首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have solved the coupled momentum and continuity equations for NO+, O2+, and O+ions in the E- and F-regions of the ionosphere. This theoretical model has enabled us to examine the relative importance of various processes that affect molecular ion densities. We find that transport processes are not important during the day; the molecular ions are in chemical equilibrium at all altitudes. At night, however, both diffusion and vertical drifts induced by winds or electric fields are important in determining molecular ion densities below about 200 km. Molecular ion densities are insensitive to the O+ density distribution and so are little affected by decay of the nocturnal F-region or by processes, such as a protonospheric flux, that retard this decay. The O+ density profile, on the other hand, is insensitive to molecular ion densities, although the O+ diffusion equation is formally coupled to molecular ion densities by the polarization electrostatic field. Nitric oxide plays an important role in determining the NO+ to O2+ ratio in the E-region, particularly at night. Nocturnal sources of ionization are required to maintain the E-region through the night. Vertical velocities induced by expansion and contraction of the neutral atmosphere are too small to affect ion densities at any altitude.  相似文献   

2.
The ionization structure of the auroral arc was measured on a sounding rocket which penetrated into a bright auroral arc. The E-region electron density becomes large (2 ~ 5 × 105 el/cm3 only in the moving auroral arc, whose N2+ 4278 Å brightness is 1 ~ 2·5 kR. The electron density in the D-region beneath the lower boundary of the arc (75 ~ 98 km in altitude) is also considerably enhanced to 2 ~ 5 × 104 el/cm3.The observed E-region electron density can be interpreted theoretically as due to the direct ionization by precipitating electrons, whose energy spectrum is approximately represented by an exponential type having the characteristic energy of 2 keV. The correlation between the electron density and the N2+ 4278 Å brightness can be reasonably explained by considering the simultaneous effects on the ionization and the optical excitation caused by the primary electrons having a flux of 9 × 109 el/cm2/sec per 1 kR of the 4278 Å emission.Further analyses using the electron density data from four other sounding rockets have shown that the D-region ionization has good correlations to the cosmic noise absorption (CNA) and the magnetic substorm activities observed simultaneously at the ground station, whereas it has poor correlation to the same quantity of the E-region measured in the same experiment. It is found that the observed D-region ionization is much larger than that predicted by the theory which takes into account the Bremsstrahlung X-ray ionization along with the direct impact ionization when it is applied to the precipitating electron flux spectrum consistent to the E-region ionization and optical excitation.After all the present experimental results suggest a dual nature of the electron precipitation spectrum in the substorm, i.e. the softer part which is localized in the auroral arc and the harder part which is spatially wide-spread over the substorm area.  相似文献   

3.
Incoherent scatter measurements of electron density and vertical O+ fluxes over Millstone Hill (42.6°N, 71.5°W) previously have been used to study the exchange of plasma between the ionosphere and the magnetosphere. During the daytime there is usually an upward flux of O+ ions above about 450 km that can be measured readily and equated to the escaping proton flux. At night the O+ fluxes usually are downwards everywhere owing to the decay of the F-layer, and it becomes difficult to detect effects due an arriving proton flux. In a new study of the nighttime fluxes, appeal was made to the estimated abundance of the H+ ions in the upper F-region which can be extracted from the observations. From a study of the behavior on 25 days over the interval 1969–1973, we conclude that in the daytime the flux always is upwards and close to its limiting value. This situation persists throughout the night in summer at times of high sunspot activity (e.g., 1969). There is a period of downward flux prior to ionospheric sunrise on winter nights whose duration increases with decreasing sunspot number. As sunspot minimum is approached (e.g., in 1973) downward fluxes are encountered for a brief period prior to ionospheric sunrise in summer also. Thus, over most parts of sunspot cycle, it appears that the protonosphere supplies ionization to the winter night ionosphere, while being maintained from the summer hemisphere. This helps explain the smallness of the day-to-night variations reported for the electron content of magnetospheric flux tubes near L = 4 in the American sector.  相似文献   

4.
Knowledge of the structure of the polar ionosphere during exceptionally quiet periods is basic for studying complicated ionospheric behaviors during disturbances. On the basis of data from an airborne ionosonde as well as a meridian chain of ground-basedionosondes, the circumpolar structure of the E,-and F-regions is elucidated. There are two circumpolar zones of E-region ionization with differing characteristics. The first is an auroral E,-layer and/or retarded type sporadic E-band that has previously (Whalen et al., 1971) been found to be identical with the continuous aurora. The second is a zone of non-retarded type spora die E located poleward of the former band. In general, discrete auroras are co-located with the latter. The main trough, a prominent feature of the night sector F-region, is most pronounced in the early morning. The main trough is bounded on the poleward side by a well defined ‘wall’ of F-region ionization. The night sector poleward trough wall is located approximately three degrees of latitude equatorward of the auroral oval. A ‘plateau’ of F-region ionization extends from the poleward trough wall to the auroral oval.  相似文献   

