首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The probability of the interstellar wind atoms (H and He) to survive ionization by solar wind electrons is presented. For the first time a dual temperature electron distribution is used to model the effects of “core” (10 eV) and “halo” (60 eV) solar electrons on the probabilities. Survival probability distributions as a function of helicocentric distance were calculated for variations in the electron temperature, solar radiation force, and the interstellar wind flow velocity. These probabilities are important in determining the radial density distributions of the interstellar atoms. It has been found that the interstellar wind has a distinctively higher probability of surviving “halo” rather than “core” electron ionization only at heliocentric distances, ρ, smaller than about 0.5 a.u. For distances larger than 0.5 a.u., the probabilities of surviving “halo” electrons are close to the probabilities of surviving “core” electrons. Also, the probabilities for both “core” and “halo” electrons are relatively insensitive to changes in u (interstellar wind velocity at infinity), μ (the solar ratio of radiation to gravitational force) and α (a model parameter for solar electron temperature) for ρ > 0.5. For distances smaller than that, the sensitivity increases significantly.  相似文献   

2.
The interaction between an artificially produced narrow beam of electrons and the upper atmosphere has been studied by the POLAR 5 electron accelerator “mother”-“daughter” rocket. It is shown how the beam develops a “halo” of scattered electrons and how the low energy electron population in this “halo” is produced partly during the ionization process (at low altitudes), partly by a “wave-plasma” interaction which accelerates the ionospheric background electrons.  相似文献   

3.
Empirical models of three dimensional electron density distributions in the ionosphere have been constructed for global as well as regional use. The models differ by their degree of complexity and calculation time and therefore have different uses. All are based on “ionogram parameter” (critical frequencies foE, foF1, foF2 and the F2 region transfer parameter M(3000)F2). The models allow the use of global or regional maps for foF2 and M(3000)F2 and use built-in formulations for foE and foF1. Update (instantaneous mapping / nowcasting) versions exist which take foF2 and M(3000)F2 or F2 region peak height and electron density as input. The ground to F2 layer peak part of the profile is identical for all three models and is based on an Epstein formulation. The “quick calculationr” model NeQuick uses a simple formulation for the topside F layer, which is essentially a semi-Epstein layer with a thickness parameter which increases linearly with height. The “ionospheric model” COSTprof is the model which was adopted by COST 251 in its regional “monthly median” form. Its topside F layer is based on O+-H+ diffusive equilibrium with built-in maps for three parameters, namely the oxygen scale height at the F2 peak, its height gradient and the O+-H+ transition height. The “ionosphere-plasmasphere” model NeUoG-plas uses a magnetic field aligned “plasmasphere” above COSTprof Typical uses of the models and comparison among them are discussed.  相似文献   

4.
New information obtained about >500 keV electron intensity enhancements, which have been observed intermittently close to the outer edge of the electron radiation belt, is used in conjunction with an earlier statistical study by Brown and Stone (1972) to investigate processes which could lead to such structures. The enhancements are typically of ~20 sec duration and occur in a very narrow invariant latitude band, maximally 2° wide. The intensity increase relative to the “normal” background level is up to a factor 10, and the “spike” frequency of occurrence is strongly local time dependent, with more spikes observed in the night and dusk-noon sectors than in the noon-dawn sector. The processes investigated quantitatively are distortions of the magnetospheric topology in the equatorial region, wave-particle interactions and the effects of ionospheric currents. It is shown that the various processes which contribute to equatorial field disturbances can explain the observations.  相似文献   

5.
More than 2000 years ago, Epicurus taught that there are an infinite number of other worlds, both like and unlike ours, and Aristotle taught that there are none. Neither hypothesis can currently be falsified, and some versions of current multiverses perhaps never can be, which has contributed to occasional claims that “this isn't science!” (a common complaint about cosmology for centuries). Define “cosmos”, or “world”, or “universe” to mean the largest structure of which you and the majority of knowledgeable contemporaries will admit to being a part. This begins with the small, earth‐centered worlds of ancient Egyptian paintings, Greek mythology, and Genesis, which a god could circumnavigate in a day and humans in a generation. These tend to expand and become helio‐rather than geo‐centric (not quite monotonically in time) and are succeeded by various assemblages of sun‐like stars with planets of their own. Finite vs. infinite assemblages are debated and then the issue of whether the Milky Way is unique (so that “island universes” made sense, even if you were against the idea) for a couple of centuries. Today one thinks as a rule of the entire 4‐dimensional space‐time we might in principle communicate with and all its contents. Beyond are the modern multi‐verses, sequential (cyclic or oscillating), hierarchical, or non‐communicating entities in more than four dimensions. Each of these has older analogues, and, in every milieu where the ideas have been discussed, there have been firm supporters and firm opponents, some of whose ideas are explored here. Because astronomical observations have firmly settled some earlier disputes in favor of very many galaxies and very many stars with planets, “other worlds” can now refer only to other planets like Earth or to other universes. The focus is on the latter (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Review of concepts of stability   总被引:1,自引:0,他引:1  
  相似文献   

