首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pollen analytical investigation of the sediments of Berry Pond, Berkshire County, Massachusetts, has demonstrated a sequence of pollen assemblage zones similar to those detected elsewhere in New England. From about 13,000 to 12,000 yr B.P. the vegetation of the region was treeless, probably tundra. By 11,500 yr tundra had been replaced by open boreal forest. Closed boreal forest became dominant by 10,500 yr. Boreal forests were replaced by mixed coniferous and deciduous forests with much white pine about 9600 yr ago. A “northern hardwoods” complex with much hemlock, beech, and sugar maple succeeded the mixed forests 8600 yr ago. Hemlock declined very rapidly approximately 4800 yr ago and was replaced by birch, oak, beech, ash, and red maple. This decline may have been biologically rather than climatically induced. There is a slight maximum of pine (much of it pitch pine) from 4100 to 2600 yr ago, perhaps indicative of warmer and/or drier conditions. There were slight changes in the forests about 1600 yr ago as chestnut immigrated and spruce and larch increased slightly. European land clearance and subsequent land abandonment are detectable in the uppermost levels.  相似文献   

2.
Nonconnah Creek, located in the loess-mantled Blufflands along the eastern wall of the Lower Mississippi Alluvial Valley in Tennessee displays a sedimentary sequence representing the Altonian Substage through the Woodfordian Substage of the Wisconsinan Stage. The site has a biostratigraphic record for the Altonian and Farmdalian Substages that documents warm-temperate upland oak-pine forest, prairie, and bottomland forest. At 23,000 yr B.P., white spruce and larch migrated into the Nonconnah Creek watershed and along braided-stream surfaces in the Mississippi Valley as far as southeastern Louisiana. The pollen and plant-macrofossil record from Nonconnah Creek provides the first documentation of a full-glacial locality in eastern North America for beech, yellow poplar, oak, history, black walnut, and other mesic deciduous forest taxa. During the full and late glacial, the Mississippi Valley was a barrier to the migration of pine species, while the adjacent Blufflands provided a refuge for mesic deciduous forest taxa. Regional climatic amelioration, beginning about 16,500 yr B.P., is reflected by increases in pollen percentages of cooltemperate deciduous trees at Nonconnah Creek. The demise of spruce and jack pine occurred 12,500 yr B.P. between 34° and 37° N in eastern North America in response to postglacial warming.  相似文献   

3.
The landscapes of northern New England and adjacent areas of Canada changed greatly between 14,000 and 9000 yr B.P.: deglaciation occurred, sea levels and shorelines shifted, and a vegetational transition from tundra to closed forest took place. Data from 51 14C-dated sites from a range of elevations were used to map ice and sea positions, physiognomic vegetational zones, and the spread of individual tree taxa in the region. A continuum of tundra-woodland-forest passed northeastward and northward without major hesitation or reversal. An increased rate of progression from 11,000 to 10,000 yr B.P. suggests a more rapid warming than in the prior 2000–3000 yr. Elevational gradients controlled the patterns of deglaciation and vegetational change. The earliest spread of tree taxa was via the lowlands of southern Vermont and New Hampshire, and along a coastal corridor in Maine. Only after 12,000 yr B.P. did the taxa spread northward through the rest of the area. Different tree species entered the southern part of the area at different times and continued their spread at different rates. The approximate order of arrival follows: poplars (13,000–12,000 yr B.P. in the south), spruces, paper birch, and jack pine, followed by balsam fir and larch, and possibly ironwood, ash, and elm, and somewhat later by oak, maple, white pine, and finally hemlock (10,000–9000 yr B.P. in the south).  相似文献   

4.
At White Pond near Columbia, South Carolina, a pollen assemblage of Pinus banksiana (jack pine), Picea (spruce), and herbs is dated between 19,100 and 12,800 14C yr B.P. Plants of sandhill habitats are more prominent than at other sites of similar age, and pollen of deciduous trees is infrequent. The vegetation was probably a mosaic of pine and spruce stands with prairies and sand-dune vegetation. The climate may have been like that of the eastern boreal forest today. 14C dates of 12,800 and 9500 yr B.P. bracket a time when Quercus (oak), Carya (hickory), Fagus (beech), and Ostrya-Carpinus (ironwood) dominated the vegetation. It is estimated that beech and hickory made up at least 25% of the forest trees. Conifers were rare or absent. The environment is interpreted as hickory-rich mesic deciduous forest with a climate similar to but slightly warmer than that of the northern hardwoods region of western New York State. After 9500 yr B.P. oak and pine forest dominated the landscape, with pine becoming the most important tree genus in the later Holocene.  相似文献   

