首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present and apply a new computer program named SpotModeL to analyze single and multiple bandpass photometric data of spotted stars. It is based on the standard analytical formulae from Budding and Dorren. The program determines the position, size, and temperature of up to three spots by minimizing the fit residuals with the help of the Marquardt‐Levenberg non‐linear least‐squares algorithm. We also expand this procedure to full time‐series analysis of differential data, just as real observations would deliver. If multi‐bandpass data are available, all bandpasses can be treated simultaneously and thus the spot temperature is solved for implicitly. The program may be downloaded and used by anyone. In this paper, we apply our code to an ≈23 year long photometric dataset of the spotted RS CVn giant IM Peg. We extracted and modelled 33 individual light curves, additionally, we fitted the entire V dataset in one run. The resulting spot parameters reflect the long term light variability and reveal two active longitudes on the substellar point and on the antipode. The radius and longitude of the dominant spot show variations with 29.8 and 10.4 years period, respectively. Our multicolour data suggests that the spot temperature is increasing with the brightening of the star. The average spot temperature from V, IC is 3550 ± 150 K or approximately 900 K below the effective temperature of the star.  相似文献   

2.
We present a new inversion code that reconstructs the stellar surface spot configuration from the light curve of a rotating star. Our code employs a method that uses the truncated least‐squares estimation of the inverse problem's objects principal components. We use spot filling factors as the unknown objects. Various test cases that represent a rapidly‐rotating K subgiant are used for the forward problem. Tests are then performed to recover the artificial input map and include data errors and input‐parameter errors. We demonstrate the robustness of the solution to false input parameters like photospheric temperature, spot temperature, gravity, inclination, unspotted brightness and different spot distributions and we also demonstrate the insensitivity of the solution to spot latitude. Tests with spots peppered over the entire stellar surface or with phase gaps do not produce fake active longitudes. The code is then applied to ten years of V and I ‐band light curve data of the spotted sub‐giant HD291095. A total of 22 light curves is presented. We find that for most of the time its spots were grouped around two active longitudes separated on average by 180°. Switches of the dominant active region between these two longitudes likely occurred about every 3.15±0.23 years while the amplitude modulation of the brightness occurred with a possible period of 3.0±0.15 years. For the first time, we found evidence that the times of the activity flips coincide with times of minimum light as well as minimum photometric amplitude, i.e. maximum spottedness. From a comparison with simultaneous Doppler images we conclude that the activity flips likely take place near the rotational pole of the star. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We present and analyze 17 consecutive years of UBVRI time‐series photometry of the spotted giant component of the RS CVn binary HD 208472. Our aim is to determine the morphology and the evolution of its starspots by using periodsearch techniques and two‐spot light‐curve modelling. Spots on HD208472 always occur on hemispheres facing the observer during orbital quadrature and flip their location to the opposite hemisphere every approximately six years. The times when the spots change their preferential hemisphere correspond to times when the light curve amplitudes are the smallest and when abrupt changes of the photometric periods are observed. During these times the star is also close to a relative maximum brightness, suggesting a vanishing overall spottedness at each end of the previous cycle and the start of a new one. We find evidence for a 6.28±0.06‐yr brightness cycle, which we interpret to be a stellar analog of the solar 11‐year sunspot cycle. We also present clear evidence for a brightening trend, approximated with a 21.5±0.5‐yr period, possibly due to a stellar analog of the solar Gleissberg cycle. From the two‐spot modelling we also determine an upper limit for the differential‐rotation coefficient of α = ΔP/P of 0.004±0.010, which would be fifty times weaker than on the Sun (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We report new photometric observations of the ∼200 000 year old naked weak‐line run‐away T Tauri star Par 1724, located north of the Trapezium cluster in Orion. We observed in the broad band filters B, V, R, and I using the 90 cm Dutch telescope on La Silla, the 80 cm Wendelstein telescope, and a 25 cm telescope of the University Observatory Jena in Großschwabhausen near Jena. The photometric data in V and R are consistent