首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Geometry constrains but does not dictate the topology of the three-dimensional space. In a locally spatially homogeneous and isotropic universe, however, the topology of its spatial section dictates its geometry. We show that, besides determining the geometry, the knowledge of the spatial topology through the circles-in-the-sky offers an effective way of setting constraints on the density parameters associated with dark matter (Ωm) and dark energy  (ΩΛ)  . By assuming the Poincaré dodecahedral space as the circles-in-the-sky detectable topology of the spatial sections of the Universe, we re-analyse the constraints on the density parametric plane  Ωm–ΩΛ  from the current Type Ia supernova plus X-ray gas mass fraction data, and show that a circles-in-the sky detection of the dodecahedral space topology gives rise to strong and complementary constraints on the region of the density parameter plane currently allowed by these observational data sets.  相似文献   

2.
We use the magnitude-redshift relation for the type Ia supernova datacompiled by Riess et al. to analyze the Cardassian expansion scenario. This sce-nario assumes the universe to be flat, matter dominated, and accelerating, but contains no vacuum contribution.The best fitting model parameters are H0=65.3kms^-1 Mpc^-1, n= 0.35 and Ω= 0.05. When the highest redshift supernova,SN 1997ck, is excluded, H0 remains the same, but n becomes 0.20 and Ωm, 0.15, and the matter density remains unreasonably low. Our result shows that this particular scenario is strongly disfavoured by the SNeIa data.  相似文献   

3.
We use the magnitude-redshift relation for the type la supernova data compiled by Riess et al. to analyze the Cardassian expansion scenario. This scenario assumes the universe to be flat, matter dominated, and accelerating, but contains no vacuum contribution. The best fitting model parameters are H0 = 65.3kms-1 Mpc-1, n=0.35 and (?)m = 0.05. When the highest redshift supernova, SN 1997ck, is excluded, H0 remains the same, but n becomes 0.20 and (?)m, 0.15, and the matter density remains unreasonably low. Our result shows that this particular scenario is strongly disfavoured by the SNela data.  相似文献   

4.
A combined sample of 79 high- and low-redshift Type Ia supernovae (SNe) is used to set constraints on the degree of anisotropy in the Universe out to z ≃1. First, we derive the global most probable values of matter density ΩM, the cosmological constant ΩΛ and the Hubble constant H 0, and find them to be consistent with the published results from the two data sets of Riess et al. and Perlmutter et al. We then examine the Hubble diagram (HD, i.e., the luminosity–redshift relation) in different directions on the sky by utilizing spherical harmonic expansion. In particular, via the analysis of the dipole anisotropy, we divide the sky into the two hemispheres that yield the most discrepant of the three cosmological parameters, and the scatter χ HD2 in each case. The most discrepant values roughly move along the locus −4ΩM+3ΩΛ=1 (cf. Perlmutter et al.), but by no more than Δ≈2.5 along this line. For a perfect Friedmann–Robertson–Walker universe, Monte Carlo realizations that mimic the current set of SNe yield values higher than the measured Δ in ∼1/5 of the cases (for ΩM). We discuss implications for the validity of the Cosmological Principle, and possible calibration problems in the SNe data sets.  相似文献   

5.
A strong correlation between the gamma-ray burster peak energy and the peak luminosity of the associated supernova was discovered by Li for four GRBs. Despite the fact that the formal significance level of the correlation is 0.3 per cent, the smallness of the data set requires careful further evaluation of the result. Subject to the assumption that the data are bivariate Gaussian, a 95 per cent confidence interval of  (−0.9972, 0.02)  for the correlation is derived. Using data from the literature, it is shown that the distribution of known peak GRB energies is not Gaussian if X-ray flashes are included in the sample. This leads to a proposed alternative to the bivariate Gaussian model, which entails describing the dependence between the two variables by a Gaussian copula. The copula is still characterized by a correlation coefficient. The Bayesian posterior distribution of the correlation coefficient is evaluated using a Markov chain Monte Carlo method. The mean values of the posterior distributions range from −0.33 to about zero, depending on the specifics of the supernova (SN) peak brightness distribution. The implication is that the existing data favour a modest correlation between the GRB peak energy and the SN peak brightness; confidence intervals are very wide and include zero.  相似文献   