7.
The mechanisms of “Noisar” phenomenon in AM Herculis-type stars are discussed. In an accretion column above the surface of the magnetized degenerate star the instability of some types may be excited, such as axi-symmetrical quasi-periodical penetration of the low-density “bulks” from the column axis to the outer parts; “boiling” with “bulks” moving inside or outside the column; “tornado” with low-density region rapidly rotating around the column axis; “switchings” of the accretion from one half of the “polar cap” to another and vice versa. The oscillations of different plasma clots (“spaghetti”) may interfer causing flux changes as well. Such “Noisar” oscillations appear in different regions of the accretion column (at the upper shock and near the column base, respectively), so hard and soft X-ray fluxes might not have correlation in their variability. The observations are in qualitative agreement with the models.  相似文献   

8.
A “mother-daughter” rocket was launched from Andøya, Norway, February 1 1976 over two auroral structures. The “daughter” payload carried a 10keV electron accelerator and the “mother” carried a series of diagnostic instruments for monitoring optical and wave effects generated through beam-atmospheric interactions and production of secondary electrons.The experimental details are presented in this paper together with a survey of some of the results. This paper is also intended as a reference for a series of accompanying papers.  相似文献   

9.
The POLAR 5 sounding rocket, launched from Andøya, Norway, on February 1, 1976, was of the “mother-daughter” configuration.A rocket-borne electron accelerator, mounted on the “daughter,” produced a pulsed electron beam with a maximum current of 130 mA and electron energies up to 10 kev.Using a photometer the luminescence at 391.4nm produced by electrons colliding with ambient nitrogen molecules was studied. The observed light at 391.4 nm consisted of low background, with occasional flashes due to the natural auroral excitations, and intense sparkles when the electron beam was emitted.Below 130 km the light observed during beam injection can be explained by excitations of ambient N2 due to high energy beam electrons.In the altitude range from 150 km to apogee at 220 km, the observed light level during beam emission is fairly constant and much larger than that produced by the high energy beam electrons. A possible source of this light is the excitation of ambient N2 by an enhanced population of low energy electrons, created by the presence of a beam plasma discharge in the vicinity of the “daughter” payload.  相似文献   

10.
TeV γ-ray detections in flaring states without activity in X-rays from blazars have attracted much attention due to the irregularity of these “orphan” flares. Although the synchrotron self-Compton model has been very successful in explaining the spectral energy distribution and spectral variability of these sources, it has not been able to describe these atypical flaring events. On the other hand, an electron–positron pair plasma at the base of the AGN jet was proposed as the mechanism of bulk acceleration of relativistic outflows. This plasma in quasi-thermal equilibrium called Wein fireball emits radiation at MeV-peak energies serving as target of accelerated protons. In this work we describe the “orphan” TeV flares presented in blazars 1ES 1959+650 and Mrk 421 assuming geometrical considerations in the jet and evoking the interactions of Fermi-accelerated protons and MeV-peak target photons coming from the Wein fireball. After describing successfully these “orphan” TeV flares, we correlate the TeV γ-ray, neutrino and UHECR fluxes through interactions and calculate the number of high-energy neutrinos and UHECRs expected in IceCube/AMANDA and TA experiment, respectively. In addition, thermal MeV neutrinos produced mainly through electron–positron annihilation at the Wein fireball will be able to propagate through it. By considering two- (solar, atmospheric and accelerator parameters) and three-neutrino mixing, we study the resonant oscillations and estimate the neutrino flavor ratios as well as the number of thermal neutrinos expected on Earth.  相似文献   

11.
The POLAR 5 rocket experiment carried an electron accelerator on a “daughter” payload which injected a 0,1 A beam of 10 keV electrons in a pulsed mode every 410ms. With spin and precession, injections were made over a wide range of pitch angles. Measurements from a double probe electric field instrument and from particle detectors on the “mother” payload and from a crude R.P.A. on the “daughter” payload are interpreted to indicate that the “daughter” charges to a potential between several hundred volts and 1 kV. The neutralizing return current to the “daughter” is shown to be assymetrically distributed with the majority being collected from the direction of the beam. The additional electrons necessary to neutralize the daughter are thought to be produced and heated through beam-plasma interactions postulated by Maehlum et al. (1980b) and Grandal et al. (1980) to explain the particle and optical measurements. Significant electric fields emanating from the charged “daughter” and the beam are seen at distances exceeding 100 m at the “mother” payload.  相似文献   