with a ∼5.7 day rotation period due to spots, as observed before between 1960ies and 2000. Also, for the first time, we present evidence for a long‐term 9 or 17.5 year cycle in photometric data (V band) of such a young star, a cycle similar to that to of the Sun and other active stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The variable star SU Equulei was classified as a close binary with an eclipse light curve previously categorized as WUMa type. The aim of this paper is a review of this old classification on the basis of new observations and a new determination of variable star ephemeris as well as the determination of SU Equ spectral type and distance. New photometric observations in different colours allow a precise determination of the period of variability and yield more accurate light curves allowing a re‐classification of the type of variability. We find the best period of variability to be half the old value. The shape of the light curve is inconsistent with an eclipse curve but consistent with an RR Lyrae type c classification. From the B, V, and R colours we deduce a new spectral classification. SU Equulei is an RRc Lyrae type variable of spectral class A8 at a distance of ≈12.4 kpc instead of a late‐type eclipsing binary (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We present the first ever study of the bright star HD 1. The star was chosen arbitrarily just because of its outstanding Henry Draper number. Surprisingly, almost nothing is known about this bright 7.m4 star. Our observations were performed as part of the commissioning of the robotic telescope facility STELLA and its fiber‐fed high‐resolution optical echelle spectrograph SES in the years 2007–2010. We found long‐term radial velocity variations with a full amplitude of 9 km s–1 with an average velocity of –29.8 km s–1 and suggest the star to be a hitherto unknown single‐lined spectroscopic binary. A preliminary orbit with a period of 6.2 years (2279±69 days) and an eccentricity of 0.50±0.01 is given. Its rms uncertainty is just 73 m s–1. HD 1 appears to be a G9‐K0 giant of luminosity class IIIa with Teff = 4850±100 K, logg = 2.0±0.2, L ≈ 155 L, a mass of 3.0±0.3 M, a radius of 17.7 R, and an age of ≈350 Myr. A relative abundance analysis led to a metallicity of [Fe/H] = –0.12 ± 0.09. The α ‐element silicon may indicate an overabundance of +0.13 though. The low strengths of some s‐process lines and a lower limit for the 12C/13C isotope ratio of ≥16 indicate that HD 1 is on the first ascend of the RGB. The absorption spectral lines appear rotationally broadened with a v sin i of 5.5±1.2 km s–1 but no chromospheric activity is evident. We also present photometric monitoring BV (RI)C data taken in parallel with STELLA. The star is likely a small‐amplitude (<10 mmag) photometric variable although no periodicity was found (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We use minimal empirical modelling techniques to interpret recent (2006–2007) photometry and spectroscopy of AB Dor. We compare, in particular, broadband (B and V) maculation effects with emission features in high‐resolution Ca II K‐line spectroscopy. We also compare emission effects in the Ca II Kand Hα lines observed at different rotational phases. We refer to a broader multiwavelength campaign, of which these optical data were a part, involving X‐ray and microwave observations to be published later. The broadband light curves are characterized by one outstanding macula, whereas the emission lines suggest 4 possible main chromospheric activity sites (‘faculae’). These appear at a similar latitude and with comparable size to the main umbra, but there are significant displacements in longitude. However, one strong facular concentration near phase zero may have a physical relationship to the main macula. The derived longitudes of these features would have been affected by differential rotation operating over the several months between the spectroscopic and photometric observations, but the difference of at least ∼30° between facula and umbra appears too great to allow their coincidence. The possibility of a large bipolar surface structure is considered, keeping in mind the bipolar character of solar activity centres: the activity of rapidly rotating cool stars being generally compared with that of the Sun, scaled up by a few orders of magnitude. Observed microwave activity may link to this same main photospheric and chromospheric centre picked up by the optical analysis. Characterization of macular and facular contributions in stellar activity sites would be improved with a closer timing of observations and higher signal to noise ratios in emission line data (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