6.
We cross-correlate the sample of type Ia supernovae from Riess A. G. et al. with the SDSS DR2 photometric galaxy catalogue. In contrast to recent work, we find no detectable correlation between supernova magnitude and galaxy overdensity on scales ranging between 1 and 10 arcmin. Our results are in accord with theoretical expectations for gravitational lensing of supernovae by large-scale structure. Future supernova surveys such as SNAP will be capable of detecting unambiguously the predicted lensing signal.  相似文献   

7.
We propose a non-parametric method of smoothing supernova data over redshift using a Gaussian kernel in order to reconstruct important cosmological quantities including   H ( z )  and   w ( z )  in a model-independent manner. This method is shown to be successful in discriminating between different models of dark energy when the quality of data is commensurate with that expected from the future Supernova Acceleration Probe ( SNAP ). We find that the Hubble parameter is especially well determined and useful for this purpose. The look-back time of the Universe may also be determined to a very high degree of accuracy (≲0.2 per cent) using this method. By refining the method, it is also possible to obtain reasonable bounds on the equation of state of dark energy. We explore a new diagnostic of dark energy – the ' w -probe'– which can be calculated from the first derivative of the data. We find that this diagnostic is reconstructed extremely accurately for different reconstruction methods even if Ω0 m is marginalized over. The w -probe can be used to successfully distinguish between Λ cold dark matter and other models of dark energy to a high degree of accuracy.  相似文献   

8.
We create mock pencil-beam redshift surveys from very large cosmological N -body simulations of two cold dark matter (CDM) cosmogonies, an Einstein–de Sitter model ( τ CDM) and a flat model with Ω0=0.3 and a cosmological constant (ΛCDM). We use these to assess the significance of the apparent periodicity discovered by Broadhurst et al. Simulation particles are tagged as 'galaxies' so as to reproduce observed present-day correlations. They are then identified along the past light-cones of hypothetical observers to create mock catalogues with the geometry and the distance distribution of the Broadhurst et al. data. We produce 1936 (2625) quasi-independent catalogues from our τ CDM (ΛCDM) simulation. A couple of large clumps in a catalogue can produce a high peak at low wavenumbers in the corresponding one-dimensional power spectrum, without any apparent large-scale periodicity in the original redshift histogram. Although the simulated redshift histograms frequently display regularly spaced clumps, the spacing of these clumps varies between catalogues and there is no 'preferred' period over our many realizations. We find only a 0.72 (0.49) per cent chance that the highest peak in the power spectrum of a τ CDM (ΛCDM) catalogue has a peak-to-noise ratio higher than that in the Broadhurst et al. data. None of the simulated catalogues with such high peaks shows coherently spaced clumps with a significance as high as that of the real data. We conclude that in CDM universes, the regularity on a scale of ∼130  h −1 Mpc observed by Broadhurst et al. has a priori probability well below 10−3.  相似文献   

9.
Higher Criticism (HC) has been proposed by Donoho & Jin as an effective statistic to detect deviations from Gaussianity. Motivated by the success of the Bianchi VIIh model in addressing many of the anomalies observed in the Wilkinson Microwave Anisotropy Probe ( WMAP ) data (Jaffe et al.), we present calculations in real and in wavelet space of the HC statistic of the Bianchi-corrected WMAP first-year data. At the wavelet scale of 5°, the HC of the WMAP map drops from a value above the 99 per cent confidence level (c.l.) to a value below the 68 per cent CL when corrected by the Bianchi template. An important property of the HC statistic is its ability to locate the pixels that account for the deviation from Gaussianity. The analysis of the uncorrected WMAP data pointed to a cold spot in the Southern hemisphere, centred at   l ∼ 209°, b ∼−57°  . The HC of the Bianchi-corrected map indicates that this spot remains prominent, albeit at a level completely consistent with Gaussian statistics. Consequently, it is debatable how much emphasis should be placed on this residual feature, but we consider the effect of modestly increasing the scaling of the template. A factor of only 1.2 renders the spot indistinguishable from the background level, with no noticeable impact on the results published in Jaffe et al. for the low- l anomalies, large-scale power asymmetry or wavelet kurtosis. A trivial interpretation would be that the Bianchi template may require a small enhancement of power on scales corresponding to the wavelet scale of 5°.  相似文献   

