首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 79 AD eruption of Vesuvius included 8 eruption units (EU1–8) and several complex transitions in eruptive style. This study focuses on two important transitions: (1) the abrupt change from white to gray pumice during the Plinian phase of the eruption (EU2 to EU3) and (2) the shift from sustained Plinian activity to the onset of caldera collapse (EU3 to EU4). Quantification of the textural features within individual pumice clasts reveals important changes in both the vesicles and groundmass crystals across each transition boundary. Clasts from the white Plinian fall deposit (EU2) present a simple story of decompression-driven crystallization followed by continuous bubble nucleation, growth and coalescence in the eruptive conduit. In contrast, pumices from the overlying gray Plinian fall deposit (EU3) are heterogeneous and show a wide range in both bubble and crystal textures. Extensive bubble growth, coalescence, and the onset of bubble collapse in pumices at the base of EU3 suggest that the early EU3 magma experienced protracted vesiculation that began during eruption of the EU2 phase and was modified by the physical effects of syn-eruptive mingling-mixing. Pumice clasts from higher in EU3 show higher bubble and crystal number densities and less evidence of bubble collapse, textural features that are interpreted to reflect more thorough mixing of two magmas by this stage of the eruption, with consequent increases in both vesiculation and crystallization. Pumice clasts from a short-lived, high column at the onset of caldera collapse (EU4) continue the trend of increasing crystallization (enhanced by mixing) but, unexpectedly, the melt in these clasts is more vesicular than in EU3 and, in the extreme, can be classified as reticulite. We suggest that the high melt vesicularity of EU4 reflects strong decompression following the partial collapse of the magma chamber.Editorial responsibility: D.B. Dingwell  相似文献   

2.
Seismic stations, with automatic P-picking and satellite retransmission were set up on Mount Etna following the eruption started on March 1983. Positions of the stations were chosen in order to complement the permanent telemetered network of Catania University.Comparison between locations obtained by both networks were made for earthquakes recorded by at least 5 ARGOS DCP (Data Collection Platform) stations. We observed a satisfactory agreement for events inside both networks.By merging data of both networks, it has been possible to locate more than 50 earthquakes for which separate computation was not possible due to the low number of arrivals.On 3rd-4th June a swarm of deep seismic events was observed. Hypocenters of these earthquakes are clearly located in a NNW-SSE-trending vertical zone of 5 km width at a depth of 7–36 km.Changes in the distribution of shallow seismic activity, before and after this swarm, have been observed.  相似文献   

3.
During the early part of a seismic swarm preceding eruption and caldera formation at Miyakejima Volcano, discoloured sea surfaces were observed 1.5 km off the western coast of Miyakejima on 27 June 2000. A later survey of the area using a multi-beam side scan sonar and a remotely operated small submarine revealed four craters of 20–30 m diameter aligned east-west in a 100×10–30 m area on the seafloor, with hot water at 140°C being released from one of the centres. Each crater consists of submarine spatter overlain in part by scoria lapilli. Dredged spatter from the craters was fresh, and there was no evidence of activity of marine organisms on the spatter surface, indicating that the discoloured sea surface resulted from magmatic eruption on the seafloor. This eruption occurred when a westward-propagating seismic swarm, initiated beneath Miyakejimas summit, passed through the area. Finding new magma on the seafloor demonstrates that this seismic swarm was associated with intruding magma, moving outward from beneath Miyakejima. Submarine spatter shows flattened shapes with a brittle crust formed by cooling in water, and its composition is aphyric andesite of 54 wt% SiO2. The spatter is similar in whole rock and mineral composition to spatter erupted in 1983. However, the wide range of Cl in melt inclusions in plagioclase of the 27 June submarine spatter shows that it is not simply a remnant of the 1983 magma, which has only high Cl melt inclusions in plagioclase. The mixed character of melt inclusions suggests involvement of a magma with low Cl melt inclusions. The magma erupted explosively on 18 August from Miyakejimas summit, considered as the second juvenile magma in this eruption, contains low Cl melt inclusions in plagioclase. Based on these observations and the eruption sequence, we present the following model: (1) A shallow magma chamber was filled with a remnant of 1983 magma that had evolved to a composition of 54–55 wt% SiO2. (2) Injection of the 18 August magma into this chamber generated a mixed magma having a wide range of Cl in melt inclusions contained plagioclase. The magma mixing might have occurred shortly before the submarine eruption and could have been a trigger for the initiation of the removal of magma from the chamber as an extensive dyke, which eventually led to caldera subsidence.Editorial responsibility: S Nakada, T Druitt  相似文献   

