首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
三峡库区侏罗系顺向岸坡堆积体滑坡众多,其滑动模式存在一定差异。首先统计分析了192个三峡库区侏罗系层位发育的堆积体滑坡滑体及碎石土的工程地质性质和强度参数。在此基础上,运用数值分析软件对堆积体厚度变化引起的滑坡变形机制进行模拟分析。结果表明:堆积体厚度范围在15m及以下滑坡会沿着岩土界线面滑动、15~35m时滑坡会沿着层内剪切面滑动;厚度范围在35m以上时,堆积体滑坡内部可能存在着多层滑带,即滑坡可能沿着层内剪切面滑动或者沿着岩土界线面滑动。堆积体厚度范围在15m及以下时滑坡的治理措施可采用布置抗滑桩;厚度范围15~35m时可采用排水+布置抗滑桩的滑坡治理措施;厚度范围在35m以上时,可采用滑坡前期监测预报+后期根据滑坡发育情况相结合的滑坡防治措施。  相似文献   

2.
中等倾角岩层顺向坡,受坡体结构和岩体物理力学性质控制,多存在变形、崩塌、滑坡等工程地质问题,常常会诱发大规模的地质灾害。该类斜坡潜在滑动面不直接出露地表,一般具有变形机制复杂、隐蔽性强和危害大的特点,是滑坡领域关注与研究的重点。拖担水库大坝左岸为一古滑坡,在水库扩建开挖过程中,诱发古滑坡体复活。在分析古滑坡工程地质条件的基础上,结合地质勘察和变形监测结果,研究了其变形特征及形成机制。研究结果表明:①左岸古滑坡具有岩层倾角“上陡下缓”、滑体底部存在反倾坡内的剪切破碎带、滑床岩体产生弧状弯曲的特点;②古滑坡体为一基岩顺层滑坡,滑动模式为“滑移(弯曲)—剪断”型,其变形破坏过程包括三个阶段:弯曲隆起阶段、滑移剪出阶段和扰动变形阶段;③该类斜坡变形破坏后,坡体易沿“上陡下缓”的椅型软弱层面发生二次滑动,滑坡控制关键是对下部变形区的保护。  相似文献   

3.
华北地台东缘早元古代隆—滑构造模式   总被引:13,自引:1,他引:13  
刘永江  李三忠 《地质论评》1997,43(6):569-576
研究华北地台东部边缘早元古代拉伸构造及与变质核杂岩的比较,提出了隆-滑构造模式。它一般发生大规模收缩造山作用之前,由于区域拉伸作用,导致下地幔上隆,形成了岩浆隆起或基底隆起,使上覆盖层发生重力滑脱。该模式由核部隆起,上部盖层和其间的拆离韧性发带组成。  相似文献   

4.
There are different approaches and techniques for landslide susceptibility mapping. However, no agreement has been reached in both the procedure and the use of specific controlling factors employed in the landslide susceptibility mapping. Each model has its own assumption, and the result may differ from place to place. Different landslide controlling factors and the completeness of landslide inventory may also affect the different result. Incomplete landslide inventory may produce significance error in the interpretation of the relationship between landslide and controlling factor. Comparing landslide susceptibility models using complete inventory is essential in order to identify the most realistic landslide susceptibility approach applied typically in the tropical region Indonesia. Purwosari area, Java, which has total 182 landslides occurred from 1979 to 2011, was selected as study area to evaluate three data-driven landslide susceptibility models, i.e., weight of evidence, logistic regression, and artificial neural network. Landslide in the study area is usually affected by rainfall and anthropogenic activities. The landslide typology consists of shallow translational and rotational slide. The elevation, slope, aspect, plan curvature, profile curvature, stream power index, topographic wetness index, distance to river, land use, and distance to road were selected as landslide controlling factors for the analysis. Considering the accuracy and the precision evaluations, the weight of evidence represents considerably the most realistic prediction capacities (79%) when comparing with the logistic regression (72%) and artificial neural network (71%). The linear model shows more powerful result than the nonlinear models because it fits to the area where complete landslide inventory is available, the landscape is not varied, and the occurence of landslide is evenly distributed to the class of controlling factor.  相似文献   