5.
A new record from Potato Lake, central Arizona, details vegetation and climate changes since the mid-Wisconsin for the southern Colorado Plateau. Recovery of a longer record, discrimination of pine pollen to species groups, and identification of macrofossil remains extend Whiteside's (1965) original study. During the mid-Wisconsin (ca. 35,000-21,000 yr B.P.) a mixed forest of Engelmann spruce (Picea engelmannii) and other conifers grew at the site, suggesting a minimum elevational vegetation depression of ca. 460 m. Summer temperatures were as much as 5°C cooler than today. During the late Wisconsin (ca. 21,000-10,400 yr B.P.), even-cooler temperatures (7°C colder than today; ca. 800 m depression) allowed Engelmann spruce alone to predominate. Warming by ca. 10,400 yr B.P. led to the establishment of the modern ponderosa pine (Pinus ponderosa) forest. Thus, the mid-Wisconsin was not warm enough to support ponderosa pine forests in regions where the species predominates today. Climatic estimates presented here are consistent with other lines of evidence suggesting a cool and/or wet mid-Wisconsin, and a cold and/or wet late-Wisconsin climate for much of the Southwest. Potato Lake was almost completely dry during the mid-Holocene, but lake levels increased to near modern conditions by ca. 3000 yr B.P.  相似文献   

6.
Pollen and plant macrofossils preserved in lake sediment from Lake West Okoboji, Dickinson County, Iowa, indicate how the vegetation of that area changed during the late glacial and postglacial. A closed coniferous forest, dominated by spruce and larch trees, produced the Picea-Larix pollen assemblage zone. Fir trees were a minor constituent of this forest; pine trees were probably absent. Black ash trees increased in abundance at Lake West Okoboji and by 13,500 yr ago were an important constituent of the forest. The sediment accumulation rate and the pollen influx were low throughout this time. Birch and alder pollen peaked in abundance approximately 11,800 yr ago. Pollen influx increased rapidly as birch and alder replaced coniferous trees on the uplands. A deciduous forest, containing abundant oak and elm trees, replaced the birch-alder-coniferous forest. This forest inhabited northwestern Iowa from approximately 11,000 to 9000 yr B.P. Nonarboreal species became prevalent between approximately 9000 and 7700 yr B.P. as prairie began to replace deciduous forest on the uplands. Charred remains of Amorpha canescens and other upland species attest to the presence of prairie fires as an aid in establishing prairie and destroying the forest. The pollen influx declined. The warmest, driest part of the postglacial occurred in northwestern Iowa from approximately 7700 to 3200 yr ago. Lake level fell 9 to 10 m, and prairie extended to the edge of the lake. Wet-ground weeds inhabited areas near lake level which were alternately flooded, then dry. Pollen influx was approximately 100 grains/cm2/yr during the driest time in this dry interval.Deciduous trees, particularly oaks, returned after approximately 3200 yr B.P. Prairie continued to occupy the uplands but trees were more common in the lowlying wet areas. Settlement by Europeans in northwestern Iowa about 1865 is marked by an increase in weed pollen. Macrofossil deposition changed in 1910 in response to the stabilization of lake level.  相似文献   