4.
In January 1989 we observed submarine eruptions on the summit of Macdonald volcano during a French-German diving programme with the IFREMER submersible Cyana. Gas-streaming of large amounts of CH4, CO2 and SO2 from summit vents, inferred from water column anomalies and observed by submersible, was accompanied on the sea surface by steam bursts, turbulence, red-glowing gases, and black bubbles comprising volcanic ash, sulphur and sulphides. Chloride depletion of water sampled on the floor of an actively degassing summit crater suggests either boiling and phase separation or additions of magmatic water vapour. Submersible observations, in-situ sampling and shipboard geophysical and hydrographic measurements show that the hydrothermal system of this hotspot volcano is distinguished by the influence of magmatic gases released from its shallow summit.  相似文献   

5.
Models are presented for the cooling of tephra during fallout from explosive eruption columns. All tephra particles are assumed to be spherical and heat loss is considered to occur by radiation and forced convection. Grainsize is the most important control on the cooling. Clasts larger than 25 cm diameter suffer little heat loss, whereas clasts smaller than 1.6 cm diameter are completely cold on deposition. Large clasts form a well-developed chilled margin during fallout and a breadcrust texture can result if vesiculation of the hot interior occurs. The results of these calculations are combined with a model for fallout from the margins of an eruption column to predict the proximal temperature variation with distance from the vent in the deposits. Temperatures high enough for dense welding in proximal fallout deposits can extend from a few hundred metres to nearly 2 km. Extent of the welded facies increases with column height, mean grainsize and magmatic temperature. Welded fallout deposits are only predicted to occur for high temperature silicic and intermediate magmas with temperatures >850°C. These predictions are in good agreement with observations, in that welded fallout deposits have only been documented in high temperature dacites, rhyolites and panellerites. A postulated fallout origin for welded rocks that can be traced significantly further than 2 km from vent must be suspect.  相似文献   

6.
7.
8.
9.
The 2000 AD eruption of Miyakejima was characterized by a series of phreatomagmatic eruptions from the subsiding caldera. Six major eruptive events occurred, and they can be divided into the first and second periods separated by a 25-day hiatus. The phreatomagmatic eruptions produced a total of ~ 2 × 1010 kg of tephra, which mainly comprised fine-grained volcanic ash. The tephra layers could be divided into six fall units corresponding to the six major eruptive events.  相似文献   

10.
The 1986 eruption of B fissure at Izu-Oshima Volcano, Japan, produced, among other products, one andesite and two basaltic andesite lava flows. Locally the three flows resemble vent-effused holocrystalline blocky or aa lava; however, remnant clast outlines can be identified at most localities, indicating that the flows were spatter fed or clastogenic. The basaltic andesite flows are interpreted to have formed by two main processes: (a) reconstitution of fountain-generated spatter around vent areas by syn-depositional agglutination and coalescence, followed by extensional non-particulate flow, and (b) syn-eruptive collapse of a rapidly built spatter and scoria cone by rotational slip and extensional sliding. These processes produced two morphologically distinct lobes in both flows by: (a) earlier non-particulate flow of agglutinate and coalesced spatter, which formed a thin lobe of rubbly aa lava (ca. 5 m thick) with characteristic open extension cracks revealing a homogeneous, holocrystalline interior, and (b) later scoria-cone collapse, which created a larger lobe of irregular thickness (<20 m) made of large detached blocks of scoria cone interpreted to have been rafted along on a flow of coalesced spatter. The source regions of these lava flows are characterized by horseshoe-shaped scarps (<30 m high), with meso-blocks (ca. 30 m in diameter) of bedded scoria at the base. One lava flow has a secondary lateral collapse zone with lower (ca. 7 m) scarps. Backward-tilted meso-blocks are interpreted to be the product of rotational slip, and forward-tilted blocks the result of simple toppling. Squeeze-ups of coalesced spatter along the leading edge of the meso-blocks indicate that coalescence occurred in the basal part of the scoria cone. This low-viscosity, coalesced spatter acted as a lubricating layer along which basal failure of the scoria cone occurred. Rotational sliding gave way to extensional translational sliding as the slide mass spread out onto the present caldera floor. Squeeze-ups concentrated at the distal margin indicate that the extensional regime changed to one of compression, probably as a result of cooling of the flow front. Sliding material piled up behind the slowing flow front, and coalesced spatter was squeezed up from the interior of the flow through fractures and between rafted blocks. The andesite flow, although morphologically similar to the other two flows, has a slightly different chemical composition which corresponds to the earliest stage of the eruption. It is a much smaller lava flow emitted from the base of the scoria cone 2 days after the eruption had ceased. This lava is interpreted to have been formed by post-depositional coalescence of spatter under the influence of the in-situ cooling rate and load pressure of the deposit. Extrusion occurred through the lower part of the scoria cone, and subsequent non-particulate flow of coalesced material produced a blocky and aa lava flow. The mechanisms of formation of the lava flows described may be more common during explosive eruptions of mafic magma than previously envisaged. Received: 30 May 1997 / Accepted: 19 May 1998  相似文献   

