首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
莫新宇  祝善友  张磊 《地理空间信息》2013,11(1):61-63,81,13
选取苏州作为研究区,分别利用1986年和2004年2个时相的Landsat5 TM影像数据对研究区土地利用/覆盖类型进行分类,并采用热红外波段进行地表温度反演,在此基础上分析了下垫面类型与热岛效应的时空变化,深入研究了下垫面类型改变对热岛效应的影响。结果表明,近20a苏州市城区大范围扩张,土地利用变化剧烈,整体表现为水体、植被向不透水下垫面的高强度转化;城市热岛范围由老城区向四周成倍扩大,热岛强度由3.12°增至4.76°,热岛效应变化与土地利用时空变化之间具有明显的对应关系。  相似文献   

2.
利用2005年Landsat TM遥感卫星数据,对广州市不同土地利用类型与城市热环境之间的关系进行研究,发现不同土地利用类型对地表温度(LST)的影响具有明显的差异。草地、林地及耕地的LST与归一化植被覆盖指数(NDVI)呈现明显的负相关,水域的LST与归一化水体指数(MNDWI)之间呈现明显负相关,而城镇建设用地指数(NDBI)、未利用土地指数(NDBaI)则与LST呈现明显正相关。最后建立了LST与各土地利用类型表征指数及DEM之间的多元线性回归方程,可用来指示一个地区不同地表覆盖及地形差异导致的地表温度分布,为城市热环境的评价和分析提供依据。  相似文献   

3.
基于多目标遥感信息处理的城市扩展监测与分析   总被引:1,自引:1,他引:0  
基于徐州市1994年、2002年和2007年的多时相Landsat TM/ETM+遥感影像,利用建筑用地指数(IBI)提取城市建筑用地信息,通过监督分类获得城市土地覆盖网,由单窗算法反演地表温度.利用多目标遥感信息处理得到的建筑用地分布、土地覆盖图和地表热环境信息,从土地利用结构变化、城市热环境时空演变两个方面分析了徐州市城市扩展动态,表明徐州市建成区面积不断扩大,城市扩展速度进一步加快,土地利用类型相互转换频繁;城市热岛现象显著,热岛分布与城市建筑用地的轮廓基本吻合,建筑用地不断增加是热岛效应加重的主要因素.研究表明,综合土地覆盖分类、专题信息提取和地表参数定量反演的多目标遥感信息处理用于监测分析城市扩展与生态环境响应具有明显的优越性.  相似文献   

4.
毕朋峰 《测绘科学》2013,38(3):77-80
本文利用2006年、2010年沈阳市地区TM遥感数据,采用影像IB算法反演地表温度,分析了沈阳市热岛效应的空间分布特征、变化现象以及地表温度与归一化植被指数(NDVI)、归一化建筑指数(NDBI)之间的相关性。研究表明沈阳市热岛效应总体呈现由市中心向四周逐渐扩张的空间特征,地表温度与归一化植被指数(ND-VI)存在紧密的负线性相关关系,地表温度与归一建筑指数(NDBI)存在正相关关系。  相似文献   

5.
基于MODIS数据的长株潭地区城市热岛时空分析   总被引:7,自引:1,他引:6  
历华  曾永年  贠培东  黄健柏  邹杰 《测绘科学》2007,32(5):108-110,116
基于MODIS影像,采用分裂窗算法反演的地表温度对长株潭地区城市热岛空间分布与季相变化特征、影响因子进行定量研究。结果表明,长株潭地区春季和夏季存在明显的城市热岛效应,而冬季和秋季城市热岛并不明显;地表覆盖类型对城市热岛的影响十分明显,长株潭地区春、夏、秋季植被绿地状况与城市热岛呈现明显负相关分布,其中以夏季最为明显,夏季地表温度与NDVI相关系数的平方R2达到0.8193,即植被覆盖对城市地表温度的影响显著。因此,城市植被的分布与季节变化影响着城市热岛的强度与时空分布,揭示出植被绿地对降低城市热岛效应具有重要的作用,大范围的绿地建设能有效降低城市热岛效应。  相似文献   

