For region I we confirm the extreme high-velocity outflow first discovered by Bachiller & Cernicharo and find that it is very energetic with a mechanical luminosity of 390 L. A dynamical age for the outflow is ∼3000 yr. We also find a weaker outflow originating from the vicinity of NGC 6334 I. In CO and CS this outflow is quite prominent to the north-west, but much less so on the eastern side of I, where there is very little molecular gas. Spectral survey data show a molecular environment at position I which is rich in methanol, methyl formate and dimethyl ether, with lines ranging in energy up to 900 K above the ground state. NGC 6334 I(N) is more dense than I, but cooler, and has none of the high-excitation lines observed toward I. I(N) also has an associated outflow, but it is less energetic than the outflow from I. The fully sampled continuum map shows a network of filaments, voids and cores, many of which are likely to be sites of star formation. A striking feature is a narrow, linear ridge which defines the western boundary. It is unclear if there is a connection between this filament and the many potential sites of star formation, or if the filament existed prior to the star formation activity.  相似文献   

11.
We have detected the rotational lines of HCOOCH3 toward a Class 0 low-mass protostar, NGC1333 IRAS4B, which is reported to be extremely young according to the dynamical age of the molecular outflow (a few 100 yr). This suggests that the complex organic molecules appear from the very early stage of protostellar evolution. On the other hand, the complex organic molecules are not detected in a more evolved protostar, L1527. We have also found a similar trend in a massive star forming region, NGC2264. The HCOOCH3 emission is almost absent toward IRS1, whereas it is concentrated near MMS3, which is younger than IRS1. In addition, the HCOOCH3 intensity peak is slightly shifted from the dust emission peak, as is seen in the Orion KL Compact Ridge, giving an important clue to solve its origin.  相似文献   

12.
X-rays from massive OB stars: thermal emission from radiative shocks   总被引:1,自引:0,他引:1  
Chandra grating spectra of a sample of 15 massive OB stars were analysed under the basic assumption that the X-ray emission is produced in an ensemble of shocks formed in the winds driven by these objects. Shocks develop either as a result of radiation-driven instabilities or due to confinement of the wind by a relatively strong magnetic field, and since they are radiative, a simple model of their X-ray emission was developed that allows a direct comparison with observations. According to our model, the shock structures (clumps, complete or fractional shells) eventually become 'cold' clouds in the X-ray sky of the star. As a result, it is expected that for large covering factors of the hot clumps, there is a high probability for X-ray absorption by the 'cold' clouds, resulting in blueshifted spectral lines. Our analysis has revealed that such a correlation indeed exists for the considered sample of OB stars. As to the temperature characteristics of the X-ray emission plasma, the studied OB stars fall in two groups: (i) one with plasma temperature limited to ∼0.1–0.4 keV and (ii) the other with X-rays produced in plasmas at considerably higher temperatures. We argue that the two groups correspond to different mechanisms for the origin of X-rays: in radiation-driven instability shocks and in magnetically confined wind shocks, respectively.  相似文献   

13.
In this article, some aspects of the clumpy nature of molecular clouds are reviewed. In particular the observational evidence for small-scale structures both in low and high mass star forming regions will be discussed. I will review some examples of `clumpiness' such as: i) the molecular clumps ahead of HH objects and how the study of the physical and chemical nature of these clumps is important for the understanding of the clumpiness of the Interstellar Medium; and ii)hot cores and their use as a tool to study the early phases of massive star formation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
In order to investigate the differences between the molecular clouds which are associated with the massive star forming regions and those which are not, we have performed the single-dish simultaneous observations of 12CO J=2-1 and J=3-2 lines toward a sample of 59 Spitzer Extended Green Objects (EGOs) as the massive star forming regions in the northern sky. Combining our results with the data of the 12CO J=1-0 observations toward the same sample EGOs in the literature, we have made the statistical comparisons on the intensities and linewidths of multiple 12CO lines between the molecular clouds associated with EGOs (EGO molecular clouds, in brief) and other non-EGO molecular clouds. On this basis, we have discussed the effects of the gas temperature, density, and velocity field distributions on the statistical characteristics of the two kinds of molecular clouds. It is found that both the EGO molecular clouds and non-EGO molecular clouds have similar mass ranges, hence we conclude that for the formation of massive stars, the key-important factor is probably not the total mass of a giant molecular cloud (GMC), but the volume filling factor of the molecular clumps in the GMC (or the compression extent of the molecular gas in the cloud).  相似文献   