5.
西宁市北山地区位于地质灾害高易发区,尤其是大寺沟至王家庄段是西宁市特大型地质灾害群中灾害隐患最多、最严重、最危险的区段.在分析该区段滑坡总体特征的基础上,以林家崖滑坡群为研究对象,分析了该滑坡群的空间形态特征、物质组成和结构特征,并选择折线形滑动模型和3种不同工况对其稳定性进行了计算,最后对滑坡群进行了稳定性评价.认为:1)北山大寺沟至王家庄段共发育崩塌危岩31处,大型滑坡体4处,大型泥石流沟2条;2)林家崖滑坡群滑体主要以崩积物为主,物质组分为粉质黏土夹碎块石;3)受地形地貌、地层岩性、降雨制约和人类工程活动影响,滑坡群目前整体处于等速变形阶段,应加强治理,防止变形进一步加剧.研究成果将为该地区严重的地质灾害防治提供基础地质依据.  相似文献   

6.
2012年6月29日,岑巩县思旸镇大榕村突发大型滑坡灾害,约310104m3。大榕滑坡为古滑坡堆积区失稳。基于滑坡破坏特征分析和地质原型分析,定性判断滑坡失稳模式为蠕滑-拉裂-牵引式滑移。滑坡启动区在不合理人工填土及强降雨作用下,坡脚蠕滑并发展为失稳,由此导致主滑区坡脚支撑作用明显减弱,主滑区中下部因此滑移失稳,并牵引右侧主滑体中上部坡体逐步失稳。滑带主要位于下伏强风化基岩中。主滑体左侧向西滑移,右侧主体向SW向滑移。基于渗流场-应力场耦合数值分析,再现了滑坡失稳过程及发生机理。大榕滑坡形成机制深入研究对于西部山区类似滑坡分析及识别具有重要的参考价值。  相似文献   

7.
Sun  Shu-wei  Pang  Bo  Hu  Jia-bing  Yang  Zhao-xi  Zhong  Xiao-yu 《Landslides》2021,18(7):2593-2607

Owing to the heavy rainfall, a landslide occurred at the Anqian Iron mine, at 18:00(UTC + 8) on November 24, 2019, in China. The landslide was about 3.0?×?104 m3 and caused damage to the road of transporting waste materials. Failure characteristics and the mechanism of this landslide were analyzed in this study. The landslide area was divided into three parts: the rear tension cracking area, the middle sliding deformation area, and the front colluvium area. A contact-free measuring technique using the new ShapeMetrix3D system was applied and 204 joints were analyzed based on equal-angle stereographic projection. Thus, a conceptual model of the mechanism of the landslide was constructed and the formation process of the landslide was divided into three stages: the first shearing and dislocation stage; the second sliding, front bulging, and rear tractive cracking stage; and the third local rock mass collapse and colluvium depositing stage. Numerical modeling was performed to discover the landslide mechanism by progressively reducing the shear strength of rock mass. The results showed that the original slope was stable, whereas heavy rainfall triggered the landslide, and the predicted failure surface matched closely the field investigations. The factor of safety obtained by real three-dimensional analyses was slightly higher than that obtained by plane problem analyses, and the difference was attributed to the three-dimensional effect of the landslide. This paper also presents the results obtained from the parametric analysis in order to understand the impact of shear strength parameters on the overall stability of the slope.

  相似文献   

8.
何坤  胡卸文  马国涛  刘波  梅雪峰  王蛟  杨群 《岩土力学》2020,41(10):3443-3455
受前期14 d持续累计350.6 mm降雨影响,2018年7月19日盐源玻璃村一巨型玄武岩古滑坡体发生大规模复活,复活体积为1 390×104 m3,损坏房屋186间,造成重大经济损失。基于现场调查、无人机航测、钻探揭露、物理力学试验及数值模拟分析,在查明滑坡体地质结构、失稳特征基础上,对其影响因素及复活机制进行了探讨。研究结果表明,破碎岩土体及地形地貌是滑坡复活的孕灾基础,持续降雨及其引起的地下水位升高是滑坡复活的诱发因素。复活滑坡可分为主滑区和侧滑区两种破坏模式不同的区域。降雨作用下滑坡体内渗流场明显变化,孔隙水压力增大,导致7月13日古滑坡体开始发生变形,稳定性系数逐渐降低。受微地貌约束,主滑区具有多级、多次失稳,渐进破坏的特点。侧滑区斜坡前缘临空条件受坡脚主滑坡控制,在主滑坡运动过程中,侧滑区坡体位移量、最大剪切应变增量逐渐增大,塑性区扩展,破坏过程表现出与主滑坡一定的关联性和滞后性。分析表明,受地下水长期影响,滑带土体强度逐渐削弱,降雨导致坡体渗流作用加剧,抗剪强度降低,从而诱发滑坡复活。  相似文献   

