首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
赵志刚  王鹏  祁鹏  郭瑞 《地球科学》2016,41(3):546-554
东海盆地处于西太平洋俯冲带前缘,是发育在华南克拉通基底之上的,以晚白垩世-新生代沉积为主的新生代盆地.东海盆地性质是在活动大陆边缘减薄陆壳之上的,由于洋-陆俯冲消减所引起的张裂、拉伸作用而形成的弧后裂谷型盆地,是西太平洋众多“沟-弧-盆”体系的一部分.东海盆地陆架外缘隆起控制着东海盆地的演化过程,该地质单元形成于晚白垩世,是陆缘隆起和增生楔的复合体,中新世后由于菲律宾海板块的活动而解体为现今的钓鱼岛隆褶带和琉球隆起.结合对陆架外缘隆起的研究后认为,东海盆地晚白垩世以来的演化历程具有3大构造阶段,即:第一阶段,古新世-中始新世西部坳陷形成发展期;第二阶段,中始新世-渐新世东部坳陷形成发展期,其中,中晚始新世太平洋板块的转向是东、西部坳陷构造迁移的分界点;第三阶段,中新世-全新世,东海盆地进入到菲律宾板块影响时期,原先的构造格局开始分解.   相似文献   

2.
中、新生代太平洋陆缘带的构造格局和构造转换   总被引:9,自引:0,他引:9  
亚洲东部大陆边缘和北美西部大陆边缘同处于环太平洋构造带,但具有不同的构造属性。从晚白垩世到新生代,前者以构造扩张为背景,由此引起陆缘裂解,陆块漂移以及岛弧、边缘海的形成;后者以构造收缩为基础,导致陆缘增生、陆块拼贴和陆缘造山带的出现。然而,从晚侏罗世到早白垩世,亚洲东部是以构造封闭型的陆缘带为特点,北美西部则主要表现为开放型的陆缘带。构造扩张和构造收缩是环太平洋陆缘带构造环境的两种基本型式,它们在空间上呈有规律的对峙分布,在时间上成有节奏的交替转换。  相似文献   

3.
Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific system of the Canada Basin that finished its evolution in the Late Cretaceous and the North Atlantic system of the Makarov and Eurasia basins that came to take the place of the Paleopacific system. In contrast to traditional views, it has been suggested that asymmetry of the northern Norwegian-Greenland Basin is explained by two-stage development of this Atlantic segment with formation of primary and secondary spreading centers. The secondary spreading center of the Knipovich Ridge started to evolve approximately at the Oligocene-Miocene transition. This process resulted in the breaking off of the Hovgard continental block from the Barents Sea margin. Thus, the breakdown of Wegener’s Pangea and its Laurasian fragments with the formation of young spreading basins was a staged process that developed nearly from opposite sides. Before the Late Cretaceous (the first stage), the Pangea broke down from the side of Paleopacific to form the Canada Basin, an element of the Amerasia Basin (first phase of ocean formation). Since the Late Cretaceous, destructive pulses came from the side of the North Atlantic and resulted in the separation of Greenland from North America and the development of the Labrador-Baffin-Makarov spreading system (second phase of ocean formation). The Cenozoic was marked by the development of the second spreading branch and the formation of the Norwegian-Greenland and Eurasia oceanic basins (third phase of ocean formation). Spreading centers of this branch are functioning currently but at an extremely low rate.  相似文献   

