首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mean‐field magnetohydrodynamics the mean electromotive force due to velocity and magnetic‐field fluctuations plays a crucial role. In general it consists of two parts, one independent of and another one proportional to the mean magnetic field. The first part may be nonzero only in the presence of mhd turbulence, maintained, e.g., by small‐scale dynamo action. It corresponds to a battery, which lets a mean magnetic field grow from zero to a finite value. The second part, which covers, e.g., the α effect, is important for large‐scale dynamos. Only a few examples of the aforementioned first part of the mean electromotive force have been discussed so far. It is shown that a mean electromotive force proportional to the mean fluid velocity, but independent of the mean magnetic field, may occur in an originally homogeneous isotropic mhd turbulence if there are nonzero correlations of velocity and electric current fluctuations or, what is equivalent, of vorticity and magnetic field fluctuations. This goes beyond the Yoshizawa effect, which consists in the occurrence of mean electromotive forces proportional to the mean vorticity or to the angular velocity defining the Coriolis force in a rotating frame and depends on the cross‐helicity defined by the velocity and magnetic field fluctuations. Contributions to the mean electromotive force due to inhomogeneity of the turbulence are also considered. Possible consequences of the above findings for the generation of magnetic fields in cosmic bodies are discussed (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Mechanisms of nonhelical large‐scale dynamos (shear‐current dynamo and effect of homogeneous kinetic helicity fluctuations with zero mean) in a homogeneous turbulence with large‐scale shear are discussed. We have found that the shearcurrent dynamo can act even in random flows with small Reynolds numbers. However, in this case mean‐field dynamo requires small magnetic Prandtl numbers (i.e., when Pm < Pmcr < 1). The threshold in the magnetic Prandtl number, Pmcr = 0.24, is determined using second order correlation approximation (or first‐order smoothing approximation) for a background random flow with a scale‐dependent viscous correlation time τc = (νk 2)–1 (where ν is the kinematic viscosity of the fluid and k is the wave number). For turbulent flows with large Reynolds numbers shear‐current dynamo occurs for arbitrary magnetic Prandtl numbers. This dynamo effect represents a very generic mechanism for generating large‐scale magnetic fields in a broad class of astrophysical turbulent systems with large‐scale shear. On the other hand, mean‐field dynamo due to homogeneous kinetic helicity fluctuations alone in a sheared turbulence is not realistic for a broad class of astrophysical systems because it requires a very specific random forcing of kinetic helicity fluctuations that contains, e.g., low‐frequency oscillations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The role of shear in alleviating catastrophic quenching by shedding small‐scale magnetic helicity through fluxes along contours of constant shear is discussed. The level of quenching of the dynamo effect depends on the quenched value of the turbulent magnetic diffusivity. Earlier estimates that might have suffered from the force‐free degeneracy of Beltrami fields are now confirmed for shear flows where this degeneracy is lifted. For a dynamo that is saturated near equipartition field strength those estimates result in a 5‐fold decrease of the magnetic diffusivity as the magnetic Reynolds number based on the wavenumber of the energy‐carrying eddies is increased from 2 to 600. Finally, the role of shear in driving turbulence and large‐scale fields by the magneto‐rotational instability is emphasized. New simulations are presented and the 3π /4 phase shift between poloidal and toroidal fields is confirmed. It is suggested that this phase shift might be a useful diagnostic tool in identifying mean‐field dynamo action in simulations and to distinguish this from other scenarios invoking magnetic buoyancy as a means to explain migration away from the midplane. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A plane‐shear flow in a fluid with forced turbulence is considered. If the fluid is electrically‐conducting then a mean electromotive force (EMF) results even without basic rotation and the magnetic diffusivity becomes a highly anisotropic tensor. It is checked whether in this case self‐excitation of a large‐scale magnetic field is possible (so‐called × ‐dynamo) and the answer is NO. The calculations reveal the cross‐stream components of the EMF perpendicular to the mean current having the wrong signs, at least for small magnetic Prandtl numbers. After our results numerical simulations with magnetic Prandtl number of about unity have only a restricted meaning as the Prandtl number dependence of the diffusivity tensor is rather strong. If, on the other hand, the turbulence field is strati.ed in the vertical direction then a dynamo‐active α ‐effect is produced. The critical magnetic Reynolds number for such a self‐excitation in a simple shear flow is slightly above 10 like for the other – but much more complicated – flow patterns used in existing dynamo experiments with liquid sodium or gallium. