首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrated ichnological and sedimentological analyses of core samples from the Upper Jurassic Ula Formation in the Norwegian Central Graben were undertaken to quantify the influence of storm waves on sedimentation. Two main facies associations (offshore and shoreface) that form a progradational coarsening upward succession are recognizable within the cores. The offshore deposits are characterized by massive to finely laminated mudstones and fine‐grained sandstones, within a moderately to highly bioturbated complex. The trace fossil assemblage is dominated by deposit‐feeding structures (for example, Planolites, Phycosiphon and Rosselia) and constitutes an expression of the proximal Zoophycos to distal Cruziana ichnofacies. The absence of grazing behaviours and dominance of deposit‐feeding ichnofossils is a reflection of the increased wave energies present (i.e. storm‐generated currents) within an offshore setting. The shoreface succession is represented by highly bioturbated fine‐grained to medium‐grained sandstones, with intervals of planar and trough cross‐bedding, thin pebble lags and bivalve‐rich shell layers. The ichnofossil assemblage, forming part of the Skolithos ichnofacies, is dominated by higher energy Ophiomorpha nodosa ichnofossils and lower energy Ophiomorpha irregulaire and Siphonichnus ichnofossils. The presence of sporadic wave‐generated sedimentary structures and variability in ichnofossil diversity and abundance attests to the influence of storm‐generated currents during deposition. As a whole, the Ula Formation strongly reflects the influence of storm deposits on sediment deposition; consequently, storm‐influenced shoreface most accurately describes these depositional environments.  相似文献   

2.
A detailed ichnological study performed on the Bhuban Formation, Surma Group (Lower to Middle Miocene) of Mizoram, India reveals the occurrence of rich and diverse trace fossils. These have been collected from the two localities in Aizawl, i.e., Bawngkawn and Ropaiabawk, where sandstone—shale sequence is well exposed. Total 20 ichnospecies of 14 ichnogenera have been identified which include Arenicolites isp., Cochlichnus anguineus, Helminthopsis abeli, Laevicyclus mongraensis, Ophiomorpha borneensis, Palaeophycus tubularis, Palaeophycus heberti, Palaeophycus sulcatus, Palaeophycus alternatus, Pholeus abomasoformis, Pholeus bifurcatus, Planolites beverleyensis, Planolites annularis, Polykladichnus irregularis, Rhizocorallium isp., Skolithos linearis, Taenidium satanassi, Teichichnus rectus, Thalassinoides horizontalis and Thalassinoides paradoxicus. Ethologically these ichnogenera display dwelling and feeding activities of the infaunal organisms. Arenicolites, Ophiomorpha, Polykladichnus and Skolithos are the members of the Skolithos ichnofacies while Palaeophycus, Planolites, Rhizocorallium and Thalassinoides are the members of the Cruziana ichnofacies. The presence of Skolithos ichnofacies indicates sandy shifting substrate and high energy conditions in foreshore zone while the Cruziana ichnofacies indicate unconsolidated, poorly sorted soft substrate and low energy condition in the shoreface/offshore zone. These ichnogenera indicate foreshore to shoreface-offshore zone of shallow marine environment for the deposition of the rocks of the Bhuban Formation of Mizoram.  相似文献   

3.
The Marwar Supergroup of the Bikaner-Nagaur Basin is composed of sediments deposited from the late Neoproterozoic (Ediacaran) to Upper Cambrian. The Nagaur Sandstone Formation of the Nagaur Group (uppermost division of the Marwar Supergroup) preserves trace fossils significant for establishing Early Cambrian biostratigraphic zones and depositional facies. Fifteen ichnospecies (and eight ichnogenera) identified in the Nagaur Sandstone Formation include “Treptichnus” pedum, Cruziana cf. tenella, Cruziana isp., Diplichnites ispp. A, B, and C, Gyrophyllites isp., Lockeia isp., Merostomichnites isp., Monomorphichnus gregarius isp. nov., Monomorphichnus isp., Planolites isp., Psammichnites isp., Rusophycus bikanerus isp. nov., Rusophycus cf. carbonarius, Rusophycus isp. and radial trace fossils.These trace fossils belong to ethological categories pascichnia, repichnia, cubichnia, and fodinichnia and represent arthropod and worm-like burrowing biota. The assemblage and a regional comparison with contemporaneous trace fossils in the eastern Gondwanan realm suggest that the sequence in the study area belongs to the Cruziana tenella Ichnozone and to Stage 2 (upper part of Terreneuvian), however the Middle Cambrian is not excluded. The trace fossil assemblage belongs to the archetypal Cruziana ichnofacies. Cross bedded sandstone, mud cracks and rainprints in the ichniferous strata of the Nagaur Sandstone Formation indicate deposition in an intertidal sand flat with channels that was exposed episodically.  相似文献   