4.
羌塘盆地是我国陆域上面积最大的海相盆地,前人对该盆地构造演化过程及其油气远景存在截然不同的观点。以最近完成的1︰ 5万地质调查为基础,本文再次讨论了南羌塘盆地构造演化过程及其油气远景。羌塘盆地中央近东西向的羌中隆起山脉将羌塘盆地分为南、北两部分。最近的研究表明,在寒武-奥陶纪之交,南、北羌塘块体被古大洋分隔开。北羌塘盆地南缘形成的晚三叠-早侏罗世的那底岗日组火山岩,其上部为流纹岩,表明晚三叠世南羌塘块体北向俯冲于北羌塘块体之下,在南羌塘块体北部形成了富含有机质的前陆盆地。南羌塘盆地南缘发育一套代表成熟海盆的侏罗纪复理石建造,表明南羌塘南部地区在早侏罗世具有被动大陆边缘的特点,随着南部班公-怒江洋的扩张,在南、北羌塘块体内分别沉积了侏罗纪-早白垩世的浅海相地层,以富含有机质礁灰岩为特征。盆地内部孕育了巨厚的晚白垩-古新世陆源碎屑岩,不整合覆盖于早期海相沉积岩之上,表明在该时期南羌塘块体逐渐从被动大陆边缘海相盆地转变为陆相盆地。新生代时期,印度与亚洲大陆持续汇聚,南羌塘盆地南向逆冲于拉萨块体之上,盆地内发育了多条大型逆冲断裂带,再次将盆地内部的上三叠统、侏罗系、白垩系富含有机质的海相礁灰岩深埋,这有利于油气资源的生成与保存。横跨南羌塘盆地的构造剖面显示盆地内部主要大型逆冲断裂带之间,构造变形较弱,发育宽缓的向斜构造,向斜核部发育新生代陆相地层,推测该新生代陆相地层之下保存有深埋的富含有机质的海相地层,因此,南羌塘盆地逆冲断裂带下盘和宽缓向斜核部区域可能具有良好的油气资源前景。  相似文献   

5.
南海北部珠江口—琼东南盆地白垩系—下渐新统记录了华南大陆边缘从主动陆缘向被动陆缘的转换过程。基于盆地构造-地层、单井相、地震相等特征的综合分析,结合南海中南部的沉积环境和区域构造演化,探讨南海北部白垩纪—渐新世早期的沉积环境演变及构造控制背景。研究发现: (1)南海北部白垩系广泛分布,古新统分布极为有限; 始新世早-中期,琼东南盆地只在部分凹陷深部发育了小规模的滨浅湖相和扇三角洲相沉积,珠江口盆地白云凹陷以大规模发育的湖泊相为特征; 始新世晚期—渐新世早期,琼东南盆地和珠江口盆地白云凹陷都受到海侵作用的影响,以海岸平原相和滨浅海相为主。 (2)构造演变包括5期:包括白垩纪安第斯型大陆边缘的“弧—盆”体系发育期,古新世区域隆升剥蚀山间盆地发育期,始新世早-中期裂陷发育,始新世晚期—渐新世早期陆缘破裂期,渐新世晚期东部海盆稳定扩张期。最后,探讨了南海盆地中生代末/新生代初的动力学转换过程及特征。  相似文献   

6.
以最新的地质 地球物理资料和北黄海盆地构造几何学特征为基础,采用盆地反演模拟与宏观分析相结合的方法,系统解析了北黄海盆地的构造运动学特征。研究表明,北黄海盆地在中、新生代时期经历了水平伸展、水平挤压、相对平移(走滑)以及垂直差异升降等几种运动型式,其中,水平伸展运动和垂直差异升降运动是北黄海盆地构造运动及形成演化的主体。水平伸展运动可以划分为J3-K1、E2和E3三个主要“伸展事件”,并控制着盆地的成盆演化,其南北向伸展强度均东强西弱,东西向最大伸展强度自中生代到新生代由东向西迁移。水平挤压运动主要有晚白垩世和渐新世末-中新世初期两期。相对平移(走滑)运动伴随水平伸展运动和水平挤压运动发生,使多数NNE向、NW向断裂具有相对压扭或张扭平移(走滑)性质,其中尤以NNE向断裂更为明显。垂直差异升降运动具有“幕式”渐进之特点,晚侏罗世、早白垩世、始新世、渐新世以及中新世中晚期以来为沉降期,其中尤以始新世的沉降速率最大,晚白垩世、古新世、中新世早期为抬升剥蚀期;盆地的中、新生代沉降作用具有明显的自东向西迁移规律:东部坳陷以中生代沉降作用最为显著,中部坳陷主沉降期为始新世,而西部坳陷的快速沉降主要发生在始新世,并一直持续到渐新世。  相似文献   