LO Peg is a young main‐sequence star of spectral type K3. With its equatorial rotation velocity of 65 km s–1 it is amongst the ultra‐fast rotators. Its high equatorial rotation velocity and rapidly changing surface activity features make it an important object in terms of both stellar activity and the evolution of stellar rotation and angular momentum. Since its discovery as a variable star, it has mostly been subject to spectral surface mapping studies such as Doppler Imaging, while there have been very few photometric studies on it. This paper aims to present the first long‐term photometric observations and its results covering the years between 2003 and 2009. The UBVR Johnson wide band photometric data showed that the surface activity structures of LO Peg vary in timescales changing between days and months, and parallel to this, the mean, maximum and minimum brightness and amplitudes change dramatically between years and sometimes even within the same observation season. Long‐term changes in system brightness and colours, both characteristic features of active stars, were also seen in this ultra‐fast young star. The active longitudes, which has a life time of ∼1.3 years and an activity cycle period of ∼4.8 years for LO Peg were estimated (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present recent results from optical photometric and spectroscopic observations of the pre‐main sequence star V1184 Tau (CB 34V). The star is associated with the Bok globule CB 34 and was considered as a FUOR candidate in previous studies. Our photometric data obtained from October 2000 to April 2003 show that the stellar brightness varies with an amplitude of about 0.m 5 (I ), but from August 2003 the photometric behavior of the star has changed dramatically. Three deep brightness minima (ΔI ∼ 4m.2) were observed during the past two years. The analysis of available photometric data suggests that V1184 Tau shows two types of variability produced (1) by rotation of large cool spotted surface and (2) by occultation from circumstellar clouds of dust or from features of a circumstellar disk. The behavior of the VI index indicates that the star becomes redder towards minimum light, but from a certain turning point (V ∼ 18m.2) it gets bluer and is fading further. Five medium dispersion optical spectra of V1184 Tau were obtained in the period 2001–2004. Signi.cant changes in the profile and strength of the emission lines in the spectrum of V1184 Tau were found. During minimum light the equivalent width of the Hα emission line increases from 4 Å to 9 Å. The [O I] lines (λλ 6003, 6363 Å) are also seen in emission while the sodium doublet keeps its absorption strength and equivalent width. The possibility to reconstruct the historical light curve of V1184 Tau using photographical plate archives is brie.y discussed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
By analyzing brightness variation with ecliptic longitude and using the Lowell Observatory photometric database, we estimate spin‐axis longitudes for more than 350,000 asteroids. Hitherto, spin‐axis longitude estimates have been made for fewer than 200 asteroids. We investigate longitude distributions in different dynamical groups and asteroid families. We show that asteroid spin‐axis longitudes are not isotropically distributed as previously considered. We find that the spin‐axis longitude distribution for Main Belt asteroids is clearly nonrandom, with an excess of longitudes from the interval 30°–110° and a paucity between 120° and 180°. The explanation of the nonisotropic distribution is unknown at this point. Further studies have to be conducted to determine if the shape of the distribution can be explained by observational bias, selection effects, a real physical process, or other mechanism.  相似文献   

11.
Data from 11 years of continuous spectroscopic observations of the active RS CVn‐type binary star EI Eridani – gained at NSO/McMath‐Pierce, KPNO/Coudé Feed and during the MUSICOS 98 campaign – were used to obtain 34 Doppler maps in three spectroscopic lines for 32 epochs, 28 of which are independent of each other. Various parameters are extracted from our Doppler maps: average temperature, fractional spottedness, and longitudinal and latitudinal spot‐occurrence functions. We find that none of these parameters show a distinct variation nor a correlation with the proposed activity cycle as seen from photometric long‐term observations. This suggests that the photometric brightness cycle may not necessarily be due to just a cool spot cycle. The general morphology of the spot pattern remains persistent over the whole period of 11 years. A large cap‐like polar spot was recovered from all our images. A high degree of variable activity was noticed near latitudes of ≈60–70° where the appendages of the polar spot emerged and dissolved (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present results of photometric monitoring of HD 200775 in the passbands X and V of the VILGEN system obtained over the period from September 1994 to May 1995. It is shown that the star varies with a period of 10.225±0.041 days and an amplitude of 0.02 mag in X passband. The variations on the time scale of several hours and/or days are also confirmed.  相似文献   

13.
