首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
本文利用新的太阳EUV辐射资料、中性大气结构模式及大气成分的吸收及电离特性,计算了100-200km大气的光电离率随高度、太阳天顶角及太阳活动的变化,求得了E-F1谷的变化特征;利用完整的光化模式求得了电子密度随太阳天顶角的变化及对太阳活动的响应,并与IRI模式作了比较.结果表明,1.太阳活动指数与光电离率间的相关关系一般为正,但在一定的高度范围内,或在天顶角大于临界值Xcr=60°时,两者之间可出现负相关;2.太阳活动明显地影响E-F1谷高与谷厚,当天顶角不变时,谷高与谷厚均与太阳活动成正相关;3.本模式与IRI间的偏差因子明显随高度及太阳天顶角而变化.  相似文献   

2.
For calculating photolysis rates and solar heating in the atmosphere, the radiation field has to be calculated very accurately. Previous investigations have shown that for large solar zenith angles a solution of the radiation equation which accounts for the Earth\’s curvature is needed. A new simplified version of the 3D radiation equation in spherical geometry allowing for anisotropic scattering is presented. The horizontal variation of physical quantities, the variation of the solar zenith angle with different longitude and latitude for the scattering calculation for one vertical column of air and any effects of refraction are neglected. A numerical model is introduced which efficiently solves this new 3D radiation equation accurately. The effects of anisotropic scattering are shown to be very important for the directional dependence of the scattered intensity. Anisotropic scattering by aerosols and air molecules can change the intensity in certain directions by up to 180% and 25%, respectively. However, most of these changes cancel each other out when averaged over all angles, so that the effect of anisotropic scattering for large solar zenith angles on the mean intensity (actinic flux) is much smaller, i.e. less than 10%. For the heating rates, the effect of anisotropic scattering for large solar zenith angles is even smaller, being less than a few percent. Generally, the effects of anisotropic scattering and the effects of including aerosols are the larger on higher altitudes the larger the solar zenith angle is. Results of the model are shown to compare well with results of previous investigations, including the independent work of Dahlback and Stamnes. The agreement is especially good in the case of isotropic scattering by air molecules and neglecting the effects of aerosols.  相似文献   

3.
A new parameterization for atmospheric transmission and O2 photodissociation in the Schumann-Runge band region has been developed and tested with a 1D radiative-photochemical model. The parameterization is based on the O2-column along the line of sight to the Sun and the local temperature. Line-by-line calculations have served as a benchmark for testing this method and several other, commonly used, parameterizations. The comparisons suggest that differences between the line-by-line calculations and currently accepted parameterizations can be reduced significantly by using the new method, particularly at large solar zenith angles. The production rate of O-atoms computed with this method shows less than 6% deviation compared to the line-by-line calculations at any altitude, all solar zenith angles and in all seasons. The largest errors are found toward the shorter wavelengths in the Schumann-Runge region at low altitudes. Transmittance is approximated to better than 4% at any altitude and/or solar zenith angle. The total O-production rate above 20 km is approximated to better than 2%. The new parameterization is easily implemented in existing photochemical models and in many cases it may simply replace the existing algorithm. The computational effort exceeds that of other parameterizations but in view of the total computation time needed for the actual calculation of the parameterized Schumann-Runge bands this should not lead to significant performance degeneration. The first 14 coefficients of the parameterization are included in this study. Both the complete sets of coefficients and a simple algorithm can be obtained by contacting the authors. A photochemical model study shows the largest effect of the parameterization method is on odd hydrogen concentrations. Subsequent interaction with an odd oxygen family causes differences in the ozone concentrations between the different parameterizations of more than 10% at selected altitudes. Although it is already established that deficiencies in the treatment of Schumann-Runge band absorption are unlikely to explain the current underestimation of ozone concentration at the stratopause in a variety of photochemical models, this study does show that the choice of parameterization has a large impact on the accuracy of the results at large solar zenith angles and in different seasons.  相似文献   