7.
Formation of the passive continental margin of the Laptev Sea (Laptev Plate), which was part of the Siberian Platform till the Late Cretaceous, was related to the Late Mesozoic–Cenozoic rifting of the Arctic geodepression. The regime of the passive continental margin still continues. The maximum thickness of the deposits of this age seems to exceed 6 km in the northeastern part of the shelf. The hydrocarbon resources of the Late Precambrian–Cenozoic deposits forming the Laptev Plate cover are evaluated. Based on the concept of the similar evolution of the Laptev Plate and Vilyui syneclise, the geochemical characteristics of dispersed organic matter of the coeval deposits of the Vilyui syneclise are used.  相似文献   

8.
西藏羌塘盆地东部中生代构造古地理特征及演化   总被引:1,自引:0,他引:1       下载免费PDF全文
贾建称 《古地理学报》2008,10(6):613-625
在大量的区域地质调研和野外露头观测资料基础上,详细研究了西藏羌塘盆地东部中生代不同构造单元的沉积充填序列、地层发育特征与接触关系、构造界面性质、沉积体系配置和沉积相分布等,阐述了盆地沉积与周缘构造带演化之间的耦合关系,重建了研究区中生代不同时期的构造古地理面貌。研究表明,羌塘盆地是一个大型叠复式盆地,盆地东部中生代有海相、海陆过渡相和陆相3个沉积体系组、9个沉积体系和多个沉积(亚)相。盆地内部包括南羌塘坳陷、北羌塘坳陷、唐古拉山隆起带,以及不同时期的次级凸起与断凹等构造单元。其中,多玛断凹是以前石炭纪构造片岩为基底的侏罗纪-早白垩世早期被动大陆边缘陆表海盆地,早白垩世晚期转换为前陆盆地,晚白垩世以来与索县-左贡断凹联合为一体,在陆内造山过程中经历了压陷型盆地充填演化阶段。索县-左贡断凹是在晚三叠世班公湖-怒江沟-弧-盆体系基础上发展起来的前陆盆地。北羌塘坳陷是以华力西期开心岭-杂多隆起带为基底,经过晚三叠世昌都前陆盆地沉积、早侏罗世断陷盆地火山-沉积作用之后,于中侏罗世与索县-左贡断凹联合为一体,形成北羌塘-昌都巨型坳陷型盆地。白垩纪北羌塘陆块和昌都陆块处于隆升剥蚀状态。  相似文献   

9.
The Northern Kamchatka and southern part of the Koryak Highland is considered to be an accretion-collision system in the Late Cretaceous and Cenozoic the development of which was caused by the subsequent accretion of various large terranes to the Asian continental margin. The Paleogene Goven Terrane accreted in the Miocene closes this system. Its boundary with the Olyutor Terrane is hidden under the Cenozoic sediments of the Il’pino-Pakhachino interarc trough. The destructive Khaily (March 8, 1991) and Olyutor (April 20, 2006) earthquakes are characterized by an aftershock area extended in the northeastern direction along the axial part of the Il’pino-Pakhachino trough. The aftershock area was intersected by a profile of the earthquake converted-wave method (ECWM) the interpretation of which reveals a correlation loss of the deep reflecting horizons under this area and three faults dipping to the southeast on seismograms.  相似文献   