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A filamentary non‐holonomic dynamo solution of self‐induction magnetic field equation is found by considering highly conducting filaments. It is shown that planar filaments cannot support dynamo action since the flow along the filament vanishes for torsion‐free filaments. This is a generalization of the Zeldovich theorem for linear magnetic dynamo filaments. The flow of filament is proportionally to the product between Frenet torsion and curvature. This shows that filamentary dynamos must possess Frenet torsion. A well‐known example of this result is the α ‐dynamo in solar physics. Magnetic helicity and magnetic energy for this filamentary dynamo are computed. Magnetic helicity vanishes by construction and the magnetic field decays with torsion energy in helicoidal dynamos. The approach considered here is useful for the investigation of anisotropic turbulent cascades. As a particular simple example it is shown that under certain constraints the solution can be reduced to the Arnold cat dynamo map solution where the non‐holonomic directional mixed derivative, would play the role of the Lyapunov exponent which appears on stretching the magnetic field in Riemannian space. The solution seems to describe marginal slow dynamos when the velocities involved in the dynamo flows are constants. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In light of new results, the one‐dimensional mean‐field dynamo model of Brandenburg & Käpylä (2007) with dynamical quenching and a nonlocal Babcock‐Leighton α effect is re‐examined for the solar dynamo. We extend the one‐dimensional model to include the effects of turbulent downward pumping (Kitchatinov & Olemskoy 2011), and to combine dynamical quenching with shear. We use both the conventional dynamical quenching model of Kleeorin & Ruzmaikin (1982) and the alternate one of Hubbard & Brandenburg (2011), and confirm that with varying levels of non‐locality in the α effect, and possibly shear as well, the saturation field strength can be independent of the magnetic Reynolds number. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Turbulent plane‐shear flow is found to show same basic effects of mean‐fieldMHD as rotating turbulence. In particular, the mean electromotive force (EMF) includes highly anisotropic turbulent diffusion and alpha‐effect. Only magnetic diffusion remains for spatially‐uniform turbulence. The question is addressed whether in this case a self‐excitation of a magnetic field by so‐called sher‐current dynamo is possible and the quasilinear theory provides a negative answer. The streamaligned component of the EMF has the sign opposite to that required for dynamo. If, however, the turbulence is not uniform across the flow direction then a dynamo‐active α ‐effect emerges. The critical magnetic Reynolds number for the alpha‐shear dynamo is estimated to be slightly above ten. Possibilities for cross‐checking theoretical predictions with MHD experiments are discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Results from kinematic solar dynamo models employing α ‐effect and turbulent pumping from local convection calculations are presented. We estimate the magnitude of these effects to be around 2–3 m s–1, having scaled the local quantities with the convective velocity at the bottom of the convection zone from a solar mixing‐length model. Rotation profile of the Sun as obtained from helioseismology is applied in the models; we also investigate the effects of the observed surface shear layer on the dynamo solutions. With these choices of the small‐ and large‐scale velocity fields, we obtain estimate of the ratio of the two induction effects, C α /C Ω ≈ 10–3, which we keep fixed in all models. We also include a one‐cell meridional circulation pattern having a magnitude of 10–20 m s–1 near the surface and 1–2 m s–1 at the bottom of the convection zone. The model essentially represents a distributed turbulent dynamo, as the α ‐effect is nonzero throughout the convection zone, although it concentrates near the bottom of the convection zone obtaining a maximum around 30° of latitude. Turbulent pumping of the mean fields is predominantly down‐ and equatorward. The anisotropies in the turbulent diffusivity are neglected apart from the fact that the diffusivity is significantly reduced in the overshoot region. We find that, when all these effects are included in the model, it is possible to correctly reproduce many features of the solar activity cycle, namely the correct equatorward migration at low latitudes and the polar branch at high latitudes, and the observed negative sign of B r B ϕ . Although the activity clearly shifts towards the equator in comparison to previous models due to the combined action of the α ‐effect peaking at midlatitudes, meridional circulation and latitudinal pumping, most of the activity still occurs at too high latitudes (between 5° … 60°). Other problems include the relatively narrow parameter space within which the preferred solution is dipolar (A0), and the somewhat too short cycle lengths of the solar‐type solutions. The role of the surface shear layer is found to be important only in the case where the α ‐effect has an appreciable magnitude near the surface. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
For a simple spherically symmetric mean‐field dynamo model we investigate the possibility of determining the radial dependence of the coefficient α. Growth rates for different magnetic field modes are assumed to be known by measurement. An evolutionary strategy (ES) is used for the solution of the inverse problem. Numerically, we find quite different α‐profiles giving nearly the same eigenvalues. The ES is also applied to find functions α(r) yielding zero growth rates for the lowest four magnetic field modes. Additionally, a slight modification of the ES is utilized for an “energetic” optimization of α2‐dynamos. The consequences of our findings for inverse dynamo theory and for the design of future dynamo experiments are discussed.  相似文献   

10.
