首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several substorms were observed at Explorer 45 in November and December 1971, and January and February 1972, while the satellite was in the evening quadrant near L = 5. These same substorms were identified in ground level magnetograms from auroral zone and low latitude stations. The satellite vector magnetic field records and rapid run ground magnetograms were examined for evidence of simultaneous occurrence of Pi2 magnetic pulsations. Pulsations which began abruptly were observed at the satellite during 7 of the 13 substorms studied and the pulsations occurred near the estimated time of substorm onset. These 7 pulsation events were also observed on the ground and 6 were identified in station comments as Pi2. All of the events observed were principally compressional waves, that is, pulsations in field magnitude. There were also transverse components elliptically polarized counter-clockwise looking along the field line. Periods observed ranged from 40 to 200 sec with 80 sec often the dominant period.  相似文献   

2.
Evidence is presented from spectral analysis of Pi2 pulsations detected during a substorm by the University of Alberta meridian chain of magnetometers to support the conclusion that at auroral latitudes there is no apparent correlation between the principal spectral components of Pi2 pulsations and the latitude of the observations. From these data we infer that the Pi2 magnetic variations observed at the Earth's surface are not generated by simple MHD eigenoscillations of magnetospheric field. As well, the data show clear contributions to the Pi2 pulsation spectrum by ionospheric currents. These observations lead to the suggestion that Pi2 pulsation spectra are produced by the sudden changes in magnetospheric and ionospheric current systems which take place at the beginning of a substorm.  相似文献   

3.
Ground observations of Pi 2 geomagnetic pulsations are correlated with satellite measurements of plasma density for three time intervals. The pulsations were recorded using the IGS network of magnetometer stations and the plasma density measurements were made on board GEOS-1 and ISEE-1. Using the technique of complex demodulation, the amplitude, phase and polarisation characteristics of the Pi 2 pulsations are observed along two meridional profiles; one from Eidar, Iceland (L = 6.7) to Cambridge, U.K. (L = 2.5) and the other from Tromso, Norway (tL = 6.2) to Nurmijarvi, Finland (L = 3.3). The observed characteristics of the Pi 2 pulsations are then compared with the plasma density measurements. Close relationships between the plasmapause position and the position of an ellipticity reversal and a variation in H component phase are observed. A small, secondary amplitude maximum is observed on the U.K./Iceland meridian well inside the position of the projection of the equatorial plasmapause. The primary maxima on the two meridians, in general occur close to the estimated position of the equatorward edge of a westward electrojet. Using the plasma density measurements, the periods of surface waves at the plasmapause for two intervals are estimated and found to be in good agreement with the dominant spectral peaks observed at the ground stations near the plasmapause latitude and within the plasmasphere. The polarisation reversal, together with phase characteristics, spectral evidence and the agreement between the theoretical and observed periods leads to the suggestion that on occasions a surface wave is excited on the plasmapause as an intermediate stage in the propagation of Pi 2 pulsations from the auroral zone to lower latitudes.  相似文献   

4.
Type Pi magnetic-field pulsation bursts were selected for which the associated aurorae were relatively simple and stable and occurred in the ionosphere between College and Fort Yukon in alaska. Power spectral-density traces for College and Fort Yukon HandD were computed and were studied relative to the aurora and to more complex events presented in earlier studies. The power spectral-density traces associated to simpler aurora were found to be consistent with the assumption of simpler 3-dimensional current systems as generators of the Pi waves. The spectra of associated precipitation pulsations had a peak near 10mHz in common with the magnetic field spectra in all events, and also near 3 mHz in one event. The precipitation pulsations at 3 and 10mHz may have enhanced the magnetic field spectra at those frequencies through modulation of the ionospheric resistance to the current.  相似文献   

5.
We describe the observation of a magnetic pulsation with a period of 55 s, recorded at geostationary orbit by three satellites (ATS 6, SMS 1 and SMS 2) in the local time sector 2100–2400. We use magnetic data from all three spacecraft and also plasma data from ATS 6. The pulsation had a large compressional magnetic component which appeared to be balanced by pressure fluctuations in the hot ring current plasma which were in antiphase with the magnetic variations. This allows the wave to be guided along a field line. From the plasma data we are also able to obtain estimates of the field line displacement and hence the electric field, which enables us to conclude that this is a second harmonic field line resonance. We find that the wave has a very short East-West (E-W) wavelength (m?100) and a westward azimuthal group velocity of about 30 km s?1. The most probable source for this wave is a bounce resonant interaction with ring current protons. The characteristics of this wave are in many ways similar to those of giant pulsations observed on the ground. ATS 6 was near the inner edge of the ring current electrons and as the wave converted the 10 keV electron Alfvén layer back and forth across ATS 6, we were able to estimate the Alfvén layer energy gradient and obtain a value of 1 keV in 1000 km. This gradient is considerably steeper than that predicted by a steady uniform convection electric field.  相似文献   