10.
A new interpretation of the seismic profile series for the Taimyr Orogen and the Yenisei–Khatanga Basin is given in terms of their tectonics and geological history. The tectonics and tectonostratigraphy of the Yenisei–Khatanga and the Khatanga–Lena basins are considered. In the Late Vendian and Early Paleozoic, a passive continental margin and postrift shelf basin existed in Taimyr and the Yenisei–Khatanga Basin. From the Early Carboniferous to the Mid-Permian, the North and Central Taimyr zones were involved in orogeny. The Late Paleozoic foredeep was formed in the contemporary South Taimyr Zone. In the Middle to Late Triassic, a new orogeny took place in the large territory of Taimyr and the Noril’sk district of the Siberian Platform. A synorogenic foredeep has been recognized for the first time close to the Yenisei–Khatanga Basin. In the Jurassic and Early Cretaceous, this basin was subsided under transpressional conditions. Thereby, anticlinal swells were formed from the Callovian to the Aptian. Their growth continued in the Cenozoic. The Taimyr Orogen underwent tectonic reactivation and apparently right-lateral transpression from Carboniferous to Cenozoic.  相似文献   

11.
The East China Sea basins, located in the West Pacific Continental Margin (WPCM) since the late Mesozoic, mainly include the East China Sea Shelf Basin (ECSSB) and the Okinawa Trough (OT). The WPCM and its adjacent seas can be tectonically divided into five units from west to east, including the Min‐Zhe Uplift, ECSSB, the Taiwan–Sinzi Belt, OT, and the Ryukyu Island Arc, which record regional tectonic evolution and geodynamics. Among those tectonic units, the ECSSB and the OT are important composite sedimentary pull‐apart basins, which experienced two stages of strike‐slip pull‐apart processes. In seismic profiles, the ECSSB and the OT show a double‐layer architecture with an upper half‐graben overlapping on a lower graben. In planar view, the ECSSB and the OT are characterized by faulted blocks from south to north in the early Cenozoic and by a zonation from west to east in the late Cenozoic. The faulted blocks with planar zonation and two‐layer vertical architecture entirely jumped eastward from the Min‐Zhe Uplift to the OT during the late Cenozoic. In addition, the whole palaeogeomorphology of the ECSSB changed notably, from pre‐Cenozoic highland or mountain into a Late Eocene continental margin with east‐tilting topography caused by the eastward tectonic jumping. The OT opened to develop into a back‐arc basin until the Miocene. Synthetic surface geological studies in the China mainland reveal that the Mesozoic tectonic setting of the WPCM is an Andean‐type continental margin developing many sinistral strike‐slip faults and pull‐apart basins and the Cenozoic tectonic setting of the WPCM is a Japanese‐type continental margin developing dextral strike‐slip faults and pull‐apart basins. Thus, the WPCM underwent a transition from Andean‐type to Japanese‐type continental margins at about 80 Ma (Late Cretaceous) and a transition in topography from a Mesozoic highland to a Cenozoic lowland, and then to below sea‐level basins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
非洲地区盆地演化与油气分布   总被引:2,自引:0,他引:2  
非洲地区盆地整体勘探程度较低,待发现资源量大,是当前油气勘探开发的热点地区之一。非洲板块在显生宙主要经历了冈瓦纳大陆形成、整体运动和裂解3个构造演化阶段,形成多种不同类型的盆地。通过板块构造演化和原型盆地研究及石油地质综合分析,明确了不同类型盆地的构造特征与油气富集规律。北非克拉通边缘盆地形成于古生代早期,受海西运动影响,油气主要富集在挤压背景下形成的大型穹隆构造之中,以古生界含油气系统为主;北非边缘裂谷盆地海西运动之后普遍经历了裂谷和沉降,裂谷期各盆地沉降幅度和沉降中心的差异导致了油气成藏模式和资源潜力的差异;东、西非被动陆缘盆地形成于中生代潘吉亚大陆的解体、大西洋和印度洋张裂的过程中,西非被动陆缘盆地普遍发育含盐地层,形成盐上和盐下两套含油气系统,东非被动陆缘盆地结构差异较大,油气分布主要受盆地结构控制;中西非裂谷系是经历早白垩世、晚白垩世和古近纪3期裂谷作用而形成的陆内裂谷盆地,受晚白垩世非洲板块与欧亚板块碰撞的影响,近东西向展布盆地抬升剧烈,油气主要富集在下白垩统,北西南东向盆地受影响较弱,油气主要富集在上白垩统和古近系之中;新生代东非裂谷系盆地和红海盆地形成时间相对较晚,以新生界含油气系统为主,新生代三角洲盆地中油气分布主要受三角洲砂(扇)体展布和盆地结构所控制。  相似文献   

