首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discharge from karst springs contains a mixture of conduit and matrix water, but the variations in groundwater mixing are poorly known. Storm events present an opportunity to try to map flow components because water entering during storms is more dilute and provides a tracer as it mixes with pre‐event water along the flowpath from the recharge area to discharge at a spring. We used hysteresis plots of Mg/Ca ratios in a spring in the Cumberland Valley of Pennsylvania to map conduit (higher Ca) vs. diffuse (higher Mg) sources of recharge. We observed two types of temporal heterogeneity: within a storm event and from storm to storm. The timing of the variation in Mg/Ca suggested sources of mixing waters. An increase in the Mg/Ca ratio at the beginning of some storms while conductivity declined suggested diffuse recharge through the epikarst. The rapid changes in Mg/Ca ratios for low‐intensity events probably occurred as the rainfall waxed and waned and illustrate that a variety of flowpaths are available at this spring because additional flushing of Mg occurred. In contrast, the conductivity hysteresis began with dilute water initially and rotation was similar from storm to storm. Hysteresis plots of the Mg/Ca ratio have the potential of revealing more of the complexity in discharge than conductivity alone. A better understanding of flow components in karst is needed to protect these aquifers as a groundwater resource.  相似文献   

2.
Xi Chen  Xunhong Chen   《Journal of Hydrology》2003,280(1-4):246-264
During a flood period, stream-stage increases induce infiltration of stream water into an aquifer; subsequent declines in stream stage cause a reverse motion of the infiltrated water. This paper presents the results of the water exchange rate between a stream and aquifer, the storage volume of the infiltrated stream water in the surrounding aquifer (bank storage), and the storage zone. The storage zone is the part of aquifer where groundwater is replaced by stream water during the flood. MODFLOW was used to simulate stream–aquifer interactions and to quantify rates of stream infiltration and return flow. MODPATH was used to trace the pathlines of the infiltrated stream water and to determine the size of the storage zone. Simulations were focused on the analyses of the effects of the stream-stage fluctuation, aquifer properties, the hydraulic conductivity of streambed sediments, regional hydraulic gradients, and recharge and evapotranspiration (ET) rates on stream–aquifer interactions. Generally, for a given stream–aquifer system, larger flow rates result from larger stream-stage fluctuations; larger storage volumes and storage zones are produced by larger and longer-lasting fluctuations. For a given stream-stage hydrograph, a lower-permeable streambed, an aquitard, or an anisotropic aquifer of low vertical hydraulic conductivity can significantly reduce the rate of infiltration and limit the size of the storage zone. The bank storage solely caused by the stage fluctuation differs slightly between gaining and losing streams. Short-term rainfall recharge and ET loss in the shallow groundwater slightly influence on the flow rate, but their effects on bank storage in a larger area for a longer period can be considerable.  相似文献   

3.
Regional estimates of aquifer recharge are needed in data-scarce regions such as the Basin of Mexico, where nearly 20 million people are located and where the Basin’s aquifer system represents the main water source. In order to develop the spatio-temporal estimates of aquifer recharge and to analyze to what extent urban growth has affected aquifer recharge, this work presents a daily soil water balance which uses different vegetation and soil types as well as the effect of topography on climatological variables and evapotranspiration. The soil water balance was applied on a daily time step in the Basin of Mexico for the period 1975–1986, obtaining an annually-lumped potential recharge flow of 10.9–23.8 m3/s (35.9–78.1 mm) in the entire Basin, while the monthly values for the year with the largest lumped recharge value (1981 = 78.1 mm) range from 1 m3/s (0.3 mm) in December to 87.9 m3/s (23.7 mm) in June. As aquifer recharge in the Basin mainly occurs by subsurface flow from its enclosing mountains as Mountain Block Recharge, urban growth has had a minimal impact on aquifer recharge, although it has diminished recharge in the alluvial plain.  相似文献   