The generation of magnetic field in a homogeneous, electrically conducting fluid – as required for the dynamo generation of the fields of many astrophysical bodies – is normally a threshold process; the dynamo mechanism, applicable to such bodies in unmagnetised environments, requires motions of sufficient strength to overcome the innate magnetic diffusion. In the presence of an ambient field, however, the critical nature of the field generation process is relaxed. Motions can distort and amplify the ambient field for all amplitudes of flow. For motions with appropriate geometries, an internal ‘dynamo‐like’ field of appreciable strength can be generated, even for relatively weak flows. At least a minority of planets, moons and other bodies exist within significant external astrophysical fields. For these bodies, the ambient field problem is more relevant than the classical dynamo problem, yet it remains relatively little studied. In this paper we consider the effect of an axial ambient field on a spherical mean‐field α 2ω dynamo model, through nonlinear calculations with α ‐quenching feedback. Ambient fields of varying strengths, and both stationary and oscillatory in time, are imposed. Particular focus is placed on the effects of these fields on the equatorial symmetry and the time dependence of the preferred solutions. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The spectroscopic variability of Arcturus hints at cyclic activity cycle and differential rotation. This could provide a test of current theoretical models of solar and stellar dynamos. To examine the applicability of current models of the flux transport dynamo to Arcturus, we compute a mean‐field model for its internal rotation, meridional flow, and convective heat transport in the convective envelope. We then compare the conditions for dynamo action with those on the Sun. We find solar‐type surface rotation with about 1/10th of the shear found on the solar surface. The rotation rate increases monotonically with depth at all latitudes throughout the whole convection zone. In the lower part of the convection zone the horizontal shear vanishes and there is a strong radial gradient. The surface meridional flow has maximum speed of 170 m/s and is directed towards the equator at high and towards the poles at low latitudes. Turbulent magnetic diffusivity is of the order 1015–1016 cm2/s. The conditions on Arcturus are not favorable for a circulation‐dominated dynamo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The theory of large scale dynamos is reviewed with particular emphasis on the magnetic helicity constraint in the presence of closed and open boundaries. In the presence of closed or periodic boundaries, helical dynamos respond to the helicity constraint by developing small scale separation in the kinematic regime, and by showing long time scales in the nonlinear regime where the scale separation has grown to the maximum possible value. A resistively limited evolution towards saturation is also found at intermediate scales before the largest scale of the system is reached. Larger aspect ratios can give rise to different structures of the mean field which are obtained at early times, but the final saturation field strength is still decreasing with decreasing resistivity. In the presence of shear, cyclic magnetic fields are found whose period is increasing with decreasing resistivity, but the saturation energy of the mean field is in strong super‐equipartition with the turbulent energy. It is shown that artificially induced losses of small scale field of opposite sign of magnetic helicity as the large scale field can, at least in principle, accelerate the production of large scale (poloidal) field. Based on mean field models with an outer potential field boundary condition in spherical geometry, we verify that the sign of the magnetic helicity flux from the large scale field agrees with the sign of α. For solar parameters, typical magnetic helicity fluxes lie around 1047 Mx2 per cycle.  相似文献   

13.