13.
The East Asian geological setting has a long duration related to the superconvergence of the Paleo‐Asian, Tethyan and Paleo‐Pacific tectonic domains. The Triassic Indosinian Movement contributed to an unified passive continental margin in East Asia. The later ophiolites and I‐type granites associated with subduction of the Paleo‐Pacific Plate in the Late Triassic, suggest a transition from passive to active continental margins. With the presence of the ongoing westward migration of the Paleo‐Pacific Subduction Zone, the sinistral transpressional stress field could play an important role in the intraplate deformation in East Asia during the Late Triassic to Middle Jurassic, being characterized by the transition from the E‐W‐trending structural system controlled by the Tethys and Paleo‐Asian oceans to the NE‐trending structural system caused by the Paleo‐Pacific Ocean subduction. The continuously westward migration of the subduction zones resulted in the transpressional stress field in East Asia marked by the emergence of the Eastern North China Plateau and the formation of the Andean‐type active continental margin from late Late Jurassic to Early Cretaceous (160‐135 Ma), accompanied by the development of a small amount of adakites. In the Late Cretaceous (135‐90 Ma), due to the eastward retreat of the Paleo‐Pacific Subduction Zone, the regional stress field was replaced from sinistral transpression to transtension. Since a large amount of late‐stage adakites and metamorphic core complexes developed, the Andean‐type active continental margin was destroyed and the Eastern North China Plateau started to collapse. In the Late Cretaceous, the extension in East Asia gradually decreased the eastward retreat of the Paleo‐Pacific subduction zones. Futhermore, a significant topographic inversion had taken place during the Cenozoic that resulted from a rapid uplift of the Tibet Plateau resulting from the India‐Eurasian collision and the formation of the Bohai Bay Basin and other basins in the East Asian continental margin. The inversion caused a remarkable eastward migration of deformation, basin formation and magmatism. Meanwhile, the basins that mainly developed in the Paleogene resulted in a three‐step topography which typically appears to drop eastward in altitude. In the Neogene, the basins underwent a rapid subsidence in some depressions after basin‐controlled faulting, as well as the intracontinental extensional events in East Asia, and are likely to be a contribution to the uplift of the Tibetan Plateau.  相似文献   

14.
目前对珠江口盆地中生代以来的演化过程及其与沉积环境演变的响应关系尚缺乏系统性认识.基于珠江口盆地中-新生代岩浆活动、断陷结构样式及其改造、典型构造变形样式、沉积中心的转换等特征的对比分析,将盆地中-新生代的构造演化划分为4个阶段、7个期次:(1)中侏罗世-晚白垩世早期(~170~90 Ma)为古太平洋板块俯冲主控的陆缘岩浆弧-弧前盆地演化阶段;(2)晚白垩世-始新世中期(~90~43 Ma)为太平洋板块俯冲后撤背景下弧后周缘前陆/造山后塌陷-主动裂谷演化阶段;(3)始新世中期-中中新世(~43~10 Ma)为华南挤出-古南海俯冲拖曳主导的被动陆缘演化阶段;(4)晚中新世以来(~10~0 Ma)为菲律宾板块NWW向仰冲主导的挤压张扭演化阶段.~90 Ma、~43 Ma、~10 Ma分别实现了由安第斯型俯冲向西太平洋型俯冲、由主动裂谷向被动陆缘伸展、由被动陆缘伸展向挤压张扭的转换.在此过程中,伴随着古南海和南海的发育-消亡,新生代裂陷期沉积环境由东向西、由南向北逐渐海侵,裂后期由南向北阶段性差异沉降,由陆架浅水向陆坡深水转换,这使得珠一/三、珠二、珠四坳陷的石油地质条件具有显著的分带差异性...  相似文献   

