首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This paper corrects and completes a previous study of the shape of the extinction curve in the visible and the value of RV. A continuous visible/infrared extinction law proportional to 1/λp with p close to 1 (± 0.4) is indistinguishable from a perfectly linear law (p = 1) in the visible within observational precision, but the shape of the curve in the infrared can be substantially modified. Values of p slightly larger than 1 would account for the increase of extinction (compared to the p = 1 law) reported for λ > 1 μ m and deeply affect the value of RV. In the absence of gray extinction RV must be 4.04 if p = 1. It becomes 3.14 for p = 1.25, 3.00 for p = 1.30, and 2.76 for p = 1.40. Values of p near 1.3 are also attributed to extinction by atmospheric aerosols, which indicates that both phenomena may be governed by similar particle size distributions. A power extinction law may harmonize visible and infrared data into a single, continuous, and universal interstellar extinction law (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
《New Astronomy》2002,7(3):117-123
For directions of sufficient reddening (E(BV)>∼0.25), there is a simple relation between the slope of the extinction curve in the far-UV and E(BV). Regardless of direction, the far-UV extinction curve is proportional to 1/λn e−2E(BV)/λ (λ in μm, n=4), in accordance with the idea that reddened stars spectra are contaminated by scattered light (Zagury, 2001b).This relation is not compatible with the standard theory of extinction which states that far-UV and visible extinctions are due to different classes of particle. In that model the two (far-UV and visible) extinctions vary thus independently according to the proportion of each type of particle.In preceding papers I have shown that the standard theory cannot explain UV observations of nebulae, and is contradicted by the UV spectra of stars with very low reddening: for how long shall the standard theory be considered as the interpretation of the extinction curve?  相似文献   

3.
New methods are applied to samples of classical cepheids in the galaxy, the Large Magellanic Cloud, and the Small Magellanic Cloud to determine the interstellar extinction law for the classical cepheids, R B:R V:R I:R J:R H:R K= 4.190:3.190:1.884:0.851:0.501:0.303, the color excesses for classical cepheids in the galaxy, E(B-V)=-0.382-0.168logP+0.766(V-I), and the color excesses for classical cepheids in the LMC and SMC, E(B-V)=-0.374-0.166logP+0.766(V-I). The dependence of the intrinsic color (B-V)0 on the metallicity of classical cepheids is discussed. The intrinsic color (V-I)0 is found to be absolutely independent of the metallicity of classical cepheids. A high precision formula is obtained for calculating the intrinsic colors of classical cepheids in the galaxy: (<B>-<V>)0=0.365(±0.011)+0.328(±0.012)logP.  相似文献   

4.
HD 165590 is a visual binary (dG0 + dG5,P = 20 . y 25,e = 0.96) whoseA component is an SB1 double (dG5 + dM:P = 0 . d 88,e0.0). TheA pair (Aa +Ab) undergoes partial eclipses. PhotoelectricUBV photometry from Lines and one of the Automatic Photoelectric Telescopes, andV photometry from Scarfe are examined here. The data are from the 1977, 1984, 1985, and 1986 observing seasons. The non-eclipse light variations are analyzed with a FORTRAN program which does a sinusoidal curve fitvia least squares repeatedly to obtain the best period. Periods found from each observing season and passband are consistent with Boydet al. (1985): the greatest variations seem to be produced by a rotating (0 . d 88), spotted, G0 star (theAa component). To the residuals from the first analysis a further curve fit is made to determine characteristics of the wave due to the ellipticity effect. An early limit on the spectral type of the unseenAb component, based on the primary eclpse depth and the upper limit on the depth of the unseen secondary eclipse, is K2. Eclipse depths and widths seen here suggest that theA pair's inclination = 74 . 0 9 ± 10, close to theA +B inclination of 82 . 0 7 ± 20 (Battenet al., 1979). TheA pair's orbital period does not appear to vary, appearing instead to be well-described by a new linear ephemeris (Hel. J.D. = 2443665.4568 + 0 . d 8795045E) which does, however, take into account a variable light-travel-times as theA component orbits theA +B center of mass with a 20 . y 25 period. The maximum light-travel-time O-C thus produced is + /–8 . m 4 = + /–0 . d 0059.  相似文献   