11.
The Onano explosive eruption of the Latera Volcanic Complex (Vulsini Volcanoes, Quaternary potassic Roman Comagmatic Region, Italy) provides an interesting example of multiple changes of eruptive style that were concomitant with a late phase of collapse of the polygenetic Latera Caldera. This paper reports a reconstruction of the event based on field analysis, laboratory studies of grain size and density of juvenile clasts, and re-interpretation of available subsurface geology data. The Onano eruption took place in a structurally weak area, corresponding to a carbonate substrate high bordered by the pre-existing Latera caldera and Bolsena volcano-tectonic depression, which controlled the ascent and eruption of a shoshonitic-phonotephritic magma through intersecting rim fault systems. Temporal changes of magma vesiculation, fragmentation and discharge rate, and consequent eruptive dynamics, were strongly controlled by pressure evolution in the magma chamber and changing vent geometry. Initially, pumice-rich pyroclastic flows were emplaced, followed by spatter- and lithic-rich flows and fallout from energetic fire-fountaining. The decline of magma pressure due to the partial evacuation of the magma chamber induced trapdoor collapse of the chamber roof, which involved part of the pre-existing caldera and external volcano slopes and eventually led to the present-day caldera. The widening of the vent system and the emplacement of the main pyroclastic flow and associated co-ignimbrite lag breccia marked the eruption climax. A sudden drop of the confining pressure, which is attributed to a pseudo-rigid behaviour of the magma chamber wall rocks during a phase of rapid magma drainage, led to extensive magma vesiculation and fragmentation. The disruption of the magma chamber roof and waning magma pressure in the late eruption stage favoured the explosive interaction of residual magma with groundwater from the confined carbonate aquifer. Pulsating hydrostatic and magma pressures produced alternating hydromagmatic pyroclastic surges, strombolian fallout and spatter flows.  相似文献   

12.
When estimating the magnitude of explosive eruptions from their deposits, individuals make three sets of critical choices with respect to input data: the spacing of sampling sites, the selection of contour intervals to constrain the field measurements, and the hand contouring of thickness/isomass data, respectively. Volcanologists make subjective calls, as there are no accepted published protocols and few accounts of how these choices will impact estimates of eruption magnitude. Here, for the first time, we took a set of unpublished thickness measurements from the 1959 Kīlauea Iki pyroclastic fall deposit and asked 101 volcanologists worldwide to hand contour the data. First, there were surprisingly consistent volume estimates across maps with three different sampling densities. Second, the variability in volume calculations imparted by individuals’ choices of contours is also surprisingly low and lies between s?=?5 and 8 %. Third, volume estimation is insensitive to the extent to which different individuals “smooth” the raw data in constructing contour lines. Finally, large uncertainty is associated with the construction of the thinnest isopachs, which is likely to underestimate the actual trend of deposit thinning. The net result is that researchers can have considerable confidence in using volume or dispersal data from multiple authors and different deposits for comparative studies. These insights should help volcanologists around the world to optimize design and execution of field-based studies to characterize accurately the volume of pyroclastic deposits.  相似文献   