15.
A dense grid of multichannel high-resolution seismic sections from the Bay of Kiel in the western Baltic Sea has been interpreted in order to reveal the Mesozoic and Cenozoic geological evolution of the northern part of the North German Basin. The overall geological evolution of the study area can be separated into four distinct periods. During the Triassic and the Early Jurassic, E–W extension and the deposition of clastic sediments initiated the movement of the underlying Zechstein evaporites. The deposition ceased during the Middle Jurassic, when the entire area was uplifted as a result of the Mid North Sea Doming. The uplift resulted in a pronounced erosion of Upper Triassic and Lower Jurassic strata. This event is marked by a clear angular unconformity on all the seismic sections. The region remained an area of non-deposition until the end of the Early Cretaceous, when the sedimentation resumed in the area. Throughout the Late Cretaceous the sedimentation took place under tectonic quiescence. Reactivated salt movement is observed at the Cretaceous Cenozoic transition as a result of the change from an extensional to compressional regional stress field. The vertical salt movement influenced the Cenozoic sedimentation and resulted in thin-skinned faulting.  相似文献   

16.
东亚及其大陆边缘新生代构造迁移与盆地演化   总被引:10,自引:1,他引:9  
构造迁移是盆地发展演化过程中十分普遍的地质现象,但西太平洋地区相关研究程度较低,本文基于近10年来对中国东部海域渤海湾盆地、南黄海盆地、东海陆架盆地和南海盆地等所开展的大量研究工作,并综合前人研究成果,对西太平洋地区中最具有代表性的中国东部及邻近海域的新生代构造迁移特征进行了系统讨论.西太平洋活动大陆边缘位于欧亚、太平洋和印度三大板块的交汇处,占据了全球板块汇聚中心的独特位置,并同时受到印度板块的挤入、太平洋板块的后退式俯冲、台湾造山带的楔入的联合作用,自新生代以来,形成了宽阔的自西向东后退式的沟弧盆体系.中国东部及邻区作为西太平活动大陆边缘的重要组成部分,在这个大地构造背景下,新生代的构造特征总体也表现出自西向东的迁移规律,具体表现在盆地的断裂活动性、沉积作用、断陷的萎缩与消亡等自西向东变新逐步演化,新生代的生、储、盖、圈、运、保六大油气成藏要素也表现出西早东晚、自西向东迁移的特征.这种成藏规律的识别对于中国东部油气、天然气水合物勘探具有非常重要的指导意义.最后,从板缘、板内和板下过程和机制,探讨了盆内和盆间的新生代构造迁移机制,这种构造-岩浆-成盆-成藏等的向洋变新迁移和跃迁是晚中生代以来挤出构造和新生代北西向壳内伸展、印度和欧亚板块碰撞诱发的软流圈向东流动的远程效应及太平洋俯冲带的跃迁式东撤的联合效应.  相似文献   

17.
The Lishui Sag, in the East China Sea Shelf Basin, is rich in hydrocarbons, with the major hydrocarbon-bearing layers being the Paleocene Mingyuefeng clastic rocks. Analysis of the implicit geologic background information of these Paleocene clastic rocks using petrological and geochemical methods has significant practical importance. These Paleocene sandstones are mainly lithic arenite, lithic arkose and greywacke, composed of K-feldspar, plagioclase, authigenic clays, silica and carbonates. As continental deposits, Yueguifeng clastic rocks have high aluminosilicate and mafic detritus contents, while the Lingfeng and Mingyuefeng Formations are rich in silica due to an oscillating coastal marine depositional environment. The major element contents of these Paleocene sandstones are low and have a concentrated distribution, indicating that the geochemical composition is non-epigenetic, transformed by sedimentary processes and diagenesis. The Yueguifeng detritus comprises recycled sediments, controlled by moderate weathering and erosion, while the Lingfeng and Mingyuefeng detritus is interpreted as primarily first-cycle materials due to low chemical weathering. In the Late Cretaceous to Early Paleocene, the Pacific Plate began subducting under the Eurasian Plate, causing an orogeny by plate collision and magma eruption due to the melting of subducted oceanic crust. This resulted in the dual tectonic settings of “active margin” and “continental island arc” in the East China Sea Shelf Basin. During the Late Paleocene, the Pacific Plate margin migrated eastward along with development of the Philippine Ocean Plate, and the tectonic setting of the Lishui Sag gradually turned into a passive continental margin. Detrital sources included both orogenic continental blocks and continental island arcs, and the parent rocks are primarily felsic volcanic rocks and granites.  相似文献   