4.
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions.  相似文献   

5.
Paleogene sediments of the inner fold belt, Naga hills, have very well preserved ichnofossils. 16 ichnospecies have been documented among 13 ichnogenera such as Arenicolites isp., Chondrites targionii, Cylindrichnus isp., Diplocraterion parallelum, Gyrochorte isp., Ophiomorpha annulata, O. irregulaire, O. nodosa, O. rudis, Palaeophycus tubularis, Planolites beverleyensis, Scolicia palaeobullia, Skolithos linearis, Trypinites weisei, Thalassinoides horizontalis and Zoophycos isp. The ichnofossil assemblages comprise mostly domichnia and fodinichnia benthos of the Skolithos and Cruziana ichnofacies. A shallow marine nearshore to offshore marine environment with fluctuating energy condition has been envisaged.  相似文献   

6.
Dhosa Oolite Member of the Jumara Formation comprises alternating bands of oolitic limestones and shales, exposed in Jhura dome of Mainland Kachchh, Western India. This sequence is highly bioturbated and exhibits a moderate diversity and behaviourally complex assemblage of ichnospecies. The rhythmically bedded sequence shows three different levels of preservation of traces. Epichnial tiering consists of moderately bioturbated oolitic limestone exhibiting horizontal or low-angle protrusive/retrusive biogenic laminae, commonly dominated by feeding structures like Rhizocorallium jenense, R. irregulare, Zoophycos brianteus and Zoophycos isp. The endichnial structures within the oolitic limestone can be separated into two different preservational trace fossil suites. The endichnial shallow suites consist chiefly of deposit feeders like Chondrites intricatus, C. targionii, Planolites beverleyensis, Taenidium cameronensis, Thalassinoides isp., Z. brianteus, Z. cf circinnatus and Zoophycos isp. and few suspension feeder forms like Palaeophycus tubularis; while endichnial deep suites consist of Chondrites intricatus, Skolithos linearis and Zoophycos isp. Hypichnial structures consists abundant, cylindrical, branched, horizontal, large-sized three dimensional feeding burrows of Thalassinoides isp. and somewhat irregular, obtuse angle ramification burrows of Phycodes isp., which are attached to the lower surface of the casting medium. The trace fossil association indicates Cruziana ichnofacies and abundance of Zoophycus species below the fair weather wave base level is largely a preservational artifact. The preservational processes of the trace fossils indicate soft substrate and diversity and their abundance reflects the other palaeoecological parameters of the open shallow marine environments.  相似文献   

7.
The middle Jurassic Goradongar Formation exposed in Goradongar hill represents a mixed siliciclasticcarbonate succession with shales and limestones. They contain a large number of well preserved trace fossils. Total 44 ichnospecies of 31 ichnogenera; representing diverse ethology, were grouped in five ichnoassemblages (Planolites, Palaeophycus, Gyrochorte, Rhizocorallium and Arenicolites assemblage). These recurring ichnoassemblages represent the Cruziana ichnofacies and occasionally a mixed Skolithos-Cruziana ichnofacies. Patterns of diversity and density of the trace fossils reveal changes in bathymetry, oxygen level, trophic level and the sub-strate conditions at the time of deposition. These paleoenvironment and palaeo-oceanography changes are co-relatable to world-wide Bathonian-Callovian (middle Jurassic) deposits.  相似文献   