15.
江治波  杨戟 《天文学进展》2000,18(4):320-335
分子氢的红外振动发射线是显现年轻星质量外流的重要谱线之一。自Gautier等人1976年在猎户座发现年轻星质量外流的分子氢发射开始,人们在银河系内几乎所有的恒星形成区都发现了这种线发射。研究表明,分子氢发射与年轻星周围的其它活动现象(如分子外流和光学喷流)之间有着非常密切的联系。红外和光学喷流代表了年轻星剧烈活动的两个侧面,是喷流与周围介质相互作用强弱不同的表现,这种作用还拖带周围介质,产生分子外流,光学、红外喷流和分子外流组成了恒星形成区壮观的景象,它们是恒星形成活动的重要标志。随着红外探测技术的飞速发展,对年轻星外流活动现象的观测越来越丰富的详细,使人们对这种现象的本质越来越了解。在20世纪90年代NICMOS等大阵列红外探测器投入使用后,红外成像观测有了长足的进步。目前已在70个左右的区域里发现了H2发射,这一数字还在迅速增加,今后的研究主要可能向两个方向发展。其一是高分辨观测,进一步了解H2发射的结构以及与光学喷流和分子外流之间的关系;其二是天观测,了解银河系内的恒星形成H2区发射的大尺度结构和恒星形成的统计分布规律。  相似文献   

16.
We report the discovery of H2 line emission associated with 6.67-GHz methanol maser emission in massive star-forming regions. In our UNSWIRF/AAT observations, H2 1–0 S(1) line emission was found associated with an ultracompact H  ii region IRAS 14567–5846 and isolated methanol maser sites in G318.95–0.20 , IRAS 15278–5620 and IRAS 16076–5134 . Owing to the lack of radio continuum in the latter three sources, we argue that their H2 emission is shock excited, while it is UV-fluorescently excited in IRAS 14567–5846 . Within the positional uncertainties of 3 arcsec, the maser sites correspond to the location of infrared sources. We suggest that 6.67-GHz methanol maser emission is associated with hot molecular cores, and propose an evolutionary sequence of events for the process of massive star formation.  相似文献   

17.
We describe H α , SCUBA and MERLIN imaging of the interacting galaxy pair NGC 4490 and 4485. We detect an H α filament emerging from the disc of NGC 4490 to a projected distance of 3 kpc which has counterparts in both the radio continuum and H  i . The H  i counterpart extends to a projected distance of ∼30 kpc from NGC 4490 and we argue that this is evidence that the giant H  i envelope in this system has its origins in star formation. We use SCUBA and radio continuum data to attempt to place constraints on the distribution of dust with respect to the star forming regions. This analysis is limited by the lack of an independent estimate of the dust temperature, something that both 'SIRTF' and 'SOFIA' will be able to provide, however we find some evidence that most obscuring dust is not located within H  ii regions themselves.  相似文献   

18.
19.
By using the 13.7 m millimeter wave telescope of the Qinghai Station of Purple Mountain Observatory at Delingha, we have performed the mapping observations simultaneously at the (J = 1-0) lines of 12CO, 13CO and C18O towards respectively the 17 star forming regions associated with clusters. All of them show rather strong C18O emission, except IRAS 04547+4753. Because of the different sizes of molecular clouds, there are 13 regions being observed to the half maximum of 13CO integrated intensity, and the large-area mapping observation has not been made for the other 4 regions with rather large extents. Based on the observed data, the physical properties of molecular cores are calculated, such as the line width, brightness temperature, size, density and mass. The averaged ratios of the virial mass Mvir and local thermodynamic equilibrium mass MLTE of the 13CO and C18O cores are 0.66 and 0.74, respectively, suggesting that these cores are nearly at the virial equilibrium state. In order to compare the cores and clusters in morphologies, the contour maps of the integrated intensities of 13CO and C18O are overlaid on the K-band images of 2MASS. At the same time, the sizes and masses of the clusters associated with cores are calculated by adopting the photometric results of the near-infrared point sources in 2MASS database. Based on the derived masses of the molecular cores and clusters, the star formation efficiency (SFE) is calculated for the molecular clouds, and we find that it varies in the range from 10% to 30%.  相似文献   

20.
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO   J = 3–2  maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of  α∼ 1.4  ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号