7.
Pollen productivity is one of the most critical parameters for pollen–vegetation relationships, and thus for vegetation reconstruction, in either pollen percentages or pollen accumulation rates. We obtain absolute pollen productivity of three major tree types in northern Finland: pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens ssp. pubescens and B. pubescens ssp. czerepanovii treated as one taxon). Long‐term monitoring records of pollen traps from 15 sites (duration: 5–23 years) and tree volume estimates within a 14 km radius of each trap were compared to estimate pollen productivity (grains m?3 a?1) of these trees using a regression method. The slope of the linear relationship between pollen loading and distance‐weighted plant abundance represents pollen productivity. Estimated productivities of pollen (×108 grains m?3 a?1) for pine, spruce and birch are 128.7 (SE 31.5), 341.9 (SE 81.3) and 411.4 (SE 307.7), respectively. The birch estimate (P > 0.05) is not as good as the others and should be used with caution. Pollen productivities of pine, spruce and birch in northern Finland are, in general, comparable to those of congeneric species in other regions of Europe and Japan. Although the year‐to‐year variations are significant, our volume‐based estimates of pollen productivity for pine and spruce will be essential for quantitative reconstruction of vegetation in the region. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Pollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ≥30,000 14C yr B.P. During the late middle Wisconsin interstadial (≥30,000-26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000-15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ≥30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca.11,000-9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island.  相似文献   

9.
Charcoal analysis for paleoenvironmental interpretation: A chemical assay   总被引:1,自引:0,他引:1  
Pollen and charcoal analysis of radiocarbon-dated sediment cores from Duck Pond in the Cape Cod National Seashore provide a continuous 12,000-yr vegetation and climate history of outer Cape Cod. A Picea-Hudsonia parkland and then a Picea-Pinus banksiana-Alnus crispa boreal forest association grew near the site between 12,000 and 10,000 yr B.P. This vegetation was replaced by a northern conifer forest of Pinus strobus-P. banksiana, and, subsequently, by a more mesophytic forest (Pinus strobus, Tsuga, Quercus, Fagus, Acer, Ulmus, Fraxinus, Ostrya) as the climate became warmer and wetter by 9500 yr B.P. By 9000 yr B.P. a Pinus rigida-Quercus association dominated the landscape. High charcoal frequencies from this and subsequent levels suggest that the pine barrens association developed during a warmer and drier climate that lasted from 9000 to about 5000 yr B.P. Increased percentages of Pinus strobus pollen indicate a return to moister and cooler conditions by about 3500 yr B.P. A doubled sedimentation rate, increased charcoal, and increased herb pollen suggest land disturbance near the pond before European settlement. These results suggest a rapid warming in the northeast in the early Holocene and support a hypothesis of a rapid sea level rise at that time. Comparison of the pollen results from Duck Pond with those from Rogers Lake, Connecticut, illustrates the importance of edaphic factors in determining the disturbance frequency and vegetation history of an area.  相似文献   

10.
Vegetation dynamics during the Younger Dryas-Holocene transition in the extreme northern taiga zone of the Usa basin, northeastern European Russia, were reconstructed using plant macrofossil and pollen evidence from a sediment core from Lake Llet-Ti. The pollen stratigraphy during the Younger Dryas (about 12 500-11 500 cal. yr BP) is characterized by pollen types indicative of treeless arctic vegetation, whereas the macrofossil evidence shows the occurrence of scattered spruce and birch trees around the lake. The Younger Dryas-early Holocene transition is characterized by a rapid increase in vegetation density, including an increase in the birch population, followed by the expansion of the spruce population at about 10 000 cal. yr BP. Dense spruce-birch forest dominated until 5000 cal. yr BP. Our results contribute to the debate about the Lateglacial environments in northern Russia, and illustrate the importance of plant macrofossil records in Lateglacial vegetation reconstructions.  相似文献   

11.
Plant macrofossils from 38 packrat middens spanning the last ~ 33,000 cal yr BP record vegetation between ~ 650 and 900 m elevation along the eastern escarpment of the Sierra San Pedro Mártir, northern Baja California. The middens span most of the Holocene, with a gap between ~ 4600 and 1800 cal yr BP, but coverage in the Pleistocene is uneven with a larger hiatus between 23,100 and 14,400 cal yr BP. The midden flora is relatively stable from the Pleistocene to Holocene. Exceptions include Pinus californiarum, Juniperus californica and other chaparral elements that were most abundant > 23,100 cal yr BP and declined after 14,400 cal yr BP. Despite being near the chaparral/woodland-desertscrub ecotone during glacial times, the midden assemblages reflect none of the climatic reversals evident in the glacial or marine record, and this is corroborated by a nearby semi-continuous pollen stratigraphy from lake sediments. Regular appearance of C4 grasses and summer-flowering annuals since 13,600 cal yr BP indicates occurrence of summer rainfall equivalent to modern (JAS average of ~ 80–90 mm). This casts doubt on the claim, based on temperature proxies from marine sediments in the Guaymas Basin, that monsoonal development in the northern Gulf and Arizona was delayed until after 6200 cal yr BP.  相似文献   