Observations in polarized emission reveal the existence of large‐scale coherent magnetic fields in a wide range of spiral galaxies. Radio‐polarization data show that these fields are strongly inclined towards the radial direction, with pitch angles up to 35° and thus cannot be explained by differential rotation alone. Global dynamo models describe the generation of the radial magnetic field from the underlying turbulence via the so called α ‐effect. However, these global models still rely on crude assumptions about the small‐scale turbulence. To overcome these restrictions we perform fully dynamical MHD simulations of interstellar turbulence driven by supernova explosions. From our simulations we extract profiles of the contributing diagonal elements of the dynamo α ‐tensor as functions of galactic height. We also measure the coefficients describing vertical pumping and find that the ratio between these two effects has been overestimated in earlier analytical work, where dynamo action seemed impossible. In contradiction to these models based on isolated remnants we always find the pumping to be directed inward. In addition we observe that depends on whether clustering in terms of superbubbles is taken into account. Finally, we apply a test field method to derive a quantitative measure of the turbulent magnetic diffusivity which we determine to be ∼2 kpckms–1. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
A combination of diamagnetic pumping and a nonlocal α-effect of the Babcock–Leighton type in a solar dynamo model is shown to reproduce observations of solar magnetic activity. The period of the solar cycle can be reproduced without reducing magnetic diffusivity in the bulk of the convection zone below the standard mixing-length value of 1013?cm2?s?1. The simulated global fields are antisymmetric about the equator, and the toroidal-to-poloidal field ratio is about one thousand. However, the time–latitude diagrams of magnetic fields in the model without meridional flow differ from observations. Only when the meridional flow is included and the α-effect profile peaking at mid-latitudes is applied, can the observed butterfly diagrams be reproduced.  相似文献   

15.
We introduce on/off intermittency into a mean field dynamo model by imposing stochastic fluctuations in either the alpha effect or through the inclusion of a fluctuating electromotive force. Sufficiently strong small scale fluctuations with time scales of the order of 0.3–3 years can produce long term variations in the system on time scales of the order of hundreds of years. However, global suppression of magnetic activity in both hemispheres at once was not observed. The variation of the magnetic field does not resemble that of the sunspot number, but is more reminiscent of the 10Be record. The interpretation of our results focuses attention on the connection between the level of magnetic activity and the sunspot number, an issue that must be elucidated if long term solar effects are to be well understood. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Guided by the recent observational result that the meridional circulation of the Sun becomes weaker at the time of the sunspot maximum, we have included a parametric quenching of the meridional circulation in solar dynamo models such that the meridional circulation becomes weaker when the magnetic field at the base of the convection zone is stronger. We find that a flux transport solar dynamo tends to become unstable on including this quenching of meridional circulation if the diffusivity in the convection zone is less than about 2×1011 cm2 s−1. The quenching of α, however, has a stabilizing effect and it is possible to stabilize a dynamo with low diffusivity with sufficiently strong α-quenching. For dynamo models with high diffusivity, the quenching of meridional circulation does not produce a large effect and the dynamo remains stable. We present a solar-like solution from a dynamo model with diffusivity 2.8×1012 cm2 s−1 in which the quenching of meridional circulation makes the meridional circulation vary periodically with solar cycle as observed and does not have any other significant effect on the dynamo.  相似文献   

17.
Future radio observations with the Square Kilometre Array (SKA) and its precursors will be sensitive to trace spiral galaxies and their magnetic field configurations up to redshift z ≈ 3. We suggest an evolutionary model for the magnetic configuration in star‐forming disk galaxies and simulate the magnetic field distribution, the total and polarized synchrotron emission, and the Faraday rotation measures for disk galaxies at z ≲ 3. Since details of dynamo action in young galaxies are quite uncertain, we model the dynamo action heuristically relying only on well‐established ideas of the form and evolution of magnetic fields produced by the mean‐field dynamo in a thin disk. We assume a small‐scale seed field which is then amplified by the small‐scale turbulent dynamo up to energy equipartition with kinetic energy of turbulence. The large‐scale galactic dynamo starts from seed fields of 100 pc and an averaged regular field strength of 0.02 μG, which then evolves to a “spotty” magnetic field configuration in about 0.8 Gyr with scales of about one kpc and an averaged regular field strength of 0.6 μG. The evolution of these magnetic spots is simulated under the influence of star formation, dynamo action, stretching by differential rotation of the disk, and turbulent diffusion. The evolution