8.
A new locality bearing ichnofossils of the Cruziana Assemblage Zone-Ⅲ from the Mussoorie syncline,Lesser Himalaya,is located in rocks of Member-B of the Dhaulagiri Formation,Tal Group,exposed along the Maldewta-Chhimoli fresh road cut section.The site yielded ichnofossils Bergaueria perata,Cochlichnus anguineus,?Diplocraterion isp.,Dimorphichnus obliquus,diplichnitiform Cruziana bonariensis,Diplichnites gouldi,Glockeria isp.,Helminthopsis isp.,Monomorphichnus lineatus,Phycodes palmatum,Palaeophycus striatus,Planolites beverleyensis,Planolites montanus,Treptichnus cf.T.pedum,scratch marks and an undetermined worm impression.An Early Cambrian age (Cambrian Series 2) is assigned to the ichnofossil-bearing strata based on the stratigraphic position between the Drepanuroides and Palaeoolenus trilobite zones.A revised Cambrian ichnofossil zonation is presented for the Tal Group of the Mussoorie syncline.Together with their occurrence on rippled surfaces,and the lateral displacement of some trackways (due to current action),a sub-aqueous shallow-marine depositional setting is proposed for the rocks of Member-B.  相似文献   

9.
Integrated sedimentologic, macrofossil, trace fossil, and palynofacies data from Paleocene-Middle Eocene outcrops document a comprehensive sequence stratigraphy in the Anambra Basin/Afikpo Syncline complex of southeastern Nigeria. Four lithofacies associations occur: (1) lithofacies association I is characterized by fluvial channel and/or tidally influenced fluvial channel sediments; (2) lithofacies association II (Glossifungites and Skolithos ichnofacies) is estuarine and/or proximal lagoonal in origin; (3) lithofacies association III (Skolithos and Cruziana ichnofacies) is from the distal lagoon to shallow shelf; and (4) shoreface and foreshore sediments (Skolithos ichnofacies) comprise lithofacies association IV. Five depositional sequences, one in the Upper Nsukka Formation (Paleocene), two in the Imo Formation (Paleocene), and one each in the Ameki Group and Ogwashi-Asaba Formation (Eocene), are identified. Each sequence is bounded by a type-1 sequence boundary, and contains a basal fluvio-marine portion representing the transgressive systems tract, which is succeeded by shoreface and foreshore deposits of the highstand systems tract. In the study area, the outcropping Ogwashi-Asaba Formation is composed of non-marine/coastal aggradational deposits representing the early transgressive systems tract. The occurrence of the estuarine cycles in the Palaeogene succession is interpreted as evidence of significant relative sea level fluctuations, and the presence of type-1 sequence boundaries may well be the stratigraphic signature of major drops in relative sea level during the Paleocene and Eocene. Sequence architecture appears to have been tectono-eustatically controlled.  相似文献   

10.
Exposures of upper Paleozoic slates of the metamorphic basement near Concepción, central Chile, are covered by transgressive deposits belonging to the Upper Cretaceous Quiriquina Formation. Presence of clusters of the bivalve boring Gastrochaenolites isp. at the irregular and erosive contact between these two units indicates the development of an ancient rocky shoreline, illustrating a rare example of bioerosion in a metamorphic substrate. Coarse-grained deposits mantling the bioeroded surface represent a transgressive lag produced due to ravinement. In sequence-stratigraphic parlance, the bioeroded surface is classified as a FS/SB or co-planar surface formed due to amalgamation of erosion during lowstand and the subsequent transgression. Unburrowed trough cross-bedded upper-shoreface to intensely bioturbated middle-shoreface deposits record continuous transgression. Logs bioeroded by Teredolites clavatus are also present. Middle-shoreface deposits are dominated by deep Ophiomorpha isp., commonly showing laminated infill. Thalassinoides suevicus occurs locally. Intense bioturbation also suggests that the shoreface developed in embayed shorelines, protected from oceanic waves. While rocky shorelines in limestone are characterized by a high abundance and diversity of bioerosion structures, those formed in other types of substrates contain less diverse, commonly monospecific, suites of borings. In terms of Seilacherian ichnofacies, the bioerosion structures analyzed are attributed to a low-diversity expression of the Trypanites ichnofacies. It is proposed that the Trypanites ichnofacies thus may display two expressions: an archetypal one characterized by high diversity in carbonate substrates, along with a depauperate expression in other types of substrates (e.g., metamorphic and igneous rocks). The extreme hardness of the substrate is regarded as the stress factor responsible for the reduction in ichnodiversity.  相似文献   