To try to understand the behavior of helium variability in Chemically Peculiar stars, we continued our on‐going observational campaign started by Catanzaro, Leone & Catalano (1999). In this paper we present a new set of time resolved spectroscopic observations of the HeI5876 Å line for a sample of 10 stars in the spectral range B3 ‐ A2 and characterized by different overabundances. This line does not show variability in two stars: HD77350 and HD175156. It shows instead an equivalent width variation in phase with the Hipparcos light curve for two stars: HD79158 and HD196502. Antiphase variations have been found in 4 stars of our sample, namely: HD35502, HD124224, HD129174 and HD142990. Nothing we can say about HD115735 because of the constancy of Hipparcos photometric data, while no phase relation has been observed for HD90044. In the text we discuss the case of HD175156, according to photometric calibration and our spectroscopic observations we rule out the membership of this star to the main sequence chemically peculiar stars. We confirm the results obtained in the previous paper for which phase relations between light, spectral and magnetic variations are not dependent on stellar spectral type or peculiarity subclass.  相似文献   

14.
We present the first long‐term Johnson UBVR observations and comprehensive photometric analysis of the W UMa‐type eclipsing binary V2612 Oph. Observations in the time interval between 2003 and 2009 enabled us to reveal the seasonal and long‐term variations of the light curve. Hence, we found that the mean brightness level of the light curve shows a variation with a period of 6.7 years. Maximum and minimum brightness levels of the light curve exhibit a variation from year to year which we attribute to a solar‐like activity. The OC variation of eclipse timings of the system shows a decreasing parabolic trend and reveals a period decrease at a rate of P = 6.27×10‐7 day yr‐1 with an additional low‐amplitude sinusoidal variation that has a similar period as the long‐term brightness variations. Our light curve analysis shows that the system is a W‐subtype W UMa eclipsing binary. We calculated masses and radii of the primary and secondary components as M1 = 1.28 M, M2 = 0.37 M and R1 = 1.31 R, R2 = 0.75 R, respectively. The derived absolute photometric parameters allow us to calculate a distance of 140 pc, which confirms that the system is a foreground star in the sky field of the Galactic open cluster NGC 6633. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We report on a photometric study of the flareM4.5 dwarf YZ CMi as based on photoelectric observations from the seasons 1972/73, 1979/80 and 1996/97. We suggest spot activity to explain the light and colour curves. Spots are generally 500K cooler than the surrounding photosphere and there are basically two solutions available for the observations: high latitude spot changing slightly basic properties such as radius and latitude or active near‐equatorial (belt‐like) centers represented by three spots. However, the activity centers changed in longitudes (∼180°). The typical spot coverage (inclination i = 60°) is 10‐15% and 5% for the season 1996/97 or ∼25% for the stellar inclination i = 75°. As a by‐product, V curve and (V‐I) and (V‐K) indexes turn out to be most promising in modelling of M‐type stars as far as present calibrations are concerned. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Photometric observations over three seasons show HD 288313 to be a light variable with a 2.2636-d period. The observed V amplitudes lie in the range of 0.06–0.15 mag. The star showed appreciable changes in the brightness at maximum and minimum of the light curve from season to season. The (   b − y   ) colour did not show any significant variation during the photometric cycle. The light variation appears to be caused by the rotational modulation of stellar flux by cool starspots distributed asymmetrically across the stellar longitudes. The Hα line strength in HD 288313 varied drastically from completely filled-in emission to almost full absorption, that is typical of a normal star of similar spectral type. The Hα equivalent width is found to show a clear rotational modulation only occasionally. Most of the time, chromospheric active regions are distributed well across the stellar longitudes, thereby suppressing obvious rotational modulations. Broad-band linear polarization measurements show HD 288313 to be a short period, low-amplitude polarization variable. The polarization variation is, apparently, rotationally modulated. Dust grain scattering in a non-spherical circumstellar envelope of a star with inhomogeneities in the surface brightness distribution seems to be the mechanism operating in producing the observed polarization.  相似文献   

17.