5.
Photoelectric Vilnius photometry of the B-type stars HD 29 647 and HDE 283 809 in the direction of the Taurus molecular cloud indicates their brightness and energy distribution to be constant within 1–2%. The interstellar extinction law is determined for the star HDE 283 809 from the photometry data in the Vilnius andUBVRJHKL systems, which yield the ratioR=A V/EB-V=3.5 and grain sizes exceeding the average by approximately 10%. The interstellar extinction law for the two stars is found to be the same in the infrared, however, it is very different in the near ultraviolet. The new spectra of HDE 283 809 confirm the earlier classification and indicate an absence of emission in the hydrogen lines. The interstellar band at 443 nm is observed but its intensity is a half of what is expected forE B-V=1.61. The observed peculiarities of the energy distribution in the spectrum of HDE 283 809 apparently originate in interstellar or circumstellar dust, not in the star itself.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

6.
The 2200 Å bump is a major figure of interstellar extinction. However, extinction curves with no bump exist and are, with no exception, linear from the near‐infrared down to 2500 Å at least, often over all the visible‐UV spectrum. The duality linear versus bump‐like extinction curves can be used to re‐investigate the relationship between the bump and the continuum of interstellar extinction, and answer questions as why do we observe two different kinds of extinction (linear or with a bump) in interstellar clouds? How are they related? How does the existence of two different extinction laws fits with the requirement that extinction curves depend exclusively on the reddening E (BV) and on a single additional parameter? What is this free parameter? It will be found that (1) interstellar dust models, which suppose the existence of three different types of particles, each contributing to the extinction in a specific wavelength range, fail to account for the observations; (2) the 2200 Å bump is very unlikely to be absorption by some yet unidentified molecule; (3) the true law of interstellar extinction must be linear from the visible to the far‐UV, and is the same for all directions including other galaxies (as the Magellanic Clouds). In extinction curves with a bump the excess of starlight (or the lack of extinction) observed at wavelengths less than λ = 4000 Å arises from a large contribution of light scattered by hydrogen on the line of sight. Although counter‐intuitive this contribution is predicted by theory. The free parameter of interstellar extinction is related to distances between the observer, the cloud on the line of sight, and the star behind it (the parameter is likely to be the ratio of the distances from the cloud to the star and to the observer). The continuum of the extinction curve and the bump contain no information on the chemical composition of interstellar clouds. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The dependence of interstellar extinction on distance in the direction of the dark cloud south of Merope is determined using photoelectric photometry of 93 stars in the Vilnius photometric system. The cloud front edge is detected at 120–130 pc from the Sun and the distance of the Pleiades cluster is found to be 127 pc. Mean extinctionA V in the Merope cloud is of the order of 1.0 mag. There is no evidence of extinction at distances exceeding the Merope cloud distance. Variable extinction method yieldsR=A V/EB-V=3.6, while the maximum polarization wavelength method gives the value 3.4. Some Pleiades stars are suspected to be unresolved binaries.  相似文献   

8.
Based on currently available observations of 28 maser sources in 25 star-forming regions with measured trigonometric parallaxes, proper motions, and radial velocities, we have constructed the rotation curve of the Galaxy. Taking different distances to the Galactic center R 0, we have estimated the peculiar velocity of the Sun, the angular velocity of Galactic rotation, and its three derivatives. For R 0 = 8 kpc, we have found the circular velocity of the Sun to be V 0 = 243 ± 16 km s−1, which corresponds to a revolution period of 202 ± 10 Myr. We have obtained the Oort constants A = 16.9 ± 1.2 km s−1 kpc−1 and B = −13.5 ± 1.4 km s−1 kpc−1. Our simulation of the influence of a spiral density wave has shown that the peculiar velocity of the Sun with respect to the local standard of rest and the component (V )LSR depend significantly on the Sun’s phase in the spiral wave.  相似文献   