10.
We present results from the first high-resolution hydrodynamical simulations of non-Gaussian cosmological models. We focus on the statistical properties of the transmitted Lyman-α flux in the high-redshift intergalactic medium. Imprints of non-Gaussianity are present and are larger at high redshifts. Differences larger than 20 per cent at   z > 3  in the flux probability distribution function for high-transmissivity regions (voids) are expected for values of the non-linearity parameter   f NL=±100  when compared to a standard Λ cold dark matter cosmology with   f NL= 0  . We also investigate the one-dimensional flux bispectrum: at the largest scales (corresponding to tens of Mpc), we expect deviations in the flux bispectrum up to 20 per cent at   z ∼ 4  (for   f NL=±100  ), significantly larger than deviations of ∼3 per cent in the flux power spectrum. We briefly discuss possible systematic errors that can contaminate the signal. Although challenging, a detection of non-Gaussianities in the interesting regime of scales and redshifts probed by the Lyman-α forest could be possible with future data sets.  相似文献   

11.
It has been claimed that the observed magnitude of the vacuum energy density is consistent with the distribution predicted in anthropic models, in which an ensemble of universes is assumed. This calculation is revisited, without making the assumption that the cosmic microwave background (CMB) temperature is known, and considering in detail the possibility of a recollapsing universe. New accurate approximations for the growth of perturbations and the mass function of dark haloes are presented. Structure forms readily in the recollapsing phase of a model with negative Λ, so collapse fraction alone cannot forbid Λ from being large and negative. A negative Λ is disfavoured only if we assume that formation of observers can be neglected once the recollapsing universe has heated to   T ≳ 8   K  . For the case of positive Λ, however, the current universe does occupy an extremely typical position compared to the predicted distribution on the Λ− T plane. Contrasting conclusions can be reached if anthropic arguments are applied to the curvature of the universe, and we discuss the falsifiability of this mode of anthropic reasoning.  相似文献   

12.
It has been recently shown that tachyonic chameleon model of dark energy in which tachyon scalar field non-minimally coupled to the matter admits stable scaling attractor solution that could give rise to the late-time accelerated expansion of the universe and hence alleviate the coincidence problem. In the present work, we use data from Type Ia supernova (SN Ia) and Baryon Acoustic oscillations to place constraints on the model parameters. In our analysis we consider in general exponential and non-exponential forms for the non-minimal coupling function and tachyonic potential and show that the scenario is compatible with observations.  相似文献   

13.
A detailed analysis of the 2006 November 15 data release X-ray surface density Σ-map and the strong and weak gravitational lensing convergence κ-map for the Bullet Cluster 1E0657-558 is performed and the results are compared with the predictions of a modified gravity (MOG) and dark matter. Our surface density Σ-model is computed using a King β-model density, and a mass profile of the main cluster and an isothermal temperature profile are determined by the MOG. We find that the main cluster thermal profile is nearly isothermal. The MOG prediction of the isothermal temperature of the main cluster is   T = 15.5 ± 3.9 keV  , in good agreement with the experimental value   T = 14.8+2.0−1.7 keV  . Excellent fits to the 2D convergence κ-map data are obtained without non-baryonic dark matter, accounting for the 8σ spatial offset between the Σ-map and the κ-map reported in Clowe et al. The MOG prediction for the κ-map results in two baryonic components distributed across the Bullet Cluster 1E0657-558 with averaged mass fraction of 83 per cent intracluster medium (ICM) gas and 17 per cent galaxies. Conversely, the Newtonian dark matter κ-model has on average 76 per cent dark matter (neglecting the indeterminant contribution due to the galaxies) and 24 per cent ICM gas for a baryon to dark matter mass fraction of 0.32, a statistically significant result when compared to the predicted Λ-cold dark matter cosmological baryon mass fraction of 0.176+0.019−0.012.  相似文献   