5.
Steady-state calculations are performed for the daytime equatorial F2-region and topside ionosphere. Values are calculated of the electron and ion temperatures and the concentrations and field-aligned velocities of the ions O+, H+ and He+. Account is taken of upward E × B drift, a summer-winter horizontal neutral air wind and heating of the electron gas by thermalization of fast photoelectrons.The calculated plasma temperatures are in accord with experiment: at the equator there is an isothermal region from about 400–550 km altitude, with temperatures of about 2400 K around 800 km altitude. The transequatorial O+ breeze flux from summer to winter in the topside ionosphere is not greatly affected by the elevated plasma temperatures. The field-aligned velocities of H+ and He+ depend strongly on the O+ field-aligned velocity and on the presence of large temperature gradients. For the minor ions, ion-ion drag with O+ cannot be neglected for the topside ionosphere.  相似文献   

6.
A magnetic type mass spectrometer has been flown on two ESRO sounding rockets from ESRANGE (Kiruna 68°N) on February 25 and 26, 1970. The first launch was at sunset (16:33 UT) and the second the next morning, during sunrise (04:47 UT). For both flights the solar zenith angle was approximately 98°. The instrument was measuring simultaneously the neutral gas and positive ion composition and the total ion density. In this paper the results of the ion composition measurements are presented. For both flights the main ion constituents measured between approximately 110–220 km were O+, NO+ and O2+. Only at sunset were N+ and N2+ detected above 200 km. In spite of the identical solar UV-radiation, pronounced sunset/sunrise variations in the positive ion composition were found. The total ion densities at sunrise were between 5×103 and 5 × 104 ions cm?3 and therefore too high to be explained without a night-time ionization by precipitated particles. At sunrise the NO+ and O2+ profiles show a correlated wavelike structure with three pronounced almost equally spaced layers in the E-region. Only the highest layer is present in the O+ profile. Locally enhanced field aligned ionization originated by particle precipitation and an E × B instability are the most likely source for this structure. In the E- and lower F-regions the NO+O2+ ration increased overnight from values around 7 at sunset to 15 at sunrise, correlated with an increase of the local magnetic activity index K from 0+ to 2°. This could be explained if the NO density and magnetic activity are correlated.  相似文献   

7.
Under magnetically quiet conditions, ionospheric plasma in the midlatitude F-region corotates with the Earth and relative east-west drifts are small compared to the corotation velocity. During magnetic storms, however, the enhanced dawn-to-dusk magnetospheric convection electric field often penetrates into the midlatitude region, where it maps into the ionosphere as a poleward electric field in the 18:00 LT sector, producing a strong westward plasma drift. To evaluate the ionospheric response to this east-west drift, the time-dependent O+ continuity equation is solved numerically, including the effects of production by photoionization, loss by charge exchange and transport by diffusion, neutral wind and E × B drift. In this investigation only the neutral wind's meridional component and east-west E × B drift are included. It is found that an enhanced equatorward wind coupled with westward drift produces an enhancement in the peak electron density (NMAX(F2)) and in the electron content (up to 1000 km) in the afternoon sector and a subsequent greater-than-normal decay in ionization after 18:00 LT. These results agree in general with midlatitude F-region ionospheric storm observations of NMAX(F2) and electron content which show an afternoon enhancement over quiet-time values followed by an abrupt transition to lower-than-normal values. Westward drift appears to be a sufficient mechanism in bringing about this sharp transition.  相似文献   