9.
A reanalysis of the (seemingly very distant) open cluster Shorlin 1, the group of stars associated with WR 38 and WR 38a, is made on the basis of existing UBV and JHK s observations for cluster members. The 2MASS observations, in particular, imply a mean cluster reddening of E BV =1.45±0.07 and a distance of 2.94±0.12 kpc. The reddening agrees with the UBV results provided that the local reddening slope is described by E UB /E BV =0.64±0.01, but the distance estimates in the 2MASS and UBV systems agree only if the ratio of total-to-selective extinction for the associated dust is R=A V /E BV =4.0±0.1. Both results are similar to what has been obtained for adjacent clusters in the Eta Carinae region by similar analyses, which suggests that “anomalous” dust extinction is widespread through the region, particularly for groups reddened by relatively nearby dust. Dust associated with the Eta Carinae complex itself appears to exhibit more “normal” qualities. The results have direct implications for the interpretation of distances to optical spiral arm indicators for the Galaxy at =287°–291°, in particular the Carina arm here is probably little more than ∼2 kpc distant, rather than 2.5–3 kpc distant as implied in previous studies. Newly-derived intrinsic parameters for the two cluster Wolf-Rayet stars WR 38 (WC4) and WR 38a (WN5) are in good agreement with what is found for other WR stars in Galactic open clusters, which was not the case previously.  相似文献   

10.
Evidence relating to the value ofR=A V/EB-V appropriate to discrete dark clouds in the interstellar medium is discussed. The polarimetric method of evaluatingR recently proposed by Serkowski, Mathewson and Ford gives results consistent with extinction curve determinations. A value ofR~4.4 appears to apply to the most reddened stars in the ? Oph complex, suggesting the existence of an upper size limit for the grains. If the grains grow by accretion of the heavier elements from the surrounding gas, as suggested by Carrasco, Strom and Strom, then the availability of material sets a limitation on mantle growth consistent with the observed increase inR.  相似文献   

11.
The spectral energy distributions between λ 3700 Å and λ 8100 Å of the binary systems COU1289 and COU1291 have been measured with the Carl‐Zeiss‐Jena 1 m telescope of the Special Astrophysical Observatory. Their B, V, R magnitudes and BV colour indices were computed and compared with earlier investigations. Model atmospheres of both systems were constructed using a grid of Kurucz blanketed models, their spectral energy distributions in the continuous spectrum were computed and compared with the observational ones. The model atmosphere parameters for the components of COU1289 were derived as: T aeff = 7100 K, T beff = 6300 K, log g a = 4.22, log g b = 4.22, R a = 1.50 R, R b = 1.40 R, and for the components of COU1291 as: T aeff = 6400 K, T beff = 6100 K, log g a = 4.20, log g b = 4.35, R a = 1.47 R, R b = 1.12 R. The spectral types of both components of the system COU1289 were concluded as F1 and F7, and of the system COU1291 as F6 and F9. Finally the formation and evolution of the systems were discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The spectra of the host galaxies of gamma‐ray bursts at low redshift generally show strong hydrogen lines of the Balmer, Paschen and Brackett series, in addition to strong nebular metal lines. In special cases the hosts can be resolved in separate star forming regions, and spatially resolved spectroscopy can be obtained. Generally, the three strongest Balmer lines are used to derive the reddening experienced by the emission lines of the host gas, assuming a Milky Way extinction curve, case B recombination and a fixed electron temperature. We demonstrate how the wide wavelength range of X‐shooter, in combination with a rigorous calibration strategy, can be used to fit explicitly for RV, Te, and AV simultaneously using a large number of H and He I recombination lines, explicitly corrected for stellar atmosphere absorption. This increases our understanding of extinction and absorption in starforming regions in GRB hosts. We use two GRB hosts as examples of the methods, outlining the advantages of using X‐shooter over other instruments (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The photometric elements of the eclipsing binary NSV 18773 (HD 99898) have been determined for the first time by analyzing its V-and I-band light curves from the ASAS-2 and ASAS-3 catalogs. Based on these elements and using other published spectroscopic and photometric data, we constructed a consistent system of geometrical and physical parameters for the system that consists of two stars (M 1 = 20M , Sp1=B0V, R 1 = 5.0R and M 2 = 14M , Sp2 = B1V, R 2 = 6.5R ) in elliptical orbits (P = 5 . d 049, e = 0.365, a = 40.1R ). The distance to the system is d = 3.3 kpc, the interstellar extinction is A V = 2 . m 0, and the age is t = 2.8 × 106 yr. NSV 18773 is a visual binary with components V A = 9 . m 9 and V B = 10 . m 3 separated by 0 . " 8. The third light (L 3 = 0.61) that we found by analyzing the light curves shows that the eclipsing binary is the system’s fainter component B. We confirmed the rapid apsidal motion of the star detected by Otero and Wils (2006) and refined its observed period: U obs = 150 ± 6 yr. Our photometric elements and physical parameters allowed the apsidal parameter $\bar k_2^{obs} = 0.0135(14)$ , which reflects the density distribution along the radii of the component stars, to be determined. Within the error limits, the derived parameter agrees with its theoretically expected value, $\bar k_2^{th} = 0.0119(8)$ , from current evolutionary models of stars of the corresponding masses and ages.  相似文献   