14.
We compare and combine likelihood functions of the cosmological parameters Ωm, h and σ 8, from peculiar velocities, cosmic microwave background (CMB) and type Ia supernovae. These three data sets directly probe the mass in the Universe, without the need to relate the galaxy distribution to the underlying mass via a 'biasing' relation. We include the recent results from the CMB experiments BOOMERANG and MAXIMA-1. Our analysis assumes a flat Λ cold dark matter (ΛCDM) cosmology with a scale-invariant adiabatic initial power spectrum and baryonic fraction as inferred from big-bang nucleosynthesis. We find that all three data sets agree well, overlapping significantly at the 2 σ level. This therefore justifies a joint analysis, in which we find a joint best-fitting point and 95 per cent confidence limits of     (0.17,0.39),     (0.64,0.86) and     (0.98,1.37). In terms of the natural parameter combinations for these data     (0.40,0.73),     (0.16,0.27). Also for the best-fitting point,     and the age of the Universe is 13.2 Gyr.  相似文献   

15.
The real-space optical-depth distribution along the line of sight to the QSO Q1422+231 is recovered from two HIRES spectra using a modified version of the inversion method proposed by Nusser & Haehnelt. The first two moments of the truncated optical-depth distribution are used to constrain the density-fluctuation amplitude of the intergalactic medium (IGM) assuming that the IGM is photoionized by a metagalactic UV background and obeys a temperaturedensity relation. The fluctuation amplitude and the power-law index of the relation between gas and neutral hydrogen (H  i ) density are degenerate. The rms of the IGM density at z 3.25 estimated from the first spectrum is with 1.56< <2 for plausible reionization histories. This corresponds to 0.9 2.1 with ( =1.7)=1.44±0.3. The values obtained from the second spectrum are higher by 20 per cent. If the IGM density traces the dark matter (DM) as suggested by numerical simulations we have measured the fluctuation amplitude of the DM density at an effective Jeans scale of a few 100 kpc. For cold dark matter (CDM)-like power spectra the amplitude of dark matter fluctuations on these small scales depends on the cosmological density parameter . For power spectra normalized to reproduce the space density of present-day clusters and with a slope parameter of =0.21 consistent with the observed galaxy power spectrum, the inferred can be expressed as: =0.61( /1.7)1.3( x J/0.62)0.6 for a flat universe, and =0.91( /1.7)1.3( x J/0.62)0.7 for a =0 universe. x J is the effective Jeans scale in (comoving) h 1 Mpc. Based on a suite of detailed mock spectra the 1 error is 25 per cent. The estimates increase with increasing . For the second spectrum we obtain 15 per cent lower values.  相似文献   

16.
We investigate the effects of non-Gaussianity in the primordial density field on the reionization history. We rely on a semi-analytic method to describe the processes acting on the intergalactic medium (IGM), relating the distribution of the ionizing sources to that of dark matter haloes. Extending previous work in the literature, we consider models in which the primordial non-Gaussianity is measured by the dimensionless non-linearity parameter f NL, using the constraints recently obtained from cosmic microwave background data. We predict the ionized fraction and the optical depth at different cosmological epochs assuming two different kinds of non-Gaussianity characterized by a scale-independent and a scale-dependent f NL and comparing the results to those for the standard Gaussian scenario. We find that a positive f NL enhances the formation of high-mass haloes at early epochs when reionization begins, and, as a consequence, the IGM ionized fraction can grow by a factor of up to 5 with respect to the corresponding Gaussian model. The increase of the filling factor has a small impact on the reionization optical depth and is of the order of ∼10 per cent if a scale-dependent non-Gaussianity is assumed. Our predictions for non-Gaussian models are in agreement with the latest Wilkinson Microwave Anisotropy Probe results within the error bars, but a higher precision is required to constrain the scale dependence of non-Gaussianity.  相似文献   