8.
An expression for the vertical velocity of the neutral atmosphere in the F-region is derived for Joule heating by the electric field that drives the auroral electrojet. When only vertical expansion is allowed, it is found that the vertical wind must always increase monotonically with altitude. The heating rate is proportional to the F-region ion density, so that appreciable heating, even during high electric fields, requires some production mechanism of ionization such as auroral secondary ionization or solar photoionization, in the lower F-region. Once started at night, when an ionizing source is present in the lower F-region, the expansion of the atmosphere transports ionization upward, thereby increasing the heating rate, and hence the expansion rate, i.e. positive feedback. Electric field strengths and F-region ion densities of 50 mV/m and 2 × 1011e/m3, respectively, will produce vertal neutral wind speeds of several tens of m/sec in the 300–500 km altitude range. During periods of high magnetic activity, i.e. high electric field, Joule heating can produce large increases in the relative N2 concentration in the upper F-region; computations made with a simple model suggest that tenfold increases can occur at 400 km altitude 12?1 hr after the onset of magnetic activity, a result in agreement with satellite observations. When the Joule heating theory is applied to incoherent scatter data taken during one period of high heating, the horizontal electric field in the F-region is found to decrease markedly, possibly approaching zero as the field penetrates a weak, discrete auroral arc; the decrease began 10–20 km from the arc.  相似文献   

9.
The continuity, momentum and energy hydrodynamic equations for an O+-H+ ionosphere have been solved self-consistently for steady state conditions when a perpendicular (convection) electric field is present. Comparison of the H+ temperature profiles obtained with and without the electric field show that the effect of the electric field is to enhance the H+ temperature at high altitudes from about 3600 to 6400 K. Due to ion heating by the electric field, there is a net reduction of O+ in the F2-region as compared with the case of a non-convecting ionosphere. When the reduction of O+ is neglected, the electric field acts to increase the H+ outward flux from 8.3 × 107 to 2.7 × 108 cm?2 sec?1 for average ionospheric conditions. However, when the reduction of O+ is included, there is a net reduction in the outward H+ flux. Nevertheless, the convection electric field still results in an increase in the rate of depletion of the F-re m?1 electric field.  相似文献   

10.
The absolute cross-sections for the excitation of the 989 Å, 1027 Å, 7990 Å, 8446 Å, 1.1287 μm and 1.3164 μm multiplets of atomic oxygen by electron impact dissociation of O2 are reported. The radiative branching ratios for these transitions are calculated from these results and compared with the NBS compilation of Wiese et al. (1966) and the recent theoretical calculations of Pradhan and Saraph (1977). The cascade models of O+ radiative recombination and of electron-impact excitation of the OI(3S) state in the terrestrial airglow are discussed in the light of the laboratory measurements, and the effects of the resonant absorption of components of the λ 989 Å and λ. 1027 Å multiplets by the Birge-Hopfield band system of N2 are investigated. This process is shown to depend sensitively on the N2 vibrational temperature and to cause characteristic changes in the OI e.u.v. emission spectrum in auroras and in the sunlit F-region at high exospheric temperatures. It is also suggested that the λ 1027 Å radiation observed in auroral spectra is actually due to molecular nitrogen band emission that has been enhanced by entrapment effects and not to the excitation of the 2p 3P-3d 3D0 transition of atomic oxygen as believed previously.  相似文献   

11.
It is argued that there is a terrestrial loss of hydrogen as ions which includes the polar wind but extends effectively down to a latitude in the range 45–50° invariant. In daytime and for much of the night-time the flux is close to the limiting value for H+ flow through the topside ionosphere. It is argued that the flux decreases rapidly with increasing solar activity, following the decrease in neutral hydrogen concentration. It has been found that as solar activity increases the Jeans escape flux increases, and the charge exchange escape flux increases until moderate solar activity levels are reached. As solar activity increases from moderate to high levels, the charge exchange escape may decrease again. A new budget for terrestrial hydrogen loss over the solar cycle is given. The global flux of hydrogen ions outward from the ionosphere is comparable with estimates of the plasma sheet loss rates, and this flux, together with some solar wind plasma, is an attractive source for the plasma sheet.The energetic neutrals produced from the charge exchange of ring current ions with thermal-energy neutrals in the exosphere produce the optical emission of the equatorial aurora, which can be related to ion production rates near and above the E-region. The ionization production is adequate to explain the enhancements in ion production observed during magnetic storms at Arecibo.  相似文献   