4.
A high-resolution spectrometer (0.0014 nm at 313 nm) has been developed at the University of L’Aquila (Italy) for atmospheric spectroscopic studies. The layout, optics and software for the instrument control are described. Measurements of the mercury low-pressure lamp lines from 200 to 600 nm show the high performances of the spectrometer. Laboratory measurements of OH and NO2 spectrums demonstrate that the system could be used for cross-section measurements and to detect these species in the atmosphere. The first atmospheric application of the system was the observation of direct solar and sky spectrums that shows a filling-in of the sky lines due to rotational Raman scattering. The measurements have been done with clear and cloudy sky and in both there was a strong dependence of the filling-in from the solar zenith angle whereas no dependence from the wavelengths was evident at low solar zenith angles (less than 85°).  相似文献   

5.
We simulated geostationary satellite observations to assess the potential for high spatial-and temporal-resolution monitoring of air pollution in China with a focus on tropospheric ozone(O_3), nitrogen dioxide(NO_2), sulfur dioxide(SO_2), and formaldehyde(HCHO). Based on the capabilities and parameters of the payloads onboard sun-synchronous satellites, we simulated the observed spectrum based on a radiative transfer model using a geostationary satellite model. According to optimal estimation theory, we analyzed the sensitivities and retrieval uncertainties of the main parameters of the instrument for the target trace gases. Considering the retrieval error requirements of each trace gas, we determined the major instrument parameter values(e.g., observation channel, spectral resolution, and signal-to-noise ratio). To evaluate these values, retrieval simulation was performed based on the three-dimensional distribution of the atmospheric components over China using an atmospheric chemical transportation model. As many as 90% of the experiments met the retrieval requirements for all target gases. The retrieval precision of total-column and stratospheric O_3 was 2%. In addition, effective retrieval of all trace gases could be achieved at solar zenith angles larger than 70°. Therefore, the geostationary satellite observation and instrument parameters provided herein can be used in air pollution monitoring in China. This study offers a theoretical basis and simulation tool for improving the design of instruments onboard geostationary satellites.  相似文献   

6.
The thermospheric semiannual density response to solar EUV heating   总被引:1,自引:0,他引:1  
The goal of this study was to characterize the thermospheric semiannual density response to solar heating during the last 35 years. Historical radar observational data have been processed with special orbit perturbations on 28 satellites with perigee heights ranging from 200 to 1100 km. Approximately 225,000 very accurate average daily density values at perigee have been obtained for all satellites using orbit energy dissipation rates. The semiannual variation has been found to be extremely variable from year to year. The magnitude of the maximum yearly difference, from the July minimum to the October maximum, is used to characterize the yearly semiannual variability. It has been found that this maximum difference can vary by as much as 100% from one year to the next. A high correlation has been found between this maximum difference and solar EUV data. The semiannual variation for each year has been characterized based on analyses of annual and semiannual cycles, using Fourier analysis, and equations have been developed to characterize this yearly variability. The use of new solar indices in the EUV and FUV wavelengths is shown to very accurately describe the semiannual July minimum phase shifting and the variations in the observed yearly semiannual amplitude.  相似文献   

7.
Abstract

A primitive equation, solar driven, thermospheric model is derived which has applications to the neutral gas components on Mars and Venus. The full effects of molecular viscosity and thermal conductivity are included, necessitating the development of a combined analytic and numerical solution technique. The model is applied to Venus in order to understand how thermospheric rotation, if present, would affect the dynamics. Results indicate that rotation periods of eight days or less should be observable. Application of the model to Mars indicates that the perturbation solar heating and the atmospheric response have primarily a diurnal component for which typical temperature and zonal wind maximum amplitudes are 20 K and 30 m/sec respectively. Because of uncertainty in the solar heating efficiency, calculations were made varying this parameter by an order of magnitude. The results imply that the response due to solar forcing alone is probably too small to account for observed concentrations of the minor constituents CO and O. An upper limit estimate is made of the upward propagation of wave energy from the lower atmosphere and the resulting response of the thermosphere.  相似文献   