12.
This paper reviews the numerical simulations of radiative jets with concrete predictions of the emitted radiation, which can be compared directly with observations of individual HH objects. The only models that have been developed to this point are the “internal working surface model” (in which the structures along HH jets are interpreted as working surfaces resulting from a time-variability in the ejection) or the “Kelvin-Helmholtz instability model” (in which the HH knots are associated with shocks resulting from K-H instabilities in the jet beam/environment boundary). The predictions of intensity maps, line ratios, line profiles and proper motions are discussed.  相似文献   

13.
Abstract— Extensive textural studies have been carried out at the suevite in a quarry several kilometers east of the rim of the Nördlinger Ries crater. The composition, grain size and clast orientation of suevite on a 6 m high vertical section were quantified macroscopicaily, as well as microscopically. There exists a strong correlation between the texture of a clastic rock and the transport mechanism of its components. This correlation can be used to obtain information about the transport mechanism of the suevite components, which is fundamental to the understanding of the impact process. A consolidated main suevite enriched in “Flädle” and “Bomben” can be distinguished from a poorly consolidated base suevite, deprived of “Fädle” but relatively well sorted in clast grains. It has been proven that the glass clasts in the main suevite exhibit an inverse gradation, while the crystalline clasts in the lower half of the section show a normal gradation. Eighty one percent of the samples investigated possess orientated clasts ≥2 mm. From the results of this investigation, a predominantly horizontal transport of the main suevite is indicated for the area of investigation. This transport could occur in the form of a suevitie flow similar to that of a pyroclastic flow.  相似文献   

14.
The first part of this paper uses a contamination layer model to discuss the effects of electrode contamination upon electron temperatures estimated from Langmuir probe measurements. The model assumes that the contamination layer is equivalent to a parallel capacitor and resistor. It predicts two main features associated with electrode contamination. One of them, the so-called “frequency dependence,” concerns the sweep-rate of the probe voltage and is well understood. The other is that the effect of a contaminated electrode is decreased as the density of the ambient plasma is decreased and this will be called “density dependence.” We present several experimental results which verify the above predictions.This paper also presents some other experimental results which may be useful in improving the accuracy of Langmuir probe measurements.Finally the effects of electrode contamination upon electron density estimates and energy distribution measurements are briefly discussed.  相似文献   

15.
We report the results of an analysis of the variation of the proper rotation of several destabilized satellites over many-year long time intervals. The cause of the cyclic variations of the proper rotation period of “Midas-7” satellite, which has been orbiting the Earth since 1963 at an altitude of 3700 km, have long been unclear. These variations could not be explained either by the influence of the terrestrial atmosphere and terrestrial magnetic field, or by solar activity. Based on the results of 40-year long observations of “Midas-4,” “Midas-6,”, and “Midas-7” satellites it was established that their proper rotation exhibits not only dissipative braking variations, but also long-period variations with the periods of 477 days (“Midas-4”), 466 days (“Midas-6”), and 346 days (“Midas-7”) with different amplitudes. These variations in the case of the above satellites have well-defined resonance nature. An explanation of the processes found is proposed based on the results of this study and simulations of the observed orbital dynamics of the satellites. Long-period variations of the proper spacecraft rotation arise as a result of the combined effect of the gravitational fields of the Earth, Moon, and Sun depending on the orientation of their orbital planes in space. The amplitudes of such variations is determined by the inclination of satellite orbits to the equator: the closer it is to the pole (i.e., to 90?), the stronger the effect.  相似文献   