11.
On the south‐west coast of Vancouver Island, Canada, sedimentological and ichnological analysis of three beach–shoreface complexes developed along a strait margin was undertaken to quantify process–response relations in straits and to develop a model for strait‐margin beaches. For all three beaches, evidence of tidal processes are expressed best in the lower shoreface and offshore and, to a lesser extent, in the middle shoreface. Tidal currents are dominant offshore, below 18 m water depth (relative to the mean spring high tide), whereas wave processes dominate sediment deposition in the nearshore (intertidal zone to 5 m water depth). From 18 to 5 m water depth, tidal processes decrease in importance relative to wave processes. The relatively high tidal energy in the offshore and lower shoreface is manifest sedimentologically by the dominance of sand, of a similar grain size to the upper shoreface/intertidal zone and, by the prevalence of current‐generated structures (current ripples) oriented parallel to the shoreline. In addition, the offshore and lower shoreface of strait‐bound beach–shoreface complexes are recognized ichnologically by traces typical of the Skolithos Ichnofacies. This situation contrasts to the dominantly horizontal feeding traces characteristic of the Cruziana Ichnofacies that are prevalent in the lower shoreface and offshore of open‐coast (wave‐dominated) beach–shorefaces. These sedimentological and ichnological characteristics reflect tidal influence on sediment deposition; consequently, the term ‘tide‐influenced shoreface’ most accurately describes these depositional environments.  相似文献   

12.
The shallow marine sedimentary sequence of the Jaisalmer Basin exhibits one of the important and well-developed Tithonian sedimentary outcrops for western India. The ichnology and ichnofabric of the lower part of Bhadasar Formation (i.e., Kolar Dongar Member) belonging to Tithonian age are presented and discussed. The Kolar Dongar Member represents a shallow marine succession that contains 16 ichnotaxa: Ancorichnus ancorichnus, Conichnus conicus, Gyrochorte comosa, cf. Jamesonichnites heinbergi, Imponoglyphus kevadiensis, Laevicyclus mongraensis, Monocraterion tentaculatum, Ophiomorpha nodosa, Palaeophycus tubularis, P. bolbiterminus, Phycodes palmatus, Planolites beverleyensis, Rhizocorallium isp., Rosselia rotatus, R. socialis, and Teichichnus rectus. The ichnofabric analysis divulges five distinct ichnofabrics, each typifying distinct depositional environment within shallow marine conditions. The ichnofabric Ophiomorpha 1 with syn-sedimentary faulting exemplifies high energy conditions typical of lower shoreface environment, whereas the Ophiomorpha 2 ichnofabric typifies upper shoreface environment. The Ancorichnus ichnofabric reflects lower offshore condition of deposition. The high ichnodiversity AncorichnusRosselia ichnofabric is indicative of inner shelf conditions, while low ichno-diversity Teichichnus ichnofabric indicates prevalence of low energy brackish bay environment. Thus, Tithonian Kolar Dongar Member indicates depositional environment ranging from shoreface to offshore to inner shelf and finally to brackish bay environment.  相似文献   