6.
Several models for pulsating type IV radio bursts are presented based on the assumption that the pulsations are the result of fluctuations in the synchrotron emission due to small variations in the magnetic field of the source. It is shown that a source that is optically thick at low frequencies due to synchrotron self-absorption exhibits pulsations that occur in two bands situated on either side of the spectral peak. The pulsations in the two bands are 180° out of phase and the band of pulsations at the higher frequencies is the more intense. In contrast, a synchrotron source that is optically thin at all frequencies and whose low frequency emission is suppressed due to the Razin effect develops only a single band of pulsations around the frequency of maximum emission. However, the flux density associated with the later model would be too small to explain the more intense pulsations that have been observed unless the source area is considerably larger than presently seems reasonable.  相似文献   

7.
Measurements of the properties of Pi 2 pulsations along a magnetic meridian at high latitudes during a number of substorms have been analyzed for their relationship to the auroral electrojet. It is found that the maximum Pi 2 pulsation amplitudes are closely associated with the instantaneous position of the electrojet. That is, the average pulsation amplitude in the Pi 2 band as well as the amplitudes of pulsations at specific frequencies in the band have maximum amplitudes at latitudes close to the instantaneous electrojet location. Stations equatorward of the electrojet tend to observe a classical Pi 2 waveform concurrent with the onset of the substorm electrojet. Stations near the electrojet observe a broad spectrum of pulsations indicating a multiplicity of sources. Stations poleward of the initial electrojet position see little pulsation activity until the electrojet moves overhead. The appearance of large amplitude Pi 2 pulsations at a station which was poleward of the electrojet at the onset of a substorm appears to be coincident with the arrival of the poleward border of the electrojet.  相似文献   

8.
We discuss the results of our simultaneous observations of interplanetary and geomagnetic field fluctuations as well as solar wind parameters and meter radio emission in near-Earth space at mid-latitudes (near Kharkov) based on ground measurements before and during a unique magnetic storm on October 22, 1999. The electron flux dynamics in interplanetary space, geostationary orbit, and the magnetosphere is analyzed to find the interconnection with UHF radio background bursts at a frequency of 151 MHz. We conclude that the acceleration processes in the inner magnetospheric layers affect the generation processes of high-frequency radio bursts and that this phenomenon should be studied further using the SINP (MSU) instruments onboard the CORONAS-F satellite.  相似文献   

9.
Many types of ULF pulsations observed at geosynchronous orbit exhibit properties of standing shear Alfvén waves. Observation of the harmonic mode, polarization state and azimuthal wave number is crucial for determining the source of energy responsible for excitation of these waves. In recent years it has become possible to identify the harmonic mode of standing waves from dynamic spectral analysis, as well as simultaneous observations of electric and magnetic fields of the waves or a comparison between plasma mass density estimated from the frequency of the waves and that observed by direct measurement. It is then more reasonable to classify pulsations according to their physical properties, including the harmonic mode, polarization state, azimuthal wave number, and localization in occurrence, than according to the conventional scheme based on the wave form and period range. From analysis of magnetic pulsations observed at geosynchronous orbit, at least two distinctively different types of waves have been identified. One is azimuthally polarized waves simultaneously excited at the fundamental and several harmonics of a standing Alfvén wave which are observed throughout the day side. They have relatively small azimuthal numbers (less than 10) and propagate tailward. They are likely to be excited by the interaction of the solar wind with the magnetopause or bow shock. Another type is radially polarized waves most strongly excited at the second harmonic. They are observed mainly on the afternoon side. Bounce resonance of a few keV ions has been suggested as the mechanism for excitation of the radially polarized waves.  相似文献   