Since the first optical detection of RX J0720.4–3125 various observations have been performed to determine astrometric and photometric data. We present the first detection of the isolated neutron star in the V Bessel filter to study the spectral energy distribution and derive a new astrometric position. At ESO Paranal we obtained very deep images with FORS 1 (three hours exposure time) of RX J0720.4–3125 in the V Bessel filter in January 2008. We derive the visual magnitude by standard star aperture photometry. Using sophisticated resampling software we correct the images for field distortions. Then we derive an updated position and proper motion value by comparing its position with FORS 1 observations of December 2000. We calculate a visual magnitude of V = 26.81 ± 0.09 mag, which is seven times in excess of what is expected from X‐ray data, but consistent with the extant U, B, and R data. Over about a seven year epoch difference we measured a proper motion of μ = 105.1 ± 7.4 mas yr–1 towards θ = 296.951° ± 0.0063° (NW), consistent with previous data (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
New BVR light curves and a photometric analysis of the eclipsing binary star V1430 Aql are presented. The light curves were obtained at the Çanakkale Onsekiz Mart University Observatory in 2004. The light curves are generally those of detached eclipsing binaries, but there are large asymmetries between maxima. New BVR light curves were analysed with an ILOT procedure. Light curve asymmetries of the system were explained in terms of large dark starspots on the primary component. The primary star shows a long‐lived and quasi‐poloidal spot distribution with active longitudes in opposite hemispheres. Absolute parameters of the system were derived.We also discuss the evolution of the system: the components are likely to be pre‐main sequence stars, but a post‐main sequence stage cannot be ruled out. More observations are needed to decide this point. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Magnetic activity in the photosphere and chromosphere of the M dwarf EY Dra is studied and possible correlations between the two are investigated using photometric observations in the V and R bands and optical and near infrared spectroscopy. The longitudinal spot configuration in the photosphere is obtained from the V band photometry, and the chromospheric structures are investigated using variations in the Hα line profile and observations of the Paschen β line. The shape of the V band light‐curve indicates two active regions on the stellar surface, about 0.4 in phase apart. The spectroscopic observations show enhanced Hα emission observed close to the phases of the photometrically detected starspots. This could indicate chromospheric plages associated with the photospheric starspots. Some indications of prominence structures are also seen. The chromospheric pressure is limited to log mTR < –4 based on the non‐detection of emission in the Paschen β wavelength region. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The light outside the eclipses of the totally eclipsing RS CVn binary SV Camelopardalis (SV Cam) is Fourier analysed and the amplitudes of the distortion waves have been derived. The distribution of the percentage contributions of these amplitudes inV, B andU colours with respect to the luminosities of the binary components indicates that the hotter component is the source of the distortion waves. These distortion waves, attributed to star spots, are modelled according to Budding (1977) and spot parameters like longitude, latitude, temperature and size are obtained. From this study it is noticed that while symmetric waves with two minima could be fitted satisfactorily, asymmetric waves with more than two minima could not be fitted well. From the longitudes of the minima of the best fitted curves, migration periods of four spot groups are determined. Assuming synchronism between rotation and orbital periods, the rotation periods of the four spot groups are derived from their migration periods. The period of rotation of one of the spot groups having direct motion is found to be 0d.5934209 while the periods of the other three spot groups having retrograde motion are 0d.5926588, 0d.592607 and 0d.5924688. As the latitudes of these spots are known from modelling parameters, the latitude having a rotation period equal to that of the orbital period (co-rotating latitude) is found to be about 30°  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号