13.
Delta asymmetry occurs where there is strong wave influence and net longshore transport. Differences in the morphology and facies architecture between updrift and downdrift sides of asymmetric deltas are potentially significant for exploration and exploitation of resources in this class of reservoirs. Although delta asymmetry has been recognized widely from modern wave‐influenced deltaic shorelines, there are few documented examples in the ancient record. Based on an integrated sedimentological and ichnological study, the along‐strike variability and delta asymmetry within a single parasequence (Ps 6) is documented in continuously exposed outcrops of the Cretaceous Ferron Sandstone Member of the Mancos Shale Formation near Hanksville in southern Utah. Two intra‐parasequence discontinuity surfaces are recognized which allow subdivision of the parasequence into three bedsets, marked as Ps 6‐1 to Ps 6‐3. Four facies successions are recognized: (i) wave/storm‐dominated shoreface; (ii) river‐dominated delta front; (iii) wave/storm‐reworked delta front; and (iv) distributary channel and mouth bar. Dips of cross‐strata within distributary‐mouth bars and shorefaces show a strong downdrift (southward) component. Ps 6‐3 predominantly consists of river‐dominated delta‐front deposits, whereas Ps 6‐1 and Ps 6‐2 show an along‐strike facies change with shoreface deposits in the north, passing into heterolithic, river‐dominated delta‐front successions south to south‐eastward, and wave/storm‐reworked delta‐front deposits further to the south‐east. Trace fossil suites correspondingly show distinct along‐strike changes from robust and diverse expressions of the archetypal Cruziana Ichnofacies and Skolithos Ichnofacies, into suites characterized by horizontal, morphologically simple, facies‐crossing ichnogenera, reflecting a more stressed, river‐dominated environment. Further south‐eastward, trace fossil abundance and diversity increase, reflecting a return to archetypal ichnofacies. The overall facies integrated with palaeocurrent data indicate delta asymmetry. The asymmetric delta consists of sandier shoreface deposits on the updrift side and mixed riverine and wave/storm‐reworked deposits on the downdrift side, similar to that observed in the modern examples. However, in contrast to the recent delta asymmetry models, significant paralic, lagoonal and bay‐fill facies are not documented in the downdrift regions of the asymmetric delta. This observation is attributed to a negative palaeoshoreline trajectory during delta progradation and subsequent transgressive erosion. The asymmetric delta was induced by net longshore transport from north to south. The forced regressive nature of the delta precludes significant preservation of topset mud.  相似文献   

14.
四川北部广元地区下泥盆统平驿铺组产出丰富的双壳类遗迹化石,但尚未开展过系统的遗迹学工作,也未进行过行为学与古生态学分析。文中针对四川广元马家剖面平驿铺组中部地层开展沉积学和系统遗迹学研究,在陆棚至近滨带下部沉积中共识别出3个属种的双壳类遗迹化石,包括Lockeia siliquaria,Protovirgularia rugosa,Ptychoplasma vagans,以及其他无脊椎动物门类遗迹化石Cruziana problematica,Dimorphichnus isp.,Lophoctenium isp.等。对双壳类遗迹化石的出现方式、形态以及保存特征的分析表明,平驿铺组中部曾出现过2种类型的双壳类,分属具分叉足(原鳃目)和楔状足的类群。原鳃目分布于过渡带和陆棚区,营沉积物摄食生活;受高能事件或沉积物掩埋影响,它们由停息状态变为“逃逸”状态的行为产生了Pro.rugosa。具楔状足的双壳类依生态类型可分为2类:在过渡带与陆棚区,漫游的、营沉积物摄食的类型产生了Pty.vagans;而在近滨下部,滤食性双壳类居群则在不同期次高能事件的间隙对沉积物进行大规模殖居,产生了L.sil...  相似文献   

15.
Based on the analysis of trace fossils collected from the typical outcrop of the Lower Cambrian Wusongger Formation in the Kalpin area, ten ichnospecies of six ichnogenus were identified in the upper member of the Wusongger Formation, with most of them being found for the first time. The trace fossils are described seriatim. The ichnospecies are mainly represented by such common trace fossils as Ophiomorpha nodosa, Helminthopsis hieroglyphica, Helminthopsis ichnosp., Planolites beverleyensis, Planolites vulgaris, Planolites montanus, Palaeophycus striatus, Palaeophycus curvatus?, Cochlichnus anguineus and Rituichnus elongatum. The trace fossils are of high diversity and low abundance, and can be diagnosed as the Cruziana ichnofacies. They can be interpreted as having formed in a shallow water environment.  相似文献   