12.
Palaeoclimatic records derived from a variety of independent proxies provide evidence of post‐glacial changes of temperature and soil moisture in northern Fennoscandia. We use pollen percentage, pollen influx, stomatal and chironomid records from Toskaljavri, a high‐altitude lake in northern Finland, to assess how treelines and alpine vegetation there have responded to these climate changes. The evidence suggests that the cool, moist climate of the early Holocene supported birch forest in the area 9600 cal. yr BP onwards and that a rise of temperature triggered the immigration of pine at 8300 cal. yr BP. At 6100–4000 cal. yr BP altitudinal treeline in the area was formed by pine, in contrast to the modern situation where mountain birch reaches a higher elevation. Alpine vegetation also demonstrates clear changes. Plant communities typical of dry, oligotrophic heaths of northern Fennoscandia expanded during the dry climatic period at 7000–4000 cal. yr BP and decreased in response to cooler and moister conditions after 4000 cal. yr BP. Alpine plant communities favouring moist sites show an inverse pattern, expanding after a change towards moister climate after 4000 cal. yr BP. In a redundancy analysis (RDA), a statistically significant proportion of the variability in the total chironomid assemblages was captured by changes in the pollen types reflecting alpine vegetation typical of moist sites. Although chironomid community changes appeared to follow the major patterns in the alpine vegetation succession, the present study does not support a direct link between the changing treeline position and chironomid stratigraphy. Rather, the data indicate that the terrestrial and aquatic environments have each responded directly to the same ultimate cause, namely changing Holocene climate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Quaternary deposits on the Pacific slope of Washington range in age from the earliest known interglaciation, the Alderton, through the Holocene. Pollen stratigraphy of these deposits is represented by 12 major pollen zones and is ostensibly continuous through Zone 8 over more than 47,000 radiocarbon yr. Before this, the stratigraphy is discontinuous and the chronology less certain. Environments over the time span of the deposits are reconstructed by the comparison of fossil and modern pollen assemblages and the use of relevant meteorological data. The Alderton Interglaciation is characterized by forests of Douglas fir (Pseudotsuga menziesii), alder (Alnus), and fir (Abies). During the next younger interglaciation, the Puyallup, forests were mostly of pine, apparently lodgepole (Pinus contorta), except midway in the interval when fir, western hemlock (Tsuga heterophylla), and Douglas fir temporarily replaced much of the pine. Vegetation outside the limits of Salmon Springs ice (>47,00034,000 yr BP) varied chiefly between park tundra and forests of western hemlock, spruce (Picea), and pine. The Salmon Springs nonglacial interval at the type locality records early park tundra followed by forests of pine and of fir. During the Olympia Interglaciation (34,00028,000 yr BP), pine invaded the Puget Lowland, whereas western hemlock and spruce became manifest on the Olympic Peninsula. Park tundra was widespread during the Fraser Glaciation (28,00010,000 yr BP) with pine becoming more important from about 15,000 to 10,000 yr BP. Holocene vegetation consisted first of open communities of Douglas fir and alder; later, closed forests succeeded, formed principally of western hemlock on the Olympic Peninsula and of western hemlock and Douglas fir in the Puget Lowland. Over the length of the reconstructed environmental record, climate shifted between cool and humid or relatively warm, semihumid forest types and cold, relatively dry tundra or park tundra types. During times of glaciation, average July temperatures are estimated to have been at least 7°C lower than today. Only during the Alderton Interglaciation and during the Holocene were temperatures higher for protracted periods that at present.  相似文献   