12.
A numerical model of current F-region theory is use to calculate the diurnal variation of the mid-latitude ionospheric F-region over Millstone Hill on 23–24 March 1970, during quiet geomagnetic conditions. From the solar EUV flux, the model calculates at each altitude and time step primary photoelectron spectra and ionization rates of various ion species. The photoelectron transport equation is solved for the secondary ionization rates, photoelectron spectra, and various airglow excitation rates. Five ion continuity equations that include the effects of transport by diffusion, magnetospheric-ionospheric plasma transport, electric fields, and neutral winds are solved for the ion composition and electron density. The electron and ion temperatures are also calculated using the heating rates determined from chemical reactions, photoelectron collisions, and magnetospheric-ionospheric energy transport. The calculations are performed for a diurnal cycle considering a stationary field tube co-rotating with the Earth; only the vertical plasma drift caused by electric fields perpendicular to the geomagnetic field line is allowed but not the horizontal drift. The boundary conditions used in the model are determined from the incoherent scatter radar measurements of Te, Ti and O+ flux at 800km over Millstone Hill (Evans, 1971a). The component of the neutral thermospheric winds along the geomagnetic field has an important influence on the overall ionospheric structure. It is determined from a separate dynamic model of the neutral thermosphere, using incoherent scatter radar measurements.The calculated diurnal variation of the ionospheric structure agrees well with the values measured by the incoherent scatter radar when certain restrictions are placed on the solar EUV flux and model neutral atmospheric compositions. Namely, the solar EUV fluxes of Hinteregger (1970) are doubled and an atomic oxygen concentration of at least 1011cm3 at 120 km is required for the neutral model atmosphere. Calculations also show that the topside thermal structure of the ionosphere is primarily maintained by a flow of heat from the magnetosphere and the night-time F2-region is maintained in part by neutral winds, diffusion, electric fields, and plasma flow from the magnetosphere. The problem of maintaining the calculated night-time ionosphere at the observed values is also discussed.  相似文献   

13.
Loss processes which remove Si+ ions selectively relative to other meteor-derived atomic ions in the E- and D-regions of the ionosphere have been identified and measured in the laboratory. The major Si+ loss in the E-region is the reaction Si+ + H2O → HSiO+ + H (1) with a rate constant 2.3 ± 0.9 × 10?10 cm3s?1 at 300 K. The corresponding reactions with Fe+, Mg+ and other metallic meteor ions are endothermic. Presumably (1) is followed by a fast dissociative-recombination with electrons to produce neutral SiO or Si. At lower altitudes Si+ ions associate in a three-body reaction with O2 with a much larger rate constant than the corresponding associations of Fe+ and Mg+ with O2.  相似文献   

14.
Theoretical results on the daily variation of O+ and H+ field-aligned velocities in the topside ionosphere are presented. The results are for an L = 3 magnetic field tube under sunspot minimum conditions at equinox. They come from calculations of time-dependent O+ and H+ continuity and momentum balance in a magnetic field tube which extends from the lower F2 region to the equatorial plane (Murphy et al., 1976).There are occasions when ion counterstreaming occurs, with the O+ velocity upward and H+ velocity downward. The conditions causing this counterstreaming are described: the H+ layer is descending whilst O+ is supplied from below either to increase the O+ concentration at fixed heights or to replace O+ ions lost by charge exchange with neutral H. It is suggested that the results of observations at Arecibo by Vickrey et al. (1976) of O+ and H+ concentrations and counterstreaming velocities are significantly affected by E×B drift.  相似文献   

15.
The data from observations of the geomagnetic field, ionospheric parameters and atmospheric emissions, carried out at four midlatitude station in Bulgaria are analysed. The observations refer to the geomagnetic disturbance on 28/30 October 1973 (Kpmax = 7) and also to a very quiet period before it. It is shown that all four geomagnetic substorms during the night of 29/30 October influenced the midlatitude F-region. This is indicated by a lowering of the height of the F-region by ca. 50–70 km. Owing to this downward drift of ionisation the dissociative recombination and the intensity of the red line is accordingly increased. As an explanation of this phenomenon we suggest the action of the electric fields, which can at the same time be transported from the magnetosphere to the ionosphere.  相似文献   

16.
A mathematical model has been developed to calculate consistent values for the O+ and H+ concentrations and field-aligned velocities and for the O+, H+ and electron temperatures in the night-time equatorial topside ionosphere. Using the results of the model calculations a study is made to establish the ability of F-region neutral air winds to produce observed ion temperature distributions and to investigate the characteristics of ion temperature troughs as functions of altitude, latitude and ionospheric composition. Solar activity conditions that give exospheric neutral gas temperatures 600 K, 800 K and 1000 K are considered.It is shown that the O+-H+ transition height represents an altitude limit above which ion cooling due to adiabatic expansion of the plasma is extremely small. The neutral atmosphere imposes a lower altitude limit since the neutral atmosphere quenches any ion cooling which field-aligned transport tends to produce. The northern and southern edges of the ion temperature troughs are shown to be restricted to a range of dip latitudes, the limiting dip latitudes being determined by the magnetic field line geometry and by the functional form of the F-region neutral air wind velocity. Both these parameters considerably influence the interaction between the neutral air and the plasma within magnetic flux tubes.  相似文献   