4.
In this second of two papers, analytical step-response functions, developed in the companion paper for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to stream-stage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream–aquifer systems in the northeastern and central United States. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank hydraulic properties, recharge rates, streambank seepage rates, and bank storage. Analysis of the water-table aquifer adjacent to the Blackstone River in Massachusetts suggests that the very shallow depth of water table and associated thin unsaturated zone at the site cause the aquifer to behave like a confined aquifer (negligible specific yield). This finding is consistent with previous studies that have shown that the effective specific yield of an unconfined aquifer approaches zero when the capillary fringe, where sediment pores are saturated by tension, extends to land surface. Under this condition, the aquifer's response is determined by elastic storage only. Estimates of horizontal and vertical hydraulic conductivity, specific yield, specific storage, and recharge for a water-table aquifer adjacent to the Cedar River in eastern Iowa, determined by the use of analytical methods, are in close agreement with those estimated by use of a more complex, multilayer numerical model of the aquifer. Streambank leakance of the semipervious streambank materials also was estimated for the site. The streambank-leakance parameter may be considered to be a general (or lumped) parameter that accounts not only for the resistance of flow at the river–aquifer boundary, but also for the effects of partial penetration of the river and other near-stream flow phenomena not included in the theoretical development of the step-response functions.  相似文献   

5.
Groundwater is a primary source of drinking water worldwide, but excess nutrients and emerging contaminants could compromise groundwater quality and limit its usage as a drinking water source. As such contaminants become increasingly prevalent in the biosphere, a fundamental understanding of their fate and transport in groundwater systems is necessary to implement successful remediation strategies. The dynamics of surface water-groundwater (hyporheic) exchange within a glacial, buried-valley aquifer system are examined in the context of their implications for the transport of nutrients and contaminants in riparian sediments. High conductivity facies act as preferential flow pathways which enhance nutrient and contaminant delivery, especially during storm events, but transport throughout the aquifer also depends on subsurface sedimentary architecture (e.g. interbedded high and low conductivity facies). Temperature and specific conductance measurements indicate extensive hyporheic mixing close to the river channel, but surface water influence was also observed far from the stream-aquifer interface. Measurements of river stage and hydraulic head indicate that significant flows during storms (i.e., hot moments) alter groundwater flow patterns, even between consecutive storm events, as riverbed conductivity and, more importantly, the hydraulic connectivity between the river and aquifer change. Given the similar mass transport characteristics among buried-valley aquifers, these findings are likely representative of glacial aquifer systems worldwide. Our results suggest that water resources management decisions based on average (base) flow conditions may inaccurately represent the system being evaluated, and could reduce the effectiveness of remediation strategies for nutrients and emerging contaminants.  相似文献   

6.
Using nitrate to quantify quick flow in a karst aquifer   总被引:3,自引:0,他引:3  
Mahler BJ  Garner BD 《Ground water》2009,47(3):350-360
In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with δ18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The δ18O-based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems.  相似文献   

7.
The project captured a subset of the hydrological cycle for the tropical island of O'ahu, linking precipitation to groundwater recharge and aquifer storage. We determined seasonal storm events contributed more to aquifer recharge than year-round baseline orographic trade wind rainfall. Hydrogen and oxygen isotope values from an island-wide rain collector network with 20 locations deployed for 16 months and sampled at 3-month intervals were used to create the first local meteoric water line for O'ahu. Isotopic measurements were influenced by the amount effect, seasonality, storm type, and La Niña, though little elevation control was noted. Certain groundwater compositions from legacy data showed a strong similarity with collected precipitation from our stations. The majority of these significant relationships were between wet season precipitation and groundwater. A high number of moderate and heavy rainfall days during the dry season, large percentage of event-based rainfall, and wind directions outside of the typical NE trade wind direction were characteristics of the 2017–2018 wet season. This indicates that the majority of wet season precipitation is from event-based storms rather than typical trade wind weather. The deuterium-excess values provided the strongest evidence of a relationship between groundwater and different precipitation sources, indicating that this may be a useful metric for determining the extent of recharge from different rain events and systems.  相似文献   