14.
By mapping and summarizing 478 pollen counts from surface samples at 406 locations in eastern North America, this study documents the relationships between the distributions of pollen and vegetation on a continental scale. The most common pollen types in this region are pine, birch, oak, and spruce. Maps showing isopercentage contours or isopolls for 13 important pollen types reflect the general N-S zonation of the vegetation. The maps and tabulations of average pollen spectra for the six major vegetational regions indicate high values for the following pollen types in each region: (1) tundra-nonarboreal birch, sedge, and alder; (2) forest/tundra-spruce, nonarboreal birch and alder; (3) boreal forest-spruce, jack pine (type), and arboreal birch with fir in the southeastern part; (4) conifer/hardwood forest-white pine, arboreal birch, and hemlock with beech, maple, and oak in the southern part; (5) deciduous forest-oak, pine, hickory, and elm, with beech and maple in the northern part, and highest values of oak and hickory west of the Appalachian crest; and (6) southeastern forest-pine, oak, hickory, tupelo, and Myricaceae. In some cases, less abundant pollen types are diagnostic for the region, e.g., bald cypress in the southeast. In the conifer-hardwood region and southward, pollen of weeds associated with deforestation and agriculture is abundant. The maps also show that much of southeastern U.S. and the area just to the east of Hudson Bay are in need of additional sampling. At 51 of the sites, absolute pollen frequencies (APF; grains/ml lake sediment) were obtained. These confirm the major conclusions from the percentage data, but differences are evident, e.g., the percentages of alder pollen peak in the tundra whereas alder APFs peak in the boreal forest, and spruce percentages peak in the forest-tundra whereas spruce APFs peak in the boreal forest. Because the APF data reflect the patterns of absolute abundance of individual taxa in the vegetation as well as the overall forest densities, future counts of modern pollen should include APF determinations. The effects of sedimentation processes on APF quantities indicate that APF samples should be obtained from moderate size lakes of similar morphology and hydrology and that, in each lake, several samples from the profundal zone should be pooled to create a sample representative of that lake.  相似文献   

15.
Full‐glacial pollen assemblages from four radiocarbon‐dated interstadial deposits in southwestern Ohio and southeastern Indiana imply the presence of herbaceous vegetation (tundra or muskeg with subarctic indicator Selaginella selaginoides) on the southern margin of the Miami lobe of the Laurentide Ice Sheet ca. 20 000 14C yr BP. Scattered Picea (spruce) and possibly Pinus (pine) may have developed regionally ca. 19 000 14C yr BP, and ca. 18 000 14C yr BP, respectively. Spruce stumps in growth position support a local source of pollen. Prior to the ca. 14 000 14C yr BP glacial advance, small amounts of Quercus (oak) and other deciduous pollen suggest development of regional boreal (conifer–hardwood) forests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland–shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.  相似文献   

17.
Paleoenvironments of the Torrey Pines State Reserve were reconstructed from a 3600-yr core from Los Peñasquitos Lagoon using fossil pollen, spores, charcoal, chemical stratigraphy, particle size, and magnetic susceptibility. Late Holocene sediments were radiocarbon dated, while the historical sediments were dated using sediment chemistry, fossil pollen, and historical records. At 3600 yr B.P., the estuary was a brackish-water lagoon. By 2800 yr B.P., Poaceae (grass) pollen increased to high levels, suggesting that the rising level of the core site led to its colonization by Spartina foliosa (cord-grass), the lowest-elevation plant type within regional estuaries. An increase in pollen and spores of moisture-dependent species suggests a climate with more available moisture after 2600 yr B.P. This change is similar to that found 280 km to the north at 3250 yr B.P., implying that regional climate changes were time-transgressive from north to south. Increased postsettlement sediment input resulted from nineteenth-century land disturbances caused by grazing and fire. Sedimentation rates increased further in the twentieth century due to closure of the estuarine mouth. The endemic Pinus torreyana (Torrey pine) was present at the site throughout this 3600-yr interval but was less numerous prior to 2100 yr B.P. This history may have contributed to the low genetic diversity of this species.  相似文献   