9.
滑带土动力学性质试验研究   总被引:1,自引:0,他引:1  
为了研究地震高烈度区老滑坡的复活变形原因,本文对滑坡滑带土的动力学特性进行了系列研究。本次试验采用扰动土样,制样基本物理指标按滑带土的现场测试指标确定,在不固结不排水条件下,运用MTS810Teststar程控液压伺服土动三轴仪对单个样品逐级放大动应力的分级试验方法进行。侧向压力 (围压 )分别采用 100kPa、20 0kPa、300kPa三级,通过施加轴向振动荷载 (力 )模拟地震作用,振动波形为正弦波,频率为 1Hz,振幅随试样性质确定。研究结果表明,滑带土在动荷载作用下的动力学性质与其静荷载作用下的力学性质有着较大的差异,主要表现在滑带土的动应力与动应变关系的非线性、滞后性及变形积累特点,动弹性模量与动强度的显著降低以及动阻尼比的显著增大特性。这揭示了动力作用下的滑坡复活原因之一,同时为滑坡稳定性评价和动力作用下的变形机制模拟分析提供了基础资料,也为分析滑带土动力本构模型提供了基本内容。  相似文献   

10.
Radon measurements were made in the soil and spring/seepage water in and around an active landslide located along the Pindar river in the Chamoli District of Uttaranchal in Garhwal Lesser Himalaya, to understand the application of radon in geological disasters. The landslide is a compound slide i.e. a slump in the crown portion, and debris slide and fall in the lower part. The bedrock consists of gneisses and schists of the Saryu Formation of the Almora Group of Precambrian age. The presence of several small slump scars and debris slide/fall scars along the length of the slide indicates continuous downward movement. The radon concentrations in the present study are much lower in comparison to values reported from other regions. However, the present radon data show relative variation in the slide zone. The concentration of radon measured in landslide zones varies from 3.1 Bq/l to 18.4 Bq/l in spring water and from 2.3 kBq/m3 to 12.2 kBq/m3 in the soil gas of the debris. Along the section of the slide, the radon values in water and soil are slightly higher in the upper slopes i.e. toward the crown portion of the landslide as compared to the distal portion. The relatively low concentration of radon both in soil gas and water in the toe portion of the landslide may be due to the high porosity of the debris, which does not allow radon to accumulate in the soil and water, whereas, towards the crown portion, the high frequency of fractures increases the surface area due to particle size reduction, and the near absence of debris enhances the radon emanation in soil.  相似文献   

11.
在前人有关地质灾害的研究中,滑坡地质灾害以群体式出现的专业术语有"滑坡群"和"滑坡带"两种,但对其内涵的认识存在模糊性和局限性,缺乏层次性,多数情况下其只是对多个滑坡聚集的简称,没有体现出对地质灾害研究的指导意义。本文修正了"滑坡群"的概念,丰富了"滑坡群"的内涵,将"滑坡群"与相同的局部构造、活动构造相联系,使"滑坡群"内部的个体滑坡、相同新构造活动区域"滑坡群"之间的对比成为可能,实现了基础地质研究与灾害地质研究的有机结合。在此指导下提出了"滑坡群"评价方法,包括局部构造样式以及形成机理、局部构造与地质灾害空间演化规律、"滑坡群"内部个体滑坡对比,并建立了"滑坡群"时空演化模式,为预测滑坡破坏过程提供依据。  相似文献   