13.
A core drilled within the northern part of the city of Napoli has offered the unique opportunity to observe in one single sequence the superposition of the four pyroclastic flow units emplaced during the Campanian Ignimbrite (CI) eruption. Such a stratigraphic succession has never been encountered before in natural or in man made exposures. Therefore the CI sequence was reconstructed only on the basis of stratigraphic correlations and compositional data (in literature). The occurrence of four superposed CI flows, together with all the data available (in literature) allowed us to better constrain the chemical stratigraphy of the deposit and the compositional structure of the CI magma chamber. The CI magma chamber includes two cogenetic magma layers, separated by a compositional gap. The upper magma layer was contaminated by interaction with radiogenic fluids. The two magma layers were extruded either individually or simultaneously during the course of the eruption. In the latter case they produced a hybrid magma. But no evidence of input of new geochemically and isotopically distinct magma batches just prior or during the eruption has been found. Comparison with the exposed CI deposits has permitted reconstruction of variable eruption phases and related magma withdrawal and caldera collapse episodes. The eruption was likely to have began with phreatomagmatic explosions followed by the formation of a sustained plinian eruption column fed by the simultaneous extraction from both magma layers. Towards the end of this phase the upward migration of the fragmentation surface and the decrease in magma eruption rate and/or activation of fractures formed an unstable pulsating column that was fed only by the most-evolved magma layer. This plinian phase was followed by the collapse of the eruption column and the beginning of caldera formation. At this stage expanded pyroclastic flows fed by the upper magma layer in the chamber generated. During the following major caldera collapse episode, the maximum mass discharge rate was reached and both magma layers were tapped, generating expanded pyroclastic flows. Towards the end of the eruption, only the deeper and less differentiated magma layer was tapped producing more concentrated pyroclastic flows that traveled short distances.  相似文献   

14.
15.
Akira  Imai  Nobuo  Geshi  Taketo  Shimano  Setsuya  Nakada 《Island Arc》2007,16(1):83-92
Abstract   The variation of sulphur isotopic composition during the 2000 eruption of the Miyakejima Volcano was examined in order to monitor the temporal change of the volcanic activity. The δ34S values of water-soluble sulphate leached from volcanic ash effused during intermittent eruptions from July to September 2005 range from +5 to +11‰ with a fluctuation of ca 3‰ within a single eruption. The δ34S value of sulphuric acid mist collected with 'Cu-metal trap' placed on the flank of the volcano from December 2000 to January 2001 is +6.2‰. These sulphur isotopic compositions of sulphate, which were isotopically equilibrated in the subvolcanic hydrothermal system, indicate that the temperature of the hydrothermal system beneath the caldera increased after the period of intermittent phreatic and phreatomagmatic eruptions. Then, the δ34S value of sulphuric acid trapped from January to March 2001 was +9.0‰ and the δ34S value of water-soluble sulphate on volcanic ash emitted with minor eruption in May 2001 was +11.0‰, suggesting a decrease in temperature of the subvolcanic hydrothermal system.  相似文献   