10.
本文介绍了云南天文台四波段(1.42,2.13,2.84和4.26GHz)太阳射电高时间分辩率同步观测得到的五个微波II型爆发事件,它们具有宽频带、长和短寿命、内向和外向快速频漂等特征.观测事例表明,非热电子束引起的等离子体辐射和电子回旋脉泽辐射两种机制都可能发生.这些观测特征既不完全同于米波—分米波II型爆发,也不完全同于微波高频段II型爆发,说明在微波低频段可能存在二重性或过渡现象  相似文献   

11.
Using magnetic data from the North American IMS network at high latitudes, Pi 3 pulsations are analysed for a period of 412 continuously-disturbed days. The data were obtained from 13 stations in the Alaska and Fort Churchill meridional chains and in the east-west chain along the auroral zone. In the past, Pi 3 pulsations associated with substorms have been classified into two sub-categories, Pi p and Ps 6. However, we find that Pi 3's which have longer periods than Pi p and which are different from Ps 6 are more commonly observed than these two special types. Power spectra, coherence and phase differences are compared among the stations. Results show that noticeable differences for latitudinal dependence of period and amplitude exist among midnight, morning and late-evening Pi 3 pulsations. Results for Pi 3 occurring near midnight indicate that the periods at which the power spectral density is a maximum are longest, and the amplitude largest, near the center of the westward auroral electrojet. On the other hand, for Pi 3 pulsations occurring in the morning, the periods at which the power spectral density is a maximum are longest, and the amplitude largest, near the poleward edge of the westward electrojet. Furthermore, for Pi 3 pulsations occurring in the late evening, their periods are longer and their amplitudes larger near both the Harang discontinuity and the poleward edge of the westward electrojet than near its center. Correlations between pairs of adjoining stations are better in the polar cap than at auroral latitudes. It is also found from hodograms that the sense of polarization often varies from one station to another for the same event, and that the time duration in which the same rotational sense is maintained is shorter near midnight than in the morning and late evening. It is suggested that the source regions of the morning and late-evening Pi 3's lie on the electrojet boundaries; that is at the Harang discontinuity (in the evening) and at the poleward edge of the westward electrojet (in the morning and evening). The generation of midnight Pi 3 pulsations, centered at a location within the westward auroral electrojet appears to be associated directly with the generation of that electrojet.  相似文献   

12.
A dispersion equation for the surface waves on the inner boundary of the magnetospheric plasma sheet is obtained. The wave group velocity has both components along and across the magnetic field. For the waves with the period 1 min the transverse component is about 100 km s−1, the parallel component is approximately equal to the Alfvén velocity. Pi2 pulsations, as well as east-westward motions of auroral riometer absorption bays, may be possible displays of surface waves.  相似文献   

13.
We report the results of a case study of two Pi 2 pulsations observed near the eastward electrojet by the Scandinavian Magnetometer Array. The power of the two Pi 2 pulsations, calculated using a standard Fast Fourier Transform method, peaks near the centre of the eastward electrojet. For both events there is a strong latitudinal gradient in the power poleward of the equatorward border of the electrojet. The sense of polarisation is predominantly clockwise at the northern stations and anticlockwise at the southern stations although the reversal from clockwise to anticlockwise does not occur at a constant latitude. For the first event the polarisation reversal occurs at higher latitudes in the western half of the array; for the second the polarisation reversal occurs at higher latitudes at the edges of the array. The polarisation reversal does not appear to be related to the location of the eastward electrojet. Equivalent current vectors of the Pi 2 pulsations, obtained by rotating the band pass filtered data through 90°, exhibit clear vortex structures in both events. The vortices change sense of direction at half the period of the Pi 2 pulsation. A simple model for the ionospheric electric field in accord with the field line resonance theory reconstructs the basic features of the observed Pi 2 equivalent current system. We thus conclude that Pi 2 signatures in the region of the eastward electrojet and far away from the auroral break-up region are governed by the field line resonance mechanism.  相似文献   

14.
Fárník  F.  Karlický  M.  Švestka  Z. 《Solar physics》2003,218(1-2):183-195
When analyzing light curves of hard X-ray bursts recorded by the Hard X-Ray Spectrometer on board the MTI satellite, we have found three events (all associated with major solar flares, two of them in the same active region) which show pulsations in the very initial phase of the burst. Periods of the pulsations range from 25 to 48 s. We compare them with other observations of pulsations of radio waves and in X-rays and conclude that pulsations of this kind have not been observed before. We mention several possible causes and prefer interactions between current-carrying loops as the most likely interpretation of the observed variations.  相似文献   