12.
Landslides commonly occurs in hilly areas and causes an enormous loss iof life and property every year. National highway-1D (NH-1D) is the only road link between the two districts (Kargil and Leh) of Ladakh region that connects these districts with Kashmir valley. The landslide failure record of the recent past along this sector of the highway is not available. The present study documents landslide susceptible zones and records occurrence of 60 landslides during the last 4 years showing an increasing trend in the occurrence of landslides over these years in this sector. The landslide susceptibility zonation map has been prepared based on the numerical rating of ten major factors viz. slope morphometry, lithology, structure, relative relief, land cover, landuse, rainfall, hydrological conditions, landslide incidences and Slope Erosion, categorised the area in different zones of instability based on the intensity of susceptibility. The landslide susceptibility map of the area encompassing 73.03 km2 is divided into 150 facets. Out of the total of 150 facets, 85 facets fall in low susceptibility zone covering 43.56 km2 which constitute about 59.65% of the total area under investigation with a record of 5 landslides; 40 facets fall in the moderate susceptibility zone covering 16.94km2 which constitutes about 23.19% of the study area with a record of 20 landslides; and 25 facets fall in the high susceptibility zone covering 12.53 km2 which constitute about 17.15% of the study area with a record of 35 landslides. Most of the facets which fall in HSZ are attributed to slope modification for road widening.  相似文献   

13.
Sedimentological and accelerator mass spectrometry (AMS) 14C data provide estimates of the structure and age of five submarine landslides (~0.4–3 km3) present on eastern Australia's continental slope between Noosa Heads and Yamba. Dating of the post-slide conformably deposited sediment indicates sediment accumulation rates between 0.017 m ka–1 and 0.2 m ka–1, which is consistent with previous estimates reported for this area. Boundary surfaces were identified in five continental slope cores at depths of 0.8 to 2.2 m below the present-day seafloor. Boundary surfaces present as a sharp colour-change across the surface, discernible but small increases in sediment stiffness, a slight increase in sediment bulk density of 0.1 g cm–3, and distinct gaps in AMS 14C ages of at least 25 ka. Boundary surfaces are interpreted to represent a slide plane detachment surface but are not necessarily the only ones or even the major ones. Sub-bottom profiler records indicate that: (1) the youngest identifiable sediment reflectors upslope from three submarine landslides terminate on and are truncated by slide rupture surfaces; (2) there is no obvious evidence for a post-slide sediment layer draped over, or burying, slide ruptures or exposed slide detachment surfaces; and (3) the boundary surfaces identified within the cores are unlikely to be near-surface slide surfaces within an overall larger en masse dislocation. These findings suggest that these submarine landslides are geologically recent (<25 ka), and that the boundary surfaces are either: (a) an erosional features that developed after the landslide, in which case the boundary surface age provides a minimum age for the landslide; or (b) detachment surfaces from which slabs of near-surface sediment were removed during landsliding, in which case the age of the sediment above the boundary surface indicates the approximate age of landsliding. While an earthquake-triggering mechanism is favoured for the initiation of submarine landslides on the eastern Australian margin, further evidence is required to confirm this interpretation.  相似文献   

14.
Landslide inventories are the most important data source for landslide process, susceptibility, hazard, and risk analyses. The objective of this study was to identify an effective method for mapping a landslide inventory for a large study area (19,186 km2) from Light Detection and Ranging (LiDAR) digital terrain model (DTM) derivatives. This inventory should in particular be optimized for statistical susceptibility modeling of earth and debris slides. We compared the mapping of a representative set of landslide bodies with polygons (earth and debris slides, earth flows, complex landslides, and areas with slides) and a substantially complete set of earth and debris slide main scarps with points by visual interpretation of LiDAR DTM derivatives. The effectiveness of the two mapping methods was estimated by evaluating the requirements on an inventory used for statistical susceptibility modeling and their fulfillment by our mapped inventories. The resulting landslide inventories improved the knowledge on landslide events in the study area and outlined the heterogeneity of the study area with respect to landslide susceptibility. The obtained effectiveness estimate demonstrated that none of our mapped inventories are perfect for statistical landslide susceptibility modeling. However, opposed to mapping polygons, mapping earth and debris slides with a point in the main scarp were most effective for statistical susceptibility modeling within large study areas. Therefore, earth and debris slides were mapped with points in the main scarp in entire Lower Austria. The advantages, drawbacks, and effectiveness of landslide mapping on the basis of LiDAR DTM derivatives compared to other imagery and techniques were discussed.  相似文献   