8.
Tracing groundwater flow in the Borden aquifer using krypton-85   总被引:3,自引:0,他引:3  
Krypton-85 was measured in air, soil gas, and ground water at the Borden aquifer in Ontario in October 1989. The measured specific activities in air and soil gas were 52.0 ± 2.0 and 53.6 ± 1.8 disintegrations per min (dpm) cm−3 krypton. These measurements are in excellent agreement with the global atmospheric trend and demonstrate that krypton-85 enters the water table at the Borden site without a lag in the soil gas reservoir. The krypton-85 specific activity in five groundwater samples ranged from 44.9 to 9.5 dpm cm−3 corresponding to groundwater ages of 2–17 years with a monotonic decrease in specific activity (increase in age) along the groundwater flow path. Travel times calculated from a two-dimensional steady-state model of groundwater flow agree well with the krypton-85 ages in the main recharge region of the aquifer where flow is predominantly vertical, but were 30–40% older than the krypton-85 age downstream of the main recharge area where the flow is mainly horizontal. The effect of dispersion on the distribution of krypton-85 was determined by modelling the transport of krypton-85 in the Borden aquifer with a two-dimensional time-dependent advection dispersion model using the steady-state flow field. Agreement between model specific activity and observed specific activity was excellent for samples in the main recharge region, but the model specific activities were 30–50% lower than observed specific activities in the region of horizontal flow. The differences in travel times and krypton-85 ages and in model krypton-85 and observed krypton-85 specific activities are considered to be small given the heterogeneities that exist in the hydraulic conductivity and aquifer geometry and hence in the groundwater flow field. The model simulated krypton-85 distribution was not sensitive to changes in longitudinal dispersivity and was only weakly sensitive to changes in transverse dispersivity. The geochemical inertness, well-defined source function, and insensitivity to dispersion of krypton-85 allow estimates of groundwater age to be made in a straightforward manner and measurement of krypton-85 can significantly enhance the characterization of groundwater flow in many shallow subsurface systems.  相似文献   

9.
Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.  相似文献   

10.
This paper analyzes the effects of geology and geomorphology on surface-water/-groundwater interactions, evapotranspiration, and recharge under conditions of long-term climatic change. Our analysis uses hydrologic data from the glaciated Crow Wing watershed in central Minnesota, USA, combined with a hydrologic model of transient coupled unsaturated/saturated flow (HYDRAT2D). Analysis of historical water-table (1970–1993) and lake-level (1924–2002) records indicates that larger amplitude and longer period fluctuations occur within the upland portions of watersheds due to the response of the aquifer system to relatively short-term climatic fluctuations. Under drought conditions, lake and water-table levels fell by as much as 2–4 m in the uplands but by 1 m in the lowlands. The same pattern can be seen on millennial time scales. Analysis of Holocene lake-core records indicates that Moody Lake, located near the outlet of the Crow Wing watershed, fell by as much as 4 m between about 4400 and 7000 yr BP. During the same time, water levels in Lake Mina, located near the upland watershed divide, fell by about 15 m. Reconstructed Holocene climate as represented by HYDRAT2D gives somewhat larger drops (6 and 24 m for Moody Lake and Lake Mina, respectively). The discrepancy is probably due to the effect of three-dimensional flow. A sensitivity analysis was also carried out to study how aquifer hydraulic conductivity and land-surface topography can influence water-table fluctuations, wetlands formation, and evapotranspiration. The models were run by recycling a wet year (1985, 87 cm annual precipitation) over a 10-year period followed by 20 years of drier and warmer climate (1976, 38 cm precipitation). Model results indicated that groundwater-supported evapotranspiration accounted for as much as 12% (10 cm) of evapotranspiration. The aquifers of highest hydraulic conductivity had the least amount of groundwater-supported evapotranspiration owing to a deep water table. Recharge was even more sensitive to aquifer hydraulic conductivity, especially in the lowland regions. These findings have important implications for paleoclimatic studies, because the hydrologic response of a surface-water body will vary across the watershed to a given climate signal.  相似文献   