16.
Six years after the 1991 Mt. Pinatubo eruption, deep erosion incisions into the pyroclastic deposits accumulated around the volcano enabled us to investigate the stratigraphy of the climactic deposits both in valley bottoms and on contiguous ridges. Stratigraphic relationships between fall, flow, and surge deposits in the Marella drainage system indicate that during the climactic eruption a progressive shift occurred from an early convective regime, to a transitional regime feeding both the plinian convective column and mostly dilute density currents, to a fully collapsing regime producing mostly dense pyroclastic flows. Syn-plinian dilute density currents (surges) propagated up to ~10 km from the crater, both along valley bottoms and on contiguous ridges of the Marella Valley, whereas post-plinian pyroclastic flows had greater runout (~13 km), were confined to valleys and were not associated with significant surges. Stratigraphic study and grain-size analyses allow the identification of three types of intra-plinian deposits: (a) lower and often coarse-grained surge deposits, emplaced during the accumulation of the coarsest portion of the fallout bed at time intervals of ~16-24 min; (b) upper fine-grained surge deposits, interstratified with the fine-grained portion of the fall bed and emplaced at shorter time intervals of ~3-13 min; and (c) small-volume, channel-confined, massive pumiceous flow deposits interbedded with the upper surges in the upper fine-grained fall bed. Maximum clast size isopleths of 1.6 and 0.8 cm for lithics (ML) and 2.0 and 4.0 cm for pumices (MP) show almost symmetrical distribution around the vent, indicating that the passing of the typhoon Yunya during the climactic eruption had little effect on trajectories of high-Reynold-number clasts. Significant distortion was, however, observed for the 3.2-cm ML and 6.0-cm MP proximal isopleths, whose patterns were probably influenced by the interaction of the clasts falling from column margins with the uprising co-ignimbrite ash plumes. Application of the Carey and Sparks (1986) model to the undisturbed isopleths generated by the umbrella cloud yields a maximum column height of ~42 km, in good agreement with satellite measurements. Systematic stratigraphic and vertical grain-size studies of the plinian fall deposit in the Marella Valley, combined with satellite data and eyewitness accounts, reveal that the carrying capacity of the convective column and related fallout activity peaked in the early phase of the eruption, beginning slightly before 13:41 and gradually declined until its cessation 3 h later. Most of the pumiceous pyroclastic flow deposits were emplaced after the end of the fallout activity at ~16:30 but before the summit caldera collapse at approximately 19:11. Only a small volume of pumiceous flow deposits accumulated after the final caldera collapse. In contrast to the previous reconstruction of Holasek et al. (1996), which interpreted the progressive lowering of the column, documented by satellite data, as due to a decreasing mass eruption rate, we suggest that a progressive shift from a plinian column to a large co-ignimbrite column could also account for such a variation.  相似文献   

17.
During the 1971–1972 eruption of Soufrière volcano on St. Vincent Island, a lava mass was extruded subaqueously in the crater lake. An investigation of the chemistry of the lake indicates that over 50,000 tons of dissolved solids were taken into solution during the eruption, in addition to 9000 tons of iron precipitated as ferric oxide in syngenetic metalliferous sediments on the crater floor. Leaching of hot disintegrating lava and volcanic glass is the principal source of cations dissolved in the lake (Na, Ca, Mg, Si and K), whereas chlorine and sulfur were introduced during injection of acid volcanic gases from the submerged lava mass. Concentrations of the common cations in the lake are not affected by mineral solubility, except in the case of Fe3+, but rather by the rate of leaching, evaporation, and water-rock reactions. Variations in Cl/Na, total Cl and acidity have aided in identification of distinct fumarolic phases during the eruption, which may correlate with observed increase in frequency of minor volcanic tremors in the crater. Accumulation of ferric oxide in sediments on the crater floor is thought to be due to leaching of ferrous iron at high temperature from the lava mass, followed by oxidation and precipitation of hematite in the cooler lake.  相似文献   

18.
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 μm vesicle diameter and cumulative number densities ranging from 107–109 cm–3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h.  相似文献   

19.
Gigantic eruption of the volcano bezymianny   总被引:1,自引:0,他引:1  
  相似文献   

20.
Previous research indicates that Yakushima Island, southwestern Japan, may have been struck by a huge tsunami before or soon after the arrival of the Koya pyroclastic flow during the 7.3 ka caldera‐forming Kikai eruption, but this has not yet been confirmed. This paper describes sedimentological and chronostratigraphic evidence showing that Unit TG, one of three gravel beds exposed on the Koseda coast of northeast Yakushima Island and investigated here, is a tsunami deposit. Unit TG is a poorly sorted, 30 cm thick gravel bed overlying a wave‐cut bench and underlying a Koya pyroclastic flow deposit. Sparse wood fragments in Unit TG were dated at 7 416–7 167 cal year BP. The constituent gravel clasts of Unit TG are similar in composition to those of modern beach and river deposits along the Koseda coast. Unit TG also contains pumice clasts whose chemistry is identical to that of pumice derived from the 7.3 ka eruption at Kikai caldera. The long‐axis orientations and composition of gravel clasts in Unit TG suggest that they were transported by a landward‐travelling high‐particle‐concentration flow, which suggests that Unit TG was deposited by a tsunami run‐up flow during the 7.3 ka Kikai caldera eruption, just before the arrival of the major Koya pyroclastic flow at the Koseda coast. Whether the 7.3 ka tsunami was caused by a volcanic eruption or an earthquake remains unclear, but Unit TG demonstrates that a tsunami arrived immediately before emplacement of a Koya pyroclastic flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号