15.
金沙江上游沃达滑坡自1985年开始出现变形,现今地表宏观变形迹象明显,存在进一步失稳滑动和堵江的风险。采用遥感解译、地面调查、工程地质钻探和综合监测等方法,分析了沃达滑坡空间结构和复活变形特征,阐明了滑坡潜在复活失稳模式,并采用经验公式计算分析了滑坡堵江危险性。结果表明:沃达滑坡为一特大型滑坡,体积约28.81×106 m3,推测其在晚更新世之前发生过大规模滑动;滑坡堆积体目前整体处于蠕滑变形阶段,局部处于加速变形阶段;复活变形范围主要集中在中前部,且呈现向后渐进变形破坏特征,复活区右侧变形比左侧强烈。滑坡存在浅层和深层两级滑面,平均埋深分别约15.0,25.5 m,相应地可能出现两种潜在失稳模式:滑坡强变形区沿浅层滑带滑动失稳时,形成的堵江堰塞坝高度约87.2 m;滑坡整体沿深层滑带滑动失稳时,形成的堵江堰塞坝高度约129.2 m。沃达滑坡存在形成滑坡-堵江-溃决-洪水链式灾害的危险性,建议进一步加强滑坡监测,针对性开展排水、加固等防治工程。  相似文献   

16.
Over the past decade, land development activities on hillsides in northern Utah have resulted in a significant increase in landslide activity throughout the region. The majority of recent landslides are shallow and they occurred on cut gentle slopes especially during spring and early summer due to snowmelt induced elevated groundwater tables. The geologic material documented at numerous landslide sites is a soft gray-green completely decomposed Norwood Tuff. The present study addresses the mechanism of a shallow landslide in completely decomposed Norwood Tuff based on field, laboratory and numerical investigations. Detailed slope surface geometry obtained from laser-scan surveys together with strength and stress–strain parameters derived from laboratory triaxial tests on undisturbed samples of completely decomposed Norwood Tuff collected from the landslide site are employed with finite-element modeling to examine the effects of ground surface deformation patterns on the yielding behavior of the slide mass. The numerical results indicate a gradual retreat of the yield zone with progressive landslide deformation, which eventually becomes concentrated within the accumulation zone of the landslide, compared to a well-developed yield zone within the entire slide mass at the onset of landslide movement. Limit equilibrium stability analyses along potential sliding surfaces of extent limited within the yield zone of the displaced slide mass produce lower safety factors than an analysis based on the original sliding surface comprising the entire slide mass.  相似文献   

17.
The study focuses on the landslide characteristics of Mt. 99 Peaks in Nantou County, the most serious landslide prone area caused by Chichi Earthquake in Taiwan. Several investigations and field surveys were made on Mt. 99 Peaks for 5 years to research the landslide area and depth, rainfall trend, and slope stabilization. The total landslide volume caused by the earthquake on Mt. 99 Peaks was about 1.47×106 m3 and the mean landslide thickness was about 0.22 m. Gravel layers with a volume of more than 80% of total soil profile dominated Mt. 99 Peaks. The landslide on Mt. 99 Peaks was induced by heavy rainfall from July to September because the rainfall on Mt. 99 Peaks had a nonuniform distribution in time. Although the vegetation recovery on Mt. 99 Peaks was in progress, the soil slope had remained unstable. As a result, Typhoon Mindulle occurred in July 2004 collapsed the hillslope again after 5 years of Chichi Earthquake. This study suggests that vegetation recovery on Mt. 99 Peaks for 5 years was insufficient to stabilize the landslide affected area.  相似文献   

18.
The Tochiyama landslide is one of several complex, deep-seated and large-scale landslides occurring in the Hokuriku Province in central Japan. The landslide is about 2 km long and about 500–1100 m wide; it occupies an area of approximately 150 ha and has a maximum depth of 60 m. The slide developed on a dip-slope structure, and is divisible into three layers in ascending order: older landslide debris and avalanche deposits, younger debris-avalanche deposits, and talus. The landslide complex is still active. A triangulation point on the upper part of the landslide shifted downhill by 3.3 m from 1907 to 1983, indicating an average rate of 4.3 cm/y. In 1991, the average rate of movement on the sliding surface was also 4.3 cm/y as measured by an automatic system with inclinometers installed in borehole No. 1–2. The rate measured for borehole No. 1–3, located 380 m upslope from No. 1–2, was over twice that of No. 1–2 for the same period; it has since accelerated to about 19 cm/y. Thus current movements on the basal sliding surface are inhomogeneous; the head of the slide complex is increasing the horizontal granular pressures on the lower part of the slide block.