11.
The water budget in clay shale terrain is controlled by a complex interaction between the vertisol soil layer, the underlying fractured rock, land use, topography, and seasonal trends in rainfall and evapotranspiration. Rainfall, runoff, lateral flow, soil moisture, and groundwater levels were monitored over an annual recharge cycle. Four phases of soil–aquifer response were noted over the study period: (1) dry‐season cracking of soils; (2) runoff initiation, lateral flow and aquifer recharge; (3) crack closure and down‐slope movement of subsurface water, with surface seepage; (4) a drying phase. Surface flow predominated within the watershed (25% of rainfall), but lateral flow through the soil zone continued for most of the year and contributed 11% of stream flow through surface seepage. Actual flow through the fractured shale makes up a small fraction of the water budget but does appear to influence surface seepage by its effect on valley‐bottom storage. When the valley soil storage is full, lateral flow exits onto the valley‐bottom surface as seasonal seeps. Well response varied with depth and hillslope position. FLOWTUBE model results and regional recharge estimates are consistent with an aquifer recharge of 1·6% of annual precipitation calculated from well heights and specific yield of the shale aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Interception losses of rainfall from Cashew trees   总被引:2,自引:0,他引:2  
The rainfall interception losses from Cashew trees were quantified, based on the records of 105 selected storms within the range 25.0 mm, occurring in a humid tropical region at Kottamparamba, India.

The storage capacity of the Cashew trees was worked out as 0.8 mm and the throughfall coefficient as 0.391. The trees under observation were 15–20 years of age with a leaf area index of 1.0–1.25.

About 31% of the storm rainfall for storms 25.0 mm was intercepted by the Cashew trees and lost to the atmosphere.

The measured interception losses from the trees were compared with the estimated interception losses using the analytical model of Gash (1979). The predicted interception losses from the Cashew trees were within ± 10% for storms with total rainfall 10.0 mm and within ± 22% for storms with a rainfall of 10.1–25.0 mm.  相似文献   