17.
18.
We present the luminosity function of 90-μm-selected galaxies from the European Large Area ISO Survey (ELAIS), extending to z =0.3. Their luminosities are in the range 10965−2 L /L<1012, i.e. non-ultraluminous. From our sample of 37 reliably detected galaxies in the ELAIS S1 region from the Efstathiou et al. S 90100 mJy data base, we have found optical, 15-μm or 1.4-GHz identifications for 24 (65 per cent). We have obtained 2dF and UK Schmidt FLAIR spectroscopy of 89 per cent of identifications to rigid multivariate flux limits. We construct a luminosity function assuming that (i) our spectroscopic subset is an unbiased sparse sample, and (ii) there are no galaxies that would not be represented in our spectroscopic sample at any redshift. We argue that we can be confident of both assumptions. We find that the luminosity function is well described by the local 100-μm luminosity function of Rowan-Robinson, Helou & Walker. Assuming this local normalization, we derive luminosity evolution of (1+ z )2.45±0.85 (95 per cent confidence). We argue that star formation dominates the bolometric luminosities of these galaxies, and we derive comoving star formation rates in broad agreement with the Flores et al. and Rowan-Robinson et al. mid-infrared-based estimates.  相似文献   

19.
We compute the specific angular momentum distributions for a sample of low-mass disc galaxies observed by Swaters. We compare these distributions to those of dark matter haloes obtained by Bullock et al. from high-resolution N -body simulations of structure formation in a ΛCDM universe. We find that although the disc mass fractions are significantly smaller than the universal baryon fraction, the total specific angular momenta of the discs are in good agreement with those of dark matter haloes. This suggests that discs form out of only a small fraction of the available baryons, but yet manage to draw most of the available angular momentum. In addition we find that the angular momentum distributions of discs are clearly distinct from those of the dark matter; discs lack predominantly both low and high specific angular momenta. Understanding these findings in terms of a coherent picture for disc formation is challenging. Cooling, feedback and stripping, which are the main mechanisms to explain the small disc mass fractions found, seem unable to simultaneously explain the angular momentum distributions of the discs. In fact, it seems that the baryons that make up the discs must have been born out of angular momentum distributions that are clearly distinct from those of ΛCDM haloes. However, the dark and baryonic mass components experience the same tidal forces, and it is therefore expected that they should have similar angular momentum distributions. Therefore, understanding the angular momentum content of disc galaxies remains an important challenge for our picture of galaxy formation.  相似文献   

20.
The declining light curve of the optical afterglow of gamma-ray burst (GRB) GRB000301C showed rapid variability with one particularly bright feature at about t − t 0=3.8 d. This event was interpreted as gravitational microlensing by Garnavich, Loeb & Stanek and subsequently used to derive constraints on the structure of the GRB optical afterglow. In this paper, we use these structural parameters to calculate the probability of such a microlensing event in a realistic scenario, where all compact objects in the universe are associated with observable galaxies. For GRB000301C at a redshift of z =2.04, the a posteriori probability for a microlensing event with an amplitude of Δ m 0.95 mag (as observed) is 0.7 per cent (2.7 per cent) for the most plausible scenario of a flat Λ-dominated Friedmann–Robertson–Walker (FRW) universe with Ωm=0.3 and a fraction f ∗=0.2 (1.0) of dark matter in the form of compact objects. If we lower the magnification threshold to Δ m 0.10 mag, the probabilities for microlensing events of GRB afterglows increase to 17 per cent (57 per cent). We emphasize that this low probability for a microlensing signature of almost 1 mag does not exclude that the observed event in the afterglow light curve of GRB000301C was caused by microlensing, especially in light of the fact that a galaxy was found within 2 arcsec from the GRB. In that case, however, a more robust upper limit on the a posteriori probability of ≈5 per cent is found. It does show, however, that it will not be easy to create a large sample of strong GRB afterglow microlensing events for statistical studies of their physical conditions on microarcsec scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号