of the regular magnetic field in a disk of a spiral galaxy, as well as the expected total intensity, linear polarization and Faraday rotation are simulated in the rest frame of a galaxy at 5GHz and 150 MHz and in the rest frame of the observer at 150 MHz. We present the corresponding maps for several epochs after disk formation. Dynamo theory predicts the generation of large‐scale coherent field patterns (“modes”). The timescale of this process is comparable to that of the galaxy age. Many galaxies are expected not to host fully coherent fields at the present epoch, especially those which suffered from major mergers or interactions with other galaxies. A comparison of our predictions with existing observations of spiral galaxies is given and discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Inspired by a recently observed axisymmetric field in a fully convective star we investigate the influence of an anisotropic diffusivity on the dynamo. We find that with reasonable assumptions for the anisotropy of the diffusivity and the α -effect the preference of axisymmetric modes is achieved. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In order to extend the abilities of the αΩ dynamo model to explain the observed regularities and anomalies of the solar magnetic activity, the negative buoyancy phenomenon and the magnetic quenching of the α effect were included in the model, as well as newest helioseismically determined inner rotation of the Sun were used. Magnetic buoyancy constrains the magnitude of toroidal field produced by the Ω effect near the bottom of the solar convection zone (SCZ). Therefore, we examined two “antibuoyancy” effects: i) macroscopic turbulent diamagnetism and ii) magnetic advection caused by vertical inhomogeneity of fluid density in the SCZ, which we call the ∇ρ effect. The Sun's rotation substantially modifies the ∇ρ effect. The reconstruction of the toroidal field was examined assuming the balance between mean‐field magnetic buoyancy, turbulent diamagnetism and the rotationally modified ∇ρ effect. It is shown that at high latitudes antibuoyancy effects block the magnetic fields in the deep layers of the SCZ, and so the most likely these deep‐rooted fields could not become apparent at the surface as sunspots. In the near‐equatorial region, however, the upward ∇ρ effect can facilitate magnetic fields of about 3000 – 4000 G to emerge through the surface at the sunspot belt. Allowance for the radial inhomogeneity of turbulent velocity in derivations of the helicity parameter resulted in a change of sign of the α effect from positive to negative in the northern hemisphere near the bottom of the SCZ. The change of sign is very important for direction of the Parker's dynamo‐waves propagation and for parity of excited magnetic fields. The period of the dynamo‐wave calculated with allowance for the magnetic quenching is about seven years, that agrees by order of magnitude with the observed mean duration of the sunspot cycles. Using the modern helioseismology data to define dynamo‐parameters, we conclude that north‐south asymmetry should exist in the meridional field. At low latitudes in deep layers of the SCZ, the αΩ dynamo excites most efficiency the dipolar mode of the meridional field. Meanwhile, in high‐latitude regions a quadrupolar mode dominates in the meridional field. The obtained configuration of the net meridional field is likely to explain the magnetic anomaly of polar fields (the apparent magnetic “monopole”) observed near the maxima of solar cycles. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Here, BV (RI)C broad band photometry and intermediate resolution spectroscopy in Hα region are presented for two rapidly rotating late‐type stars: EY Dra and V374 Peg. For a third rapid rotator, GSC 02038‐00293, intermediate resolution Hα spectroscopy and low resolution spectroscopy are used for spectral classification and stellar parameter investigation of this poorly known object. The low resolution spectrum of GSC 02038‐00293 clearly indicates that it is a K‐type star. Its intermediate resolution spectrum can be best fitted with a model with Teff = 4750 K and v sin i = 90 km s–1, indicating a very rapidly rotating mid‐K star. The Hα line strength is variable, indicating changing chromospheric emission on GSC 02038‐00293. In the case of EY Dra and V374 Peg, the stellar activity in the photosphere is investigated from the photometric observations, and in the chromosphere from the Hα line. The enhanced chromospheric emission in EY Dra correlates well with the location of the photospheric active regions, indicating that these features are spatially collocated. Hints of this behaviour are also seen in V374 Peg, but it cannot be confirmed from the current data. The photospheric activity patterns in EY Dra are stable during one observing run lasting several nights, whereas in V374 Peg large night‐tonight variations are seen. Two large flares, one in the Hα observations and one from the broadband photometry, and twelve smaller ones were detected in V374 Peg during the observations spanning nine nights. The energy of the photometrically detected largest flare is estimated to be 4.25 × 1031– 4.3 × 1032 erg, depending on the waveband. Comparing the activity patterns in these two stars, which are just below and above the mass limit of full convection, is crucial for understanding dynamo operation in stars with different internal structures (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号