14.
Speckle-interferometric observations of FU Ori are performed with the 6-m telescope of the Special Astrophysical Observatory with 600/40 nm and 800/100 nm (central bandwidth/halfwidth) filters. The companion star FU Ori S that was recently discovered at λ >-1.25µm was recorded in observations with the λλ==800/100 nm filter. The positional parameters and magnitude difference of the companion in the filter considered are found to be θ = (163.9 ± 1.0)°, ρ = (0.493 ± 0.007)″, Δm = 3.96 ± 0.28. An analysis of the spectral energy distribution of the companion implies that for the extinction A V toward FU Ori to be greater than about 1.6 m , i.e., the minimum value required by the available models of the fuor, the spectral type of the companion star must be no later than K3. The reliability of this conclusion and the possible ways for obtaining more accurate estimates of A V are discussed.  相似文献   

15.
We analyze here the behavior of the magnitudes of the F1 and E peaks of the electron density profiles measured by the Radio Science Subsystem of the Mars Global Surveyor spacecraft, as a function of solar zenith angle χ and solar flux. For each of the 658 days of data in the six occultation seasons in the northern hemisphere, we choose one profile to analyze, which is that for which the F1 peak is the median value. We assume that the variations of the measured peak densities can be represented as Aa(cosχ) and as Bb(F10.7), where F10.7 is the usual solar flux proxy, appropriately shifted to the orbital position of Mars. To minimize the effect of solar activity, we divide the data into 6 F10.7 bins, fit the data in each bin, and derive the values of the exponent a and the coefficient AF10.7 for each bin. The median values that we derive for the exponent a is 0.46 for the F1 peak, and 0.395 for the E peak. To minimize the effect of SZA, we divide the data into eight SZA bins, and derive the exponent b and the coefficient Bχ for each SZA bin. We argue that the last three SZA bins should be excluded because the fits were poor, due partly to the small number of data points in each of these bins. If we do so, the median values of b that we derive are 0.27 and 0.40 for the F1 and E peaks, respectively. Finally we derive a 3-parameter fit to all the data, which expresses the variability of the peak densities as a function of a(cosχ) and b(F10.7) simultaneously. The fitted values of the exponents a and b for the F1 peak are 0.45 and 0.26, respectively; for the E peak, the values are 0.39 and 0.46, respectively. We compare our results to Chapman theory, and to those of other investigators.  相似文献   