16.
河南鲁山寒武系第二统辛集组为一套风暴作用影响下的含磷和海绿石的碎屑岩沉积,主要由中厚层石英砂岩及极薄层泥岩与砂岩互层组成。遗迹化石发育在交错层理砂岩以及极薄层泥岩与薄层砂岩互层的层面上。Skolithos sp. 属于风暴衰减期的Skolithos遗迹相机会种(r-选择)遗迹化石,它们以短小的垂直居住潜穴及低遗迹分异度和丰度为特征。Palaeophycus tubularis,P. striatus,Taenidum sp.,Gordia marina,Planolites montanus,P. beverleyensis等属于风暴间歇期的Cruziana遗迹相均衡种(K-选择)遗迹化石,以水平进食、觅食潜穴为主,遗迹分异度和丰度中等。早寒武世风暴衰减期,频繁的风暴事件不利于研究区机会种遗迹化石的保存,同时风暴间歇期持续时间短、风暴停息期不发育,造成均衡类生物殖居窗口期短暂,亦不利于对沉积底质的连续殖居。这种特殊的风暴沉积以及早寒武世造迹生物较差的掘穴能力,导致研究区遗迹化石种类及数量远不及寒武纪以后的风暴沉积。  相似文献   

17.
The Upper Emsian to Frasnian Ia-Ib strata of the Marhouma area (or “km 30” outcrop), exposed in the Ougarta Range (SW Algeria) belong to the Chefar El Ahmar Formation. On the basis of distinct lithological and palaeontological features, this formation is subdivided into three members (Lower Marly Limestones Member, Middle Marly Limestones Member, and Upper Marly Limestones Member). The studied beds show low to moderate diversity of trace fossil assemblage which contains thirteen ichnotaxa: Chondrites intricatus, Chondrites isp., Chondrites cf. targionii, Circulichnis cf. montanus, Cochlichnus isp., Neonereites biserialis, Neonereites multiserialis, Nereites isp., Palaeophycus isp., Planolites isp., Thalassinoides isp., Zoophycos aff. cauda-galli, and Zoophycos isp. A. The two latter ichnotaxa are the most common trace fossils in the assemblage and occur at three different levels showing different bioturbation intensities. The first Zoophycos-bearing level (Zl 1) is characterised by an overall high bioturbation intensity reflecting a very high oxygenation rate and nutrient supply, allowing the development of large and dense Zoophycos specimens. The second Zoophycos-bearing level (Zl 2) has a considerable reduction of bioturbation intensity as compared to the previous level, with an abundance of Chondrites, which is probably due to radical palaeoecological changes that suggests dysoxic and stressful conditions. The third Zoophycos-bearing level (Zl 3) is characterised by an overall moderate bioturbation intensity. The distribution of trace fossils was influenced by lithology, sedimentation rate, energy level (storm events), bottom oxygenation, and nutrient supply. The lithofacies and trace fossils of the Chefar El Ahmar Formation both indicate a depositional environment fluctuating from the lower shoreface to lower offshore zone.  相似文献   