18.
南海北部陆缘盆地形成的构造动力学背景   总被引:2,自引:0,他引:2  
摘要:南海北部陆缘盆地处于印度板块与太平洋及菲律宾海板块之间,但三大板块对南海北部陆缘盆地的影响是不同的。通过对三大板块及古南海演化的研究,可知南海北部陆缘地区应力环境于晚白垩世发生改变。早白垩世处于挤压环境,晚白垩世以来转变为伸展环境并且不同时期的成因不同。晚白垩世-始新世,华南陆缘早期造山带的应力松弛、古南海向南俯冲及太平洋俯冲板块的滚动后退导致其处于张应力环境。始新世时南海北部陆缘裂陷盆地开始产生,伸展环境没有变,但因其是由太平洋板块向西俯冲速率的持续降低及古南海向南俯冲引起的,南海北部陆缘盆地继续裂陷。渐新世-早中新世,地幔物质向南运动及古南海向南俯冲导致南海北部陆缘地区处于持续的张应力环境;渐新世早期南海海底扩张;中中新世开始,三大板块开始共同影响着南海北部陆缘盆地的发展演化。  相似文献   

19.
The continental margin reviewed in this paper corresponds in almost all its parts to a Hercynian platform which was more or less structured during the Mesozoic and Cenozoic in association with the formation of the Atlantic Ocean.

In the areas above water and the continental shelves, this Hercynian platform either has a thin sedimentary covering (Galicia, Armorica, West Ireland, Porcupine Bank) or, on the contrary, has been extensively depressed by distension movements accompanied with the formation of thick Mesozoic and Cenozoic basins connected with the oceanic domain (West Portugal, Basco-Cantabrian zone, Adour Basin, Parentis Basin, Western Approaches Basin, North Celtic Sea Basin, Porcupine Seabight Basin). In addition, the Early Cenozoic Pyrenean-Alpine compression movements had repercussions on the structure of the north Spanish margin.

From the structural standpoint, the main features of the margin are linked both to the deep indentation of the Bay of Biscay and to the existence of more or less collapsed blocks prolonging the continental domain. These blocks are visible either in the topography (Porto and Vigo seamounts, Galicia Banks, Asturian marginal shelf, Porcupine Bank) or solely by seismic reflection (Trevelyan Escarpment). Thick marginal sedimentary basins exist at the foot of the slope.  相似文献   


20.
南海南、北陆缘中生代构造层序及其沉积环境   总被引:1,自引:0,他引:1  
新生代海底扩张,使南海陆缘分为南、北两部分。南部礼乐地块与南海北缘在扩张之前构成了统一的活动陆缘。通过对南、北陆缘的钻井研究和井旁地震剖面解释,发现二者的中生界均具有4 个地震层序及3 个构造层。南北陆缘构造层序及物源分析表明,早白垩世礼乐地块与南海北缘曾发生碰撞拼贴。早白垩世的南海北缘地区沉积环境由海陆过渡相向陆相演化,相应的礼乐地区是由浅海相向滨海相演化,二者反映出相同的向上变浅旋回,说明在南、北陆缘拼贴之后,两者具有了统一的构造沉积背景。到晚白垩世末,两区均隆升为陆,且遭受剥蚀; 南海北缘地区上白垩统部分被剥蚀,而距俯冲边界更近的礼乐地区上白垩统则被剥蚀殆尽。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号