17.
The coupled time-dependent O+ and H+ continuity and momentum equations and O+, H+ and electron heat balance equations are solved simultaneously within the L = 1.4 (Arecibo) magnetic flux tube between an altitude of 120 km and the equatorial plane. The results of the calculations are used in a study of the topside ionosphere above Arecibo at equinox during sunspot maximum. Magnetically quiet conditions are assumed.The results of the calculations show that the L = 1.4 magnetic flux tube becomes saturated from an arbitrary state within 2–3 days. During the day the ion content of the magnetic flux tube consists mainly of O+ whereas O+ and H+ are both important during the night. There is an altitude region in the topside ionosphere during the day where ion-counterstreaming occurs with H+ flowing downward and O+ flowing upward. The conditions causing this ion-counterstreaming are discussed. There is a net chemical gain of H+ at the higher altitudes. This H+ diffuses both upwards and downwards whilst O+ diffuses upwards from its solar e.u.v. production source which is most important at the lower altitudes. During the night the calculated O+ and H+ temperatures are very nearly equal whereas during the day there are occasions when the H+ temperature exceeds the O+ temperature by about 300 K.  相似文献   

18.
The thermal balance of the plasma in the night-time mid-latitude F2-region is examined using solutions of the steady-state O+ and electron heat balance equations. The required concentrations and field-aligned velocities are obtained from a simultaneous solution of the time-dependent O+ continuity and momentum equations.The results demonstrate the systematic trend for the O+ temperature to be 10–20 K greater than the electron temperature during the night at around 300 km, as observed at St. Santin by Bauer and Mazaudier. It is shown that frictional heating between the O+ and neutral gases is the cause of the O+ temperature being greater than the electron temperature; the greater the importance of frictional heating in the thermal balance the greater is the difference in the O+ and electron temperatures. A study is made of the roles played in the thermal balance of the plasma by the thermal conductivity of the O+ and electron gases; collisional heat transfer between O+ electrons and neutrals; frictional heating between the O+ and neutral gases; and advection and convection due to field-aligned O+ and electron motions. The results of the study show that, at around 300 km, electron cooling by excitation of the fine structure of the ground state of atomic oxygen plays a major role in the thermal balance of the electrons and, since the temperature of the ions is little affected by this electron cooling process, in determining the difference between the ion and electron temperatures.  相似文献   

19.
Measurements of the twilight enhancement of airglow emission from O+(2P) near 7325 Å reveal major changes which accompany geomagnetic activity, no significant distance between evening and morning and an increase in brightness paralleling the approach to solar maximum. The principal source for O+(2P) is direct photoionization from O(3P) but at low solar activity there appears to be a contribution from another source in early twilight which may be local photoelectron ionization into O+(2P). The geomagnetic and solar effects appear to reflect changes in the O and N2 density in the thermosphere; ground based twilight measurements of O+ emissions thus provide a simple means for monitoring thermospheric structure from 300 km to ~ 500 km at solar minimum and to ~600 km at solar maximum.  相似文献   

20.
The high electron temperatures existing within SAR-arcs can result in enhanced vibrational excitation of atmospheric N2 molecules and, as a consequence, increase the rate coefficient of the reaction, O+ + N2 → NO+ + N. This results in a change in the relative abundance of O+ and NO++ in the SAR-arc region compared with that in the undisturbed ionosphere. Theoretical ion density profiles were computed by a triple ion analysis solving the mass, momentum and energy equations for O+, NO+ and O+2 ions self-consistently. Although the electron temperature dependence of the recombination rate of NO+ is not well known, the results show that for a range of expected recombination rates NO+ still remains the dominant ion up to ca. 320 km at night within a bright SAR-arc. Studies were also made of the relative importance of a downward O+ flux and an upward ion drift in maintaining the F-region under SAR-arc conditions. It was found that the upward drift caused a marked increase in the NO+/O+ transition altitude as high as 460 km at night. However, for typical drift speeds up to 50 m sec?1 the peak electron density was lower than experimental observations. The effect of a large, short-duration perpendicular electric field on the SAR-arc ion and electron density profiles was found to be small. In all cases considered the magnitude of the enhanced NO+ density as a result of vibrationally excited N2 molecules was sufficient to prevent the electron density within the night-time SAR-arc from becoming vanishingly small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号