8.
The effects of cloud shadowing, channelling, cloud side illumination and droplet concentration are investigated with regard to the reflection of shortwave solar radiation. Using simple geometric clouds, coupled with a Monte Carlo model the transmission properties of idealized cloud layers are found. The clouds are illuminated with direct solar radiation from above. The main conclusion reached is that the distribution of the cloud has a very large influence on the reflectivity of a cloud layer. In particular, if the cloud contains vertical gaps through the cloud layer in which the liquid water content is zero, then, smaller more numerous gaps are more influential on the radiation than fewer, larger gaps with equal cloud fraction. At very low solar zenith angles channelling of the radiation reduces the reflection expected on the basis of the percentage cloud cover. At high solar zenith angles the illumination of the cloud edges significantly increases the reflection despite the shadowing of one cloud by another when the width of the gaps is small. The impact of droplet concentration upon the reflection of cloud layers is also investigated. It is found that at low solar zenith angles where channelling is important, the lower concentrations increase the transmission. Conversely, when cloud edge illumination is dominant the cloud distribution is found to be more important for the higher concentrations.  相似文献   

9.
This paper studies the ionospheric and geomagnetic response to an X6.2 solar flare recorded at 14:30 UT on December 13, 2001, in quiet geomagnetic conditions which allow the variations in the geomagnetic field and ionosphere measurements to be easily related to the solar flare radiation.By using measurements from the global positioning system (GPS) and geomagnetic observatories, the temporal evolution of ionospheric total electron content variation, vTECV, and geomagnetic field variations, δB, as well as their rates of variation, were obtained around the subsolar point at different solar zenith angles. The enhancement of both parameters was recorded one to three minutes later than the Geostationary Operational Environmental Satellite (GOES) programme recording; such delay tends to depend on the latitude, longitude, and solar zenith angle of the observatory's observations.The vTECV is related to the local time and the δB to the intensity and position of the ionospheric currents.The vTECV′s maximum value is always recorded later than the maximum values reached by δB and the X-ray intensity. The maximum δB is larger in the local morning than in the afternoon.The rates of vTECV and δB have two maximum values at the same time as the maximum values recorded by Hα (for each ribbon).This work shows the quantitative and qualitative relations between a solar flare and the ionospheric and geomagnetic variations that it produces.  相似文献   

10.
The Global Ozone Monitoring Experiment (GOME) onboard the ERS-2 satellite has been in operation since July 1995. The Norwegian ground-based total ozone network has played an important role both in the main validation during the commissioning phase and in the validation of upgraded versions of the analysis algorithms of the instrument. The ground-based network consists of various spectrometer types (Dobson, Brewer, UV filter instruments). The validation of the second algorithm version used until January 1998 reveals a very good agreement between GOME and ground-based data at solar zenith angles <60° and deviations of GOME total ozone data from ground-based data of up to ±60 DU (∼20%) at zenith angles ≥60°. The deviations strongly depend on the season of the year, being negative in summer and positive in winter/spring, The deviations furthermore show a considerable scattering (up to ±25 DU in monthly average values of 5° SZA intervals), even in close spatial and temporal coincidence with ground-based measurements, especially in the high Arctic. The deviations are also dependent on the viewing geometry/ground pixel size with an additional negative offset for the large pixels used in the backswath mode and at solar zenith angles ≥85°, compared to forward-swath pixels.  相似文献   

11.
Calculations with a full time-varying model are used to study changes in the height and density of the E-layer peak, caused by known changes in the neutral atmosphere. Agreement with mean observed values of NmE requires an increase of 10% in calculated ion densities, and an increase of 33% in the solar-maximum EUV model at λ<150 Å. At a fixed site, changes with the solar zenith angle χ agree well with the simple Chapman theory during most of the daylight hours. Simple modifications to the Chapman equations give improved accuracy near sunrise and sunset. When corrected for changes in χ, model results for summer and equinox show a decrease in the peak density NmE at increasing latitudes. The overall change agrees well with experimental data, as summarised in the IRI model. Known changes in the neutral atmosphere also reproduce the increase in NmE in winter, at latitudes up to 30°. The continuing increase at higher winter latitudes, in the IRI model, requires a major reduction in NO densities in winter. A suitable compromise is suggested. Equations fitted to the model results then provide a simpler and better behaved replacement for the IRI equations. Calculations at night show that known sources of ionisation, largely from starlight, can produce observed peak densities using current chemistry. There is an appreciable change with latitude, as starlight production increases in the southern hemisphere. The improbably large solar cycle change built into the IRI model, at night, cannot be reproduced and is not found in recent data. A new, simpler model is suggested. Changes in zenith angle and atmospheric composition cause the peak height (hmE) to vary between 105 and 120 km, as a function of time, latitude, season and solar flux. These changes are approximated by simple equations that should be definitely preferable over the single, fixed height used in the IRI models.  相似文献   