18.
Dunes and bars are common elements in tide‐dominated shelf settings. However, there is no consensus on a unifying terminology or a systematic classification for thick sets of cross‐stratified sandstones. In addition, their ichnological attributes have hardly been explored. To address these issues, the properties, architecture and ichnology of compound cross‐stratified sandstone bodies contained in the Lower Cambrian Gog Group of the southern Canadian Rocky Mountains are described here. In these transgressive sandstones, five types of compound cross‐stratified sandstone are distinguished based on foreset geometry, sedimentary structures and internal heterogeneity. These represent four broad categories of subtidal sandbodies: (i) compound‐dune fields; (ii) sand sheets; (iii) sand ridges; and (iv) isolated dune patches; tidal bars comprise a fifth category but are not present in the Gog Group. Compound‐dune fields are characterized by sigmoidal and planar cross‐stratified sandstone in coarsening‐upward and thickening‐upward packages (Type 1); these are mostly unburrowed, or locally contain representatives of the Skolithos ichnofacies, but are intercalated with intensely bioturbated sandstone containing the archetypal Cruziana ichnofacies. Sand‐sheet complexes, also composed of compound dunes, cover more extensive subtidal areas, and comprise three adjacent subenvironments: core, front and margin. The core is characterized by thick‐bedded sets of cross‐stratified sandstone (Type 2). A decrease of bedform size at the front is recorded by wedges of thinner‐bedded, low‐angle and planar cross‐stratified sandstone (Type 3) exhibiting dense Skolithos pipe‐rock ichnofabric. The margin is characterized by interbedded sandstone and mudstone, and hummocky cross‐stratified sandstone. Sand‐sheet deposits exhibit clear trends in trace‐fossil distribution along the sediment transport path, from non‐bioturbated beds in the core to Skolithos ichnofacies at the front, and a depauperate Cruziana ichnofacies at the margin. Tidal sand ridges are large elongate sandbodies characterized by large sigmoid‐shaped reactivation surfaces (Type 4). Sand ridges display clear ichnological trends perpendicular to the axis of the ridge, with no bioturbation or a poorly developed Skolithos ichnofacies in the core, a depauperate Cruziana ichnofacies in lee‐side deposits, and Cruziana ichnofacies at the margin. While both tidal ridges and tidal bars migrate by means of lateral accretion, the latter occur in association with channels while the former do not. Because tidal bars tend to occur in brackish‐water marginal‐marine settings, their ichnofauna are typically of low diversity, representing a depauperate Cruziana ichnofacies. Isolated dune patches developed on sand‐starved areas of the shelf, and are represented by lenticular sandbodies with sigmoidal reactivation surfaces (Type 5); they typically lack trace fossils, but the interfingering muddy deposits are intensely bioturbated by a high‐diversity fauna recording the Cruziana ichnofacies. The variety of sandbody types in the Gog Group reflects varying sediment supply and location on the inner continental shelf. These, in turn, governed substrate mobility, grain size, turbidity, water‐column productivity and sediment organic matter which controlled trace fossil distribution.  相似文献   

19.
On the basis of distinct lithologic features such as composition, grain size, bedding characteristics and sedimentary structures, six facies were identified in Callovian to Oxfordian rocks exposed southwest of Bhuj, Kachchh. They are interbedded calcareous shale-siltstone (ICSSF), limestone (LF), ferruginous sandstone (FerSF), felspathic sandstone (FelSF), grey shale (GSF) and oolitic limestone (OLF) facies. The rich and highly diversified trace fossils reveal a wide range of animal behaviours represented by dwelling, feeding, crawling and resting structures. Horizontal feeding structures are found abundantly in all lithofacies indicating low wave and current energy and deposition of poorly sorted muddy to sandy sediments. A few coarse layers containing Arenicolites, Ophiomorpha and Skolithos indicate the presence of opportunistic animals (due to their first appearance under harsh conditions) under -intermittently moderate wave and current energy or storm wave conditions (due to coarse grain size and dominance/presence of only vertical trace fossils) in the shoreface zone. Taenidium occurs mainly in the lower shoreface to transitional zone suggesting low to moderate energy conditions. Thalassinoides occurs in middle to lower shoreface settings under relatively low-energy conditions. Zoophycos represents offshore environment, where it occupies the deepest bioturbation levels.The characteristic lithofacies and assemblages of trace fossils in the rocks of the Chari/Jumara Formation indicate a depositional environment fluctuating from the upper shoreface to offshore zone.  相似文献   

20.
Middle and Upper Devonian deposits from the Aouinet Ouenine Formation in the southern Ghadames Basin of western Libya provide a well exposed example of a deltaic complex containing both progradational and transgressive facies. Progradational facies comprise both laterally accreting and incised distributary channels overlying prodelta deposits. Also present is a progradational beach environment showing build-up from an offshore shelf through nearshore shelf to shoreface and foreshore sub-environments. Over-lying these progradational facies are transgressive tidal-flat, washover-fan, foreshore and nearshore deposits.The characteristics and interrelationships of the different facies are explained by two sedimentation models: progradational facies existed contemporaneously during phases of active sediment supply whereas the transgressive facies existed contemporaneously during periods of diminished or absent detrital influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号