On the basis of dating of two tephra layers and14C dating of carbonized wood intercalated within the landslide body, two stages of slide movement have been distinguished. The earlier occurred between about 46,000 to 25,000 years ago, and the latter occurred since 1361 A.D. The following sequence of events is inferred. During the middle Pleistocene, intense tectonic movements occurred in the Hokuriku Province, and as a consequence dip-slopes were developed in the Tochiyama landslide area. Low-angle fault planes (possibly representing slump features) and fracture zones then developed within flysch deposits underlying the landslide area, causing a reduction in shear strength. The erosion base level was lowered during the Würm glacial age, and due to severe erosion and incision of stream valleys, the surface slope angle rapidly increased, and toe resistance decreased. This combination of causes led to the development of a deep-seated primary landslide. As a result of an accumulation of younger deposits, regional uplift and further local erosion, stability of parts of the region decreased and led to landslide activity of a second stage. Reactivated and locally accelerating creep movements occur today and may forewarn of a stage of reactivated, hazardous rapid sliding, such as occurred with the adjacent and analogous Maseguchi landslide in 1947.  相似文献   


19.
鲜水河断裂带是发育于青藏高原东缘的一条大型左旋走滑断裂带,该区新构造活动强烈且历史强震频发,一系列大型-巨型滑坡沿断裂带密集分布。在资料收集的基础上,对鲜水河断裂带两侧10 km区域内进行遥感解译和野外地质调查,建立数据库并对滑坡主要影响因素进行分析。在滑坡区域发育分布规律分析的基础上,选取地形坡度、地形坡向、地面高程、平面曲率、地形湿度指数、活动断裂、工程地质岩组、年降雨量、河流、道路、植被覆盖指数等11个因素作为滑坡易发性评价因子,在ArcGIS软件平台上,采用证据权模型开展了滑坡易发性评价。根据成功率曲线对评价结果的检验,滑坡易发性评价结果具有较好的精度,并将研究区的滑坡易发程度划分为极高易发、高易发、中等易发、低易发和不易发5个级别。滑坡的易发性受鲜水河断裂带影响显著,极高易发区和高易发区主要分布在东谷到道孚县沿鲜水河断裂带两侧,以及康定县城和磨西镇附近;中等易发区主要分布在鲜水河支流两岸及省道沿线;滑坡低易发区和不易发区主要分布在人类工程活动少的高山地带以及地形相对平缓的区域。滑坡易发性评价结果很好地反映了鲜水河断裂带区域内滑坡发育分布现状,为该区重大工程规划建设和防灾减灾提供参考依据。  相似文献   

20.
Frequent soil landslide events are recorded in the Three Gorges Reservoir area, China, making it necessary to investigate the failure mode of such riverside landslides. Geotechnical centrifugal test is considered to be the most realistic laboratory model, which can reconstruct the required geo-stress. In this study, the Liangshuijing landslide in the Three Gorgers Reservoir area is selected for a scaled centrifugal model experiment, and a water pump system is employed to retain the rainfall condition. Using the techniques of digital photography and pore water pressure transducers, water level fluctuation is controlled, and multi-physical data are thus obtained, including the pore water pressure, earth pressure, surface displacement and deep displacement. The analysis results indicate that: Three stages were set in the test (waterflooding stage, rainfall stage and drainage stage). Seven transverse cracks with wide of 1–5 mm appeared during the model test, of which 3 cracks at the toe landslide were caused by reservoir water fluctuation, and the cracks at the middle and rear part were caused by rainfall. During rainfall process, the maximum displacement of landslide model reaches 3 cm. And the maximum deformation of the model exceeds 12 cm at the drainage stage. The failure process of the slope model can be divided into four stages: microcracks appearance and propagation stage, thrust-type failure stage, retrogressive failure stage, and holistic failure stage. When the thrust-type zone caused by rainfall was connected or even overlapped with the retrogressive failure zone caused by the drainage, the landslide would start, which displayed a typical composite failure pattern. The failure mode and deformation mechanism under the coupling actions of water level fluctuation and rainfall are revealed in the model test, which could appropriately guide for the analysis and evaluation of riverside landslides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号