12.
The three-dimensional stationary in solar-terrestrial system numerical model of the global ionosphere at F-region altitudes is developed. The input parameters are: the structural parameters of empirical thermospheric models (temperature, composition), electric fields, solar UV-radiation spectrum, corpuscular flows at high latitudes. The model includes the calculations of thermospheric circulation, electron density, electron and ion temperatures. The model reproduces the main morphological peculiarities of the distribution of thermospheric circulation and ionospheric plasma parameters. A comparison analysis of the results of the model calculation corresponding to different thermospheric models (DTM, MSIS, Jacchia-77, MSIS-83) is carried out. It is shown, that thermospheric circulation systems are the effective indicator of faithfulness of thermospheric models.  相似文献   

13.
Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes) above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs). The calculated zonal electric field disturbances also help to create the positive ionospheric disturbances both at middle and low latitudes. Minor contributions arise from the general density enhancement of all constituents during geomagnetic storms, which favours ion production processes above ion losses at fixed height under day-light conditions.  相似文献   

14.
New solar indices have been developed to improve thermospheric density modeling for research and operational purposes. Out of 11 new and 4 legacy indices and proxies, we have selected 3 (F10.7, S10.7, and M10.7) for use in the new JB2006 empirical thermospheric density model. In this work, we report on the development of these solar irradiance indices. The rationale for their use, their definitions, and their characteristics, including the IS 21348:2007 spectral category and sub-category, wavelength range, solar source temperature region, solar source feature, altitude region of terrestrial atmosphere absorption at unit optical depth, and terrestrial atmosphere thermal processes in the region of maximum energy absorption, are described. We also summarize for each solar index the facility and instrument(s) used to observe the solar emission, the time frame over which the data exist, the measurement cadence, the data latency, and the research as well as operational availability. The new solar indices are provided in forecast as well as real time and historical time frames (http://SpaceWx.com JB2006 Quicklink). We describe the forecast methodology, compare results with actual data for active and quiet solar conditions, and compare improvements in F10.7 forecasting with legacy HASDM and NOAA SWPC forecasts.  相似文献   

15.
An algorithm based on simulated satellite signal calculated by the 6S radiative transfer model has been developed in order to retrieve the aerosol optical thickness of dust over the Atlantic ocean. The algorithm is applied to the visible channel of Geostationary Operational Environmental Satellite (GOES 8) images. The inversion uses a look-up table giving the satellite signal intensity as a function of surface albedo, viewing geometry, solar illumination and the optical properties of the aerosols. The study consists of assessing the feasibility of monitoring and mapping the transport of suspended particles across the Atlantic from the Sahara to the Caribbean. The study area is between 10 and 25 N and 30 and 65 W. The optical thickness of aerosols has been calculated over a period of 11 days between 10th and 20th of June 1997 for the 14:15 UT GOES image acquisition. The calculated aerosol optical thickness ranges from 0.0 to 0.81 with an important event of dust presence occurring between 13th and 16th of June. The retrieved aerosol optical thickness is in good agreement with the values obtained between 14h UT and 15h UT from ground based sun photometer measurements on the island of Guadeloupe, and a coefficient correlation (R2) of 0.88 has been found between the data sets.  相似文献   

16.
Model results for the ionospheric E region: solar and seasonal changes   总被引:5,自引:0,他引:5  
A new, empirical model for NO densities is developed, to include physically reasonable variations with local time, season, latitude and solar cycle. Model calculations making full allowance for secondary production, and ionising radiations at wavelengths down to 25 Å, then give values for the peak density N mE that are only 6% below the empirical IRI values for summer conditions at solar minimum. At solar maximum the difference increases to 16%. Solar-cycle changes in the EUVAC radiation model seem insufficient to explain the observed changes in N mE, with any reasonable modifications to current atmospheric constants. Hinteregger radiations give the correct change, with results that are just 2% below the IRI values throughout the solar cycle, but give too little ionisation in the E-F valley region. To match the observed solar increase in N mE, the high-flux reference spectrum in the EUVAC model needs an overall increase of about 20% (or 33% if the change is confined to the less well defined radiations at <150 Å). Observed values of N mE show a seasonal anomaly, at mid-latitudes, with densities about 10% higher in winter than in summer (for a constant solar zenith angle). Composition changes in the MSIS86 atmospheric model produce a summer-to-winter change in N mE of about–2% in the northern hemisphere, and +3% in the southern hemisphere. Seasonal changes in NO produce an additional increase of about 5% in winter, near solar minimum, to give an overall seasonal anomaly of 8% in the southern hemisphere. Near solar maximum, reported NO densities suggest a much smaller seasonal change that is insufficient to produce any winter increase in N mE. Other mechanisms, such as the effects of winds or electric fields, seem inadequate to explain the observed change in N mE. It therefore seems possible that current satellite data may underestimate the mean seasonal variation in NO near solar maximum. A not unreasonable change in the data, to give the same 2:1 variation as at solar minimum, can produce a seasonal anomaly in NmE that accounts for 35–70% of the observed effect at all times.  相似文献   