16.
We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. catalog based on the following criteria: emission in H α , V<18./m 5 and 0.m 35 < (B - V) < 1.m 2. The spectra of both stars reveal a broad and strong H α emission with extended wings (770 and 1000 kms−1). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/L) = 6.0–6.2 with the value of interstellar extinction A V = 2.3 ± 0.1. The temperature of the star’s photosphere is estimated as T⋆ ∼ 13000–15000 K, its probable mass on the Zero Age Main Sequence is M∼ 60–80 M. The infrared excess in N 45901 corresponds to the emission of warm dust with the temperature Twarm ∼ 1000 K, and amounts to 0.1%of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/L) = 6.3 − 6.6, the value of interstellar extinction is A V = 2.75 ± 0.15. We estimate its photosphere’s temperature as T⋆∼ 13000–16000K, the initial mass as M ∼ 90–120 M. The infrared excess in N125093 amounts to 5–6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm ∼ 1000K and Tcold ∼ 480 K. The [Ca II] λλ7291, 7323 lines, observed in LBV-like stars Var A and N93351 in M33 are also present in the spectrum of N 125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad H α emissions allow classifying the studied objects as LBV candidates.  相似文献   

17.
In this paper, an approximate method of calculating the Fermi energy of electrons (E F (e)) in a high-intensity magnetic field, based on the analysis of the distribution of a neutron star magnetic field, has been proposed. In the interior of a neutron star, different forms of intense magnetic field could exist simultaneously and a high electron Fermi energy could be generated by the release of magnetic field energy. The calculation results show that: E F (e) is related to density ρ, the mean electron number per baryon Y e and magnetic field strength B.  相似文献   

18.
New and existing photometry for the G0 Ia supergiant HD 18391 is analyzed in order to confirm the nature of the variability previously detected in the star, which lies off the hot edge of the Cepheid instability strip. Small‐amplitude variability at a level of δV = 0.016 ± 0.002 is indicated, with a period of P = 123d.04 ± 0d.06. A weaker second signal may be present at P = 177d.84 ± 0d.18 with δV = 0.007 ± 0.002, likely corresponding to fundamental mode pulsation if the primary signal represents overtone pulsation (123.04/177.84 = 0.69). The star, with a spectroscopic reddening of EB–V = 1.02 ± 0.003, is associated with heavily‐reddened B‐type stars in its immediate vicinity that appear to be outlying members of an anonymous young cluster centered ∼10′ to the west and 1661 ± 73 pc distant. The cluster has nuclear and coronal radii of rn = 3.5′ and Rc = 14′, respectively, while the parameters for HD 18391 derived from membership in the cluster with its outlying B stars are consistent with those implied by its Cepheid‐like pulsation, provided that it follows the semi‐period‐luminosity relation expected of such objects. Its inferred luminosity as a cluster member is MV = –7.76 ± 0.10, its age (9 ± 1) × 106 years, and its evolutionary mass ∼19 M. HD 18391 is not a classical Cepheid, yet it follows the Cepheid period‐luminosity relation closely, much like another Cepheid impostor, V810 Cen (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
High resolution rotation-vibration spectra of v = 1 and 2 sequences of 24MgH+ are obtained by a differencing process invoking the known structures of electronic bands observed in the region 214–340 nm. A reversal of R branch (band head formation) is noticed in each of the rotation-vibration bands. The J = 1 J = 0 transition is predicted to be at 376098, 365301, 354286 and 342981 MHz for v = 0,1,2 and 3, respectively, in the ground electronic state 1+. The equilibrium rotational constants B e, e and r e for the X 1E+ state are found 6.4637cm–1, 0.1899 cm–1 1.6421 Å, respectively.On leave from Physics Department, Gorakhpur University, Gorakhpur, U.P., India.  相似文献   

20.
We have measured the interstellar extinction in the region of ultradeep Galactic-field observations by the Chandra telescope (l II, b II) ≈ 0.1–1.42 using photometric data from the 2MASS infrared allsky survey. The angular resolution of our interstellar extinction map is 1′.8. We show that the interstellar extinction has a minimum, A V ~ 3.4, near the center of the Chandra field of view and increases to A V ~ 5.8–6 at the edge of the field of view. In addition, we show that the bulk of the extinction is gained in the Galactic disk and is approximately the same for all bulge stars. Our results will be subsequently used to process the Chandra data and to estimate the properties of the stellar population in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号