13.
The hydrological role of a headwater swamp in a tropical rainforest is studied using chloride mass balance (CMB) and end‐member mixing analysis. There are three main contributions to streamflow: (1) the hillside bedrock aquifer, (2) overland flow from the swamp during storm events and (3) groundwater flow from the swamp aquifer. Before rainfall events of the wet season, the pre‐event water comprises a mix of 80% of bedrock aquifer and 20% of swamp aquifer. During storms, the relative contribution of overland flow increases according to the rainfall intensity and the initial saturation rate of the pre‐event water reservoirs. The yearly contribution of overland flow from the swamp to the stream is about 31%. The relationship between the swamp and the stream fluctuates with space and time. Generally, the swamp is drained by the stream; however, at the end of long dry seasons, after the first rains, indirect recharge occurs from the stream to the swamp with a hydraulic gradient inversion in the swamp aquifer. The net contribution of the swamp aquifer to the stream is only 4%, which is much lower than the hillside aquifer contribution of about 65%. Recharge on the swamp being very low, these results suggest that, except for a few storms at the end of the dry season, the Nsimi swamp does not contribute to flood attenuation. Evapotranspiration is higher on the hillside than in the swamp. Nevertheless, depletion of water stored within the swamp is dominated by evaporation rather than by its contribution to streamflow. The export of solutes through swamp groundwater flow below the weir is low (<7%). Nevertheless, the swamp is the most active area of weathering in the watershed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Assuming homogeneity in alluvial aquifers is convenient, but limits our ability to accurately predict stream‐aquifer interactions. Research is needed on (i) identifying the presence of focused, as opposed to diffuse, groundwater discharge/recharge to streams and (ii) the magnitude and role of large‐scale bank and transient storage in alluvial floodplains relative to changes in stream stage. The objective of this research was to document and quantify the effect of stage‐dependent aquifer heterogeneity and bank storage relative to changes in stream stage using groundwater flow divergence and direction. Monitoring was performed in alluvial floodplains adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping, observation wells were installed in high and low electrical resistivity subsoils. Water levels in the wells were recorded real time using pressure transducers (August to October 2009). Divergence was used to quantify heterogeneity (i.e. variation in hydraulic conductivity, porosity, and/or aquifer thickness), and flow direction was used to assess the potential for large‐scale (100 m) bank or transient storage. Areas of localized heterogeneity appeared to act as divergence zones allowing stream water to quickly enter the groundwater system, or as flow convergence zones draining a large groundwater area. Maximum divergence or convergence occurred with maximum rates of change in flow rates or stream stage. Flow directions in the groundwater changed considerably between base and high flows, suggesting that the floodplains acted as large‐scale bank storage zones, rapidly storing and releasing water during passage of a storm hydrograph. During storm events at both sites, the average groundwater direction changed by at least 90° from the average groundwater direction during baseflow. Aquifer heterogeneity in floodplains yields hyporheic flows that are more responsive and spatially and temporally complex than would be expected compared to more common assumptions of homogeneity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The parallel physically-based surface–subsurface model PARFLOW was used to investigate the spatial patterns and temporal dynamics of river–aquifer exchange in a heterogeneous alluvial river–aquifer system with deep water table. Aquifer heterogeneity at two scales was incorporated into the model. The architecture of the alluvial hydrofacies was represented based on conditioned geostatistical indicator simulations. Subscale variability of hydraulic conductivities (K) within hydrofacies bodies was created with a parallel Gaussian simulation. The effects of subscale heterogeneity were investigated in a Monte Carlo framework. Dynamics and patterns of river–aquifer exchange were simulated for a 30-day flow event. Simulation results show the rapid formation of saturated connections between the river channel and the deep water table at preferential flow zones that are characterized by high conductivity hydrofacies. Where the river intersects low conductivity hydrofacies shallow perched saturated zones immediately below the river form, but seepage to the deep water table remains unsaturated and seepage rates are low. Preferential flow zones, although only taking up around 50% of the river channel, account for more than 98% of total seepage. Groundwater recharge is most efficiently realized through these zones. Subscale variability of Ksat slightly increased seepage volumes, but did not change the general seepage patterns (preferential flow zones versus perched zones). Overall it is concluded that typical alluvial heterogeneity (hydrofacies architecture) is an important control of river–aquifer exchange in rivers overlying deep water tables. Simulated patterns and dynamics are in line with field observations and results from previous modeling studies using simpler models. Alluvial heterogeneity results in distinct patterns and dynamics of river–aquifer exchange with implications for groundwater recharge and the management of riparian zones (e.g. river channel-floodplain connectivity via saturated zones).  相似文献   