15.
尹冬梅  赵有  李志刚 《天文学报》2007,48(2):248-255
同步卫星受到摄动力的影响,它的实际轨道有一点漂移.卫星需要不断的调轨调姿,以保证其正常运行.为了研究卫星在几小时,甚至更短的时间内的轨迹情况,采用短弧段定轨法.用动力学方法进行短弧定轨,分别研究1小时和15分钟定轨并进行比较,目的是为了在同步轨道卫星变轨后,能尽快地为卫星提供精密的预报轨道.此外,在系列短弧定轨后,得到精密轨道系列,为研究轨道变化的力学因素及研究短弧中卫星转发器时延变化规律等提供依据.  相似文献   

16.
Substorm onsets and intensifications are accompanied on a one-to-one basis by a Pi 2 magnetic pulsation burst. The source region for these pulsations is generally thought to lie in the region of substorm disturbance in the auroral oval. In this paper we outline the characteristics of Pi 2 pulsations in regions near the substorm enhanced electrojet but removed from the locale of the westward travelling surge. We show that a resonance region for the pulsations lies at the equatorwad edge of the westward electrojet, which in the evening sector marks the locus of the Harang discontinuity. Finally we show examples where the maximum amplitude of the Pi 2 is located at or equatorward of the southern border of the eastward electrojet or at the southern border of the westward electrojet. This is clear evidence for the coupling of wave energy into the L-shells far distant from the source of the energy. Mechanisms for Pi 2 generation are discussed in the context of the results presented in this paper.  相似文献   

17.
During the type IV burst on 24 April, 1985 we observed at 234 MHz an untypical, strong, nearly six hours lasting continuum emission incorporating several groups of broadband pulsations, zebra patterns, fiber bursts, and a new fine structure phenomenon. The power spectra of the groups of broadband pulsations reveal no simple structure. There is only one common periodic component between 0.3 s and 0.4 s. Slowly drifting chains of narrowband fiber bursts are described as a new fine structure by spectrograms and simultaneously recorded single frequency intensity profiles. A qualitative model of this new fine structure is suggested.  相似文献   

18.
Controversy exists over the spectral character of the class of magnetic pulsations designated Pi2. A novel method of spectral analysis, known as the maximum entropy method, is used to obtain power spectra of Pi2 pulsations with substantially improved resolution. Of the various theories presented for generating Pi2's, only that of Doobov and Mainstone (1973b) is in accord with our results.  相似文献   

19.
Geomagnetic field research carried out at the Hermanus Magnetic Observatory over the past decade is reviewed. An important aspect of this research has been the study of geomagnetic field variations, with particular emphasis on ULF geomagnetic pulsations. Features of geomagnetic pulsations which are unique to low latitude locations have been investigated, such as the cavity mode nature of low latitude Pi 2 pulsations and the role played by ionosphericO + ions in the field line resonances responsible for Pc 3 pulsations. A theoretical model has been developed which is able to account for the observed relationships between geomagnetic pulsations and oscillations in the frequency of HF radio waves traversing ionospheric paths. Other facets of the research have been geomagnetic field modelling, aimed at improving the accuracy and resolution of regional geomagnetic field models, and the development of improved geomagnetic activity indices.  相似文献   

20.
Several recent phenomena with zebra patterns (ZPs) and fiber bursts on the dynamic spectra of solar type IV radio bursts have been complexly analyzed using all available ground-based and satellite data (SOHO, TRACE, RHESSI). ZPs and fiber bursts were observed at frequencies of 50–3800 MHz. The main relative spectral parameters and the degree of circular polarization of ZPs and fiber bursts are almost identical. The fine structure was observed in powerful and weak phenomena (and was more impressive in weak phenomena) during impulsive and decline phases at instants of recurring continuum bursts. The shape of the fine structure depends on that of the magnetic loops in a radio source, the type of fast particle acceleration (impulsive or prolonged), and the presence of shock waves and coronal mass ejections. Several new effects of the interaction between zebra stripes and fiber bursts have been detected. Specifically, up to 40 fiber bursts with different frequency ranges were simultaneously observed in the frequency range 1–2 GHz against a background of sudden absorptions. It has been indicated that different effects in the ZP stripe behavior can be explained within the scope of the model with whistlers, if the quasi-linear diffusion of fast particles on whistlers (which deforms the particle velocity distribution function) is taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号