18.
Reinvestigation of Quaternary sediments in West Feliciana Parish, southeastern Louisiana, and adjacent Wilkinson County, southwestern Mississippi, has resulted in revision of previous terrace stratigraphy of this portion of the Gulf Coastal Plain. Plant-macrofossil and pollen assemblages incorporated in fluviatile terrace deposits in the study area are reexamined in light of the current stratigraphic understanding. Macrofossils identified as white spruce (Picea glauca), tamarack (Larix laricina), and northern white cedar (Thuja occidentalis), recovered from these terrace deposits along with fossil remains of distinctly southern plant species, were initially interpreted as the result of dynamic intermixing of aggressive boreal species within a southern forest during the early Wisconsin (Brown, 1938). Failure to distinguish chronologically separate fossiliferous deposits resulted in the conceptual “mixing” of northern and southern plant species which came from two distinct fluviatile terrace sequences. Terrace 2 is now believed to be a fluviatile and coastwise depositional terrace of Sangamon Interglacial age; deposits of terrace 2 contain a distinctly warm-temperate plant assemblage. Fluviatile terrace 1 dates from 12,740 ± 300 to 3457 ± 366 BP and is now considered to be related to late glacial and Holocene aggradation and lateral migration of the Mississippi River (the local base level for streams in the study area); basal portions of terrace 1 contain fossils of white spruce, tamarack, and many plant species today characteristic of the cool-temperate Mixed Mesophytic Forest Association. Terrace 1 fossil deposits occur in fluviatile terraces along tributary streams of the Mississippi River at elevations 15 to 30 m above the maximum recorded historic flood stage of the Mississippi River. The plant macrofossils represent remains of species that grew at or very near the site of deposition; they were not “rafted in” by floodwaters of the Mississippi River. We present quantitative data for plant macrofossils and pollen that support our hypothesis that at least local cooling along the Blufflands of Mississippi and Louisiana promoted southward migrations of mixed mesophytic forest species and certain boreal species along this major pathway during late Wisconsin continental glaciation.  相似文献   

19.
Pollen and charcoal analysis of radiocarbon-dated sediment cores from Duck Pond in the Cape Cod National Seashore provide a continuous 12,000-yr vegetation and climate history of outer Cape Cod. A Picea-Hudsonia parkland and then a Picea-Pinus banksiana-Alnus crispa boreal forest association grew near the site between 12,000 and 10,000 yr B.P. This vegetation was replaced by a northern conifer forest of Pinus strobus-P. banksiana, and, subsequently, by a more mesophytic forest (Pinus strobus, Tsuga, Quercus, Fagus, Acer, Ulmus, Fraxinus, Ostrya) as the climate became warmer and wetter by 9500 yr B.P. By 9000 yr B.P. a Pinus rigida-Quercus association dominated the landscape. High charcoal frequencies from this and subsequent levels suggest that the pine barrens association developed during a warmer and drier climate that lasted from 9000 to about 5000 yr B.P. Increased percentages of Pinus strobus pollen indicate a return to moister and cooler conditions by about 3500 yr B.P. A doubled sedimentation rate, increased charcoal, and increased herb pollen suggest land disturbance near the pond before European settlement. These results suggest a rapid warming in the northeast in the early Holocene and support a hypothesis of a rapid sea level rise at that time. Comparison of the pollen results from Duck Pond with those from Rogers Lake, Connecticut, illustrates the importance of edaphic factors in determining the disturbance frequency and vegetation history of an area.  相似文献   

20.
Marine erosion at Clettnadal, West Burra island off the west coast of Shetland, caused the drainage of a small water body at Clettnadal, exposing deposits of Late Devensian and Holocene age. Pollen, diatom and invertebrate analyses have provided variable records of environmental change during stratigraphical event GI‐1. Event GS‐1 is revealed by the non‐pollen evidence, especially by Coleoptera, by sediment stratigraphy, and by radiocarbon dating. In contrast, the pollen evidence indicates that an arctic tundra flora, in which dwarf shrubs were prominent, persisted throughout the Late‐glacial. The Holocene brought colonisation by tree birch, but by ca. 9000 14C yr BP the taxon had almost disappeared. This contrasts strongly with other Holocene pollen records for Shetland where both Betula and Corylus avellana‐type survived longer—at some sites, for example, until ca. 2900 yr BP. The extreme westerly and exposed coastal situation of Clettnadal appears to be responsible both for a muted Late‐glacial response in the pollen record of terrestrial vegetation and for the early replacement of woodland by a maritime grassland. The results provoke questions concerning biological stability at times of marked climatic change. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号