17.
The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earths upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer) Hemisphere obtained from DE-2 data for IMF By < 0 but for the Northern (winter) Hemisphere there is a disagreement at high latitudes in the afternoon sector of the cusp region. At the same time, the model results for this sector agree with other DE-2 data and with the ground-based FPI data. All ionospheric and thermospheric disturbances in the second variant of the calculations are more intensive in the winter cusp region in comparison with the summer one and this seasonal difference is larger than in the first variant of the calculations, especially in the electron density and all temperature variations. The means that the seasonal effects in the cusp region are stronger in the thermospheric and ionospheric responses to the FAC variations than to the precipitation disturbances.  相似文献   

18.
The companion paper by Zou et al. shows that the annual and semiannual variations in the peak F2-layer electron density (NmF2) at midlatitudes can be reproduced by a coupled thermosphere-ionosphere computational model (CTIP), without recourse to external influences such as the solar wind, or waves and tides originating in the lower atmosphere. The present work discusses the physics in greater detail. It shows that noon NmF2 is closely related to the ambient atomic/molecular concentration ratio, and suggests that the variations of NmF2 with geographic and magnetic longitude are largely due to the geometry of the auroral ovals. It also concludes that electric fields play no important part in the dynamics of the midlatitude thermosphere. Our modelling leads to the following picture of the global three-dimensional thermospheric circulation which, as envisaged by Duncan, is the key to explaining the F2-layer variations. At solstice, the almost continuous solar input at high summer latitudes drives a prevailing summer-to-winter wind, with upwelling at low latitudes and throughout most of the summer hemisphere, and a zone of downwelling in the winter hemisphere, just equatorward of the auroral oval. These motions affect thermospheric composition more than do the alternating day/night (up-and-down) motions at equinox. As a result, the thermosphere as a whole is more molecular at solstice than at equinox. Taken in conjunction with the well-known relation of F2-layer electron density to the atomic/molecular ratio in the neutral air, this explains the F2-layer semiannual effect in NmF2 that prevails at low and middle latitudes. At higher midlatitudes, the seasonal behaviour depends on the geographic latitude of the winter downwelling zone, though the effect of the composition changes is modified by the large solar zenith angle at midwinter. The zenith angle effect is especially important in longitudes far from the magnetic poles. Here, the downwelling occurs at high geographic latitudes, where the zenith angle effect becomes overwhelming and causes a midwinter depression of electron density, despite the enhanced atomic/molecular ratio. This leads to a semiannual variation of NmF2. A different situation exists in winter at longitudes near the magnetic poles, where the downwelling occurs at relatively low geographic latitudes so that solar radiation is strong enough to produce large values of NmF2. This circulation-driven mechanism provides a reasonably complete explanation of the observed pattern of F2 layer annual and semiannual quiet-day variations.  相似文献   

19.
20.
Several authors have published models of auroral conductances in the past. Some of them are based on theoretical approaches; others are the result of observations. The data bases for the latter models range from 8 h to 3 years of experiments. In this paper, we show the results of our own modeling, based on a coupled kinetic/fluid approach. We compare these results to the statistical model based on 3 years of experiment. We then model the auroral ionospheric conductances above EISCAT and the EISCAT-Svalbard Radar for different solar-activity indices. These modeled conductances are fitted with a simple law depending on the f10.7 index and on the solar zenith angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号