16.
Meteorite and meteoroid: New comprehensive definitions   总被引:1,自引:0,他引:1  
Abstract– Meteorites have traditionally been defined as solid objects that have fallen to Earth from space. This definition, however, is no longer adequate. In recent decades, man‐made objects have fallen to Earth from space, meteorites have been identified on the Moon and Mars, and small interplanetary objects have impacted orbiting spacecraft. Taking these facts and other potential complications into consideration, we offer new comprehensive definitions of the terms “meteorite,”“meteoroid,” and their smaller counterparts: A meteoroid is a 10‐μm to 1‐m‐size natural solid object moving in interplanetary space. A micrometeoroid is a meteoroid 10 μm to 2 mm in size. A meteorite is a natural, solid object larger than 10 μm in size, derived from a celestial body, that was transported by natural means from the body on which it formed to a region outside the dominant gravitational influence of that body and that later collided with a natural or artificial body larger than itself (even if it is the same body from which it was launched). Weathering and other secondary processes do not affect an object’s status as a meteorite as long as something recognizable remains of its original minerals or structure. An object loses its status as a meteorite if it is incorporated into a larger rock that becomes a meteorite itself. A micrometeorite is a meteorite between 10 μm and 2 mm in size. Meteorite– “a solid substance or body falling from the high regions of the atmosphere” ( Craig 1849 ); “[a] mass of stone and iron that ha[s] been directly observed to have fallen down to the Earth’s surface” (translated from Cohen 1894 ); “[a] solid bod[y] which came to the earth from space” ( Farrington 1915 ); “A mass of solid matter, too small to be considered an asteroid; either traveling through space as an unattached unit, or having landed on the earth and still retaining its identity” ( Nininger 1933 ); “[a meteoroid] which has reached the surface of the Earth without being vaporized” (1958 International Astronomical Union (IAU) definition, quoted by Millman 1961 ); “a solid body which has arrived on the Earth from outer space” ( Mason 1962 ); “[a] solid bod[y] which reach[es] the Earth (or the Moon, Mars, etc.) from interplanetary space and [is] large enough to survive passage through the Earth’s (or Mars’, etc.) atmosphere” ( Gomes and Keil 1980 ); “[a meteoroid] that survive[s] passage through the atmosphere and fall[s] to earth” ( Burke 1986 ); “a recovered fragment of a meteoroid that has survived transit through the earth’s atmosphere” ( McSween 1987 ); “[a] solid bod[y] of extraterrestrial material that penetrate[s] the atmosphere and reach[es] the Earth’s surface” ( Krot et al. 2003 ).  相似文献   

17.
18.
The relationship between “punctuated equilibrium” and “impact crises” is critically examined in the light of our present knowledge of asteroids and comets. It turns out that the emphasis on relatively narrow epochs associated with occasional “NEO” impacts is probably misplaced. Rather priority should be given to the wider and more frequent epochs associated with multiple “NEO” debris impacts which result in so-called “punctuational crises” afflicting the planets. These comprise the global coolings, super-Tunguska events and generally enhanced fireball flux produced by the larger orbital debris whenever an active, dormant or dead comet fragments and produces a trail. Taken as a whole and in conjunction with the target, the response function is inevitably complex. Nevertheless we broadly expect that the strength of a punctuational crisis will vary as the progenitor comet mass, the inverse dispersion of its debris and the inverse delay since fragmentation. The encounter of P/SL-9 with Jupiter may be taken as representing an extreme punctuational crisis where the dispersion and delay were exceptionally small. The more familiar crises affecting the Earth with less extreme values of dispersion and delay, which have resulted in civilization being disturbed a good many times during recent millennia, are no less important however. Indeed, the next such threat to civilization ostensibly has a roughly 1 in 4 lifetime chance. Any support for the Spaceguard programme which detracts from consideration of these punctuational crises, whatever their strength, would seem now to be peculiarly wide of the mark.  相似文献   

19.
Abstract— The size, shape, composition, and vesicle content of 6 kg of layered tektite fragments, excavated near the town of Huai Sai, Thailand, place some constraints on the formation of layered tektites. The mass, shape, and distribution of the fragments are not consistent with an origin as a “puddle” of impact melt but suggest that they were derived from a single equant block. The presence of vesicles up to 7 mm in mean diameter within the tektite fragments suggests that the material was too viscous to allow for significant gravity-driven flow. These results suggest that layered tektites may be analogous to lava bombs, which may have been stretched and deformed in flight but underwent little flow after landing. Rather than being a product of “unusual circumstances,” such as multiple impacts, layered tektites may differ from splash-form tektites only in initial temperature of formation, speed of ejection, and small differences in initial composition.  相似文献   

20.
Diagnostic infrared spectra of individual nanogram-sized interplanetary dust particles (IDPs) collected in the Earth's stratosphere have been obtained. A mount containing three crushed “chondritic” IDPs shows features near 1000 and 500 cm?1, suggestive of crystalline pyroxene, and different from those of crystalline olivine, amorphous olivine, or meteoritic clay minerals. The structural diversity of chondritic IDPs and possible effects of atmospheric heating must be considered when comparing this spectrum with astrophysical spectra of interplanetary and cometary dust. Transmission electron microscope (TEM) and infrared observations are also reported on one member of the rare subset of IDPs which resemble hydrated carbonaceous chondrite matrix material. The infrared spectrum of this particle between 4000 and 400 cm?1 closely matches that of the C2 meteorite Murchison. TEM observations suggest that this class of particles might serve as a thermometer for the process of heating on atmospheric entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号