16.
Little attention has been given to the role of groundwater in the hydrological cycle of lowland watersheds. Our objective in this study was to estimate total recharge to groundwater by analysing water table response to storm events and the rate at which water was transferred into the shallow aquifer. This was conducted at three sites in a rural watershed in the lower Atlantic coastal plain near Charleston, South Carolina, USA. A novel version of the water table fluctuation method was used to estimate total recharge to the shallow aquifer by comparing hourly data of water table position following storm events and measuring water table recession behavior, rather than subjective graphical analysis methods. Also, shallow aquifer recharge rates (vertical fluxes) were estimated using Darcy's Law by comparing static water levels in a water table well and in a shallow piezometer during dry periods. The total annual recharge estimated ranged from 107 ± 39 mm·yr–1 (5–10% of annual precipitation) at a poorly drained topographic low area to 1140 ± 230 mm·yr–1 (62–94% of annual precipitation) for a moderately well‐drained upland site. The average aquifer recharge rate was 114 ± 60 mm·yr–1, which is similar to previous estimations of base flow for the ephemeral third‐order streams in this watershed. The difference in the two methods may have been caused by processes not accounted for in the Darcy flux method, soil moisture deficits, and average evapotranspiration demand, which is about 1100 mm·yr–1 for this region. Although other factors also can affect partitioning of recharge, an integrated approach to inspecting easily gathered groundwater data can provide information on an often neglected aspect of water budget estimation. We also discuss the effects of land use change on recharge reduction, given a typical development scenario for the region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Vijay P. Singh 《水文研究》2002,16(17):3437-3466
Using kinematic wave equations, analytical solutions are derived for flow resulting from storms moving either up or down the plane and covering it fully or partially. By comparing the flow resulting from a moving storm with that from a stationary storm of the same duration and areal coverage, the influence of storm duration, direction and areal coverage is investigated. It is found that the direction, duration and areal coverage of storm movement have a pronounced effect on the discharge hydrograph. The runoff hydrographs resulting from storms moving downstream are quite different from those from storms moving upstream. Likewise, the areal coverage of the storm has a pronounced effect on the runoff hydrograph. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Geographically isolated wetlands (GIWs) are commonly reported as having hardpan or low hydraulic conductivity units underneath that produce perched groundwater, which can sustain surface water levels independently of regional aquifer fluctuations. Despite the potential of GIW-perched aquifer systems to provide important hydrological and ecological functions such as groundwater storage and native amphibian habitat, little research has studied the hydrologic controls and dynamics of these systems. We compared several ridge-top depressional GIW-perched groundwater systems to investigate the role of watershed morphology on hydroregime and groundwater-surface water interaction. Ridge-top depressional wetlands in the Daniel Boone National Forest, Kentucky were chosen because they offer natural controls such as lack of apparent connection to surface water bodies, similar climate, and similar soils. Three wetlands with different topographic slopes and hillslope structures were mapped to distinguish key geomorphic parameters and monitored to characterize groundwater-surface water interaction. Wetlands with soil hummocks and low upland slopes transitioned from infiltration to groundwater discharge conditions in the spring and during storm events. The magnitude and duration of this transition fell along a continuum, where higher topographic slopes and steeper uplands produced comparably smaller and shorter head reversals. This demonstrates that ridge-top GIW-perched groundwater systems are largely sensitive to the runoff-recharge relationship in the upland area which can produce significant groundwater storage on a small-scale.  相似文献   

19.
Analysis of water movement in paddy rice fields (I) experimental studies   总被引:2,自引:0,他引:2  
For the purpose of increasing the amount of ground water recharge, we investigated the hydraulic characteristics of water infiltration in a flooded paddy rice field in Ten-Chung, Chung-Hwa county, Taiwan. Experimental results based on mini-tensiometers and double ring infiltrometer measurements indicated that the least permeable layer occurred at the interface of the puddled topsoil and non-puddled subsoil. The average thickness of this layer was about 7.5 cm and saturated hydraulic conductivity ranged from 0.034 to 0.083 cm/day. Vertical infiltration flow was saturated within the plow sole layer and became unsaturated in the subsoil below the plow sole layer. The hydraulic conductivity of the subsoil, 20–30 times greater than that of the plow sole layer, revealed that the subsoil was more permeable than the plow sole layer. In situ measurements also demonstrated that breakage of the plow sole layer increased infiltration rate by a factor of 3.7. Increasing ponded water depth from 6 to 16 cm increased infiltration 1.5 fold. It is suggested that using the fallow paddy rice fields without puddling is a feasible way to enhance groundwater recharge, but for cultivated paddy rice fields, breaking the plow sole needs further study in terms of its recoverability and because of the potential contamination of the shallow aquifer by agrochemicals. The experimental data can be applied in numerical simulation models to quantify detailed water movement mechanisms and accurately estimate the amount of ground water recharge in paddy rice fields.  相似文献   

20.
Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of ‘interactive’ ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d−1. 3H/3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d−1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to calculated recharge and discharge) is much less sensitive to vertical mixing compared with residence time alone. We conclude that a small but potentially significant component of flow through the Everglades is recharged to the aquifer and stored there for years to decades before discharged back to surface water. Long-term storage of water and solutes in the ground-water system beneath the wetlands has implications for restoration of Everglades water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号