6.
利用1988年、2002年、2005年的武汉地区TM遥感影像,选取通用性较强的普适单通道法进行地温反演,得到3个时期的地表温度图、地表均温和标准差的变化情况。利用最大似然法进行监督分类,得到不同时期武汉地区的土地利用图。围绕这3年的土地利用/覆盖变化以及地表温度反演结果,探索不同地表覆盖类型与温度分布的关系,并对武汉地区热岛状况进行定性分析。  相似文献   

7.
针对城市热岛效应对城市生态环境产生的诸多问题,该文以长春市为研究区,利用Landsat TM/TIRS遥感影像,采用普适单通道算法反演地表温度,分析各种驱动因子对地表温度的影响。结果表明:普适单通道算法反演得到的地表温度与卫星过境时测得的气温差值在2℃内。高程(DEM)、优化土壤调节植被指数(OSAVI)、改进归一化差异水体指数(MNDWI)均与地表温度呈负相关,归一化差异不透水面指数(NDISI)与地表温度呈正相关,城市中心区地表温度相对高。长春市1995—2017年间各土地覆盖类型中水体变化最为稳定,裸地变化最为活跃;各土地覆盖类型的平均温度均呈现:建设用地>裸地>林地>水体。因此,通过增加植被与水域的覆盖范围、减少人为不透水面面积可缓解城市热岛效应。  相似文献   

8.
张熙  鹿琳琳  王萍  周春艳  冀婷婷 《测绘科学》2016,41(3):100-103,90
针对山区植被分类受地形复杂、植被类型多样、验证数据获取困难等因素限制基于多光谱数据的亚热带山区土地利用/覆盖分类存在困难,探究利用物候信息对亚热带山区植被实施分类的效果。综合运用归一化植被指数(NDVI)、比值植被指数(RVI)、归一化水指数(NDWI),同时考虑到海拔高度对植被类型的影响,建立决策树模型。该模型基于多时相Landsat TM影像,利用了不同地物类型的物候特征和光谱差异,将漓江上游地区分为8种土地覆盖类型。实验结果表明,分类结果总体精度达到86.40%,Kappa系数为0.83。  相似文献   

9.
熊晓峰  张德州 《地理空间信息》2021,19(11):71-74,119
为研究长三角城市群城市热环境与地表覆盖响应,基于长时间序列(2003-2018年)MODIS地表温度和土地利用数据,利用均值标准差法和城郊温差法揭示了研究区地表覆盖与城市热岛时空演变规律.结果表明,长三角城市群城市扩张明显,建成区范围逐年增大;长三角城市群城市热岛在空间上表现为由西向东的M形扩张以及由北向南的Z形扩张;城市热岛强度均在3℃以上,城市热岛增长主要体现在2003-2011年;研究区各地表覆盖类型变化趋势相同,均为水体温度最低,其次是林地和湿地,建成区地表温度最高.  相似文献   

10.
熊晓峰  张德州 《地理空间信息》2021,19(11):71-74,119
为研究长三角城市群城市热环境与地表覆盖响应,基于长时间序列(2003-2018年)MODIS地表温度和土地利用数据,利用均值标准差法和城郊温差法揭示了研究区地表覆盖与城市热岛时空演变规律.结果表明,长三角城市群城市扩张明显,建成区范围逐年增大;长三角城市群城市热岛在空间上表现为由西向东的M形扩张以及由北向南的Z形扩张;城市热岛强度均在3℃以上,城市热岛增长主要体现在2003-2011年;研究区各地表覆盖类型变化趋势相同,均为水体温度最低,其次是林地和湿地,建成区地表温度最高.  相似文献   

11.
The knowledge of the surface temperature is important to a range of issues and themes in earth sciences central to urban climatology, global environmental change and human-environment interactions. The study analyses land surface temperature (LST) estimation using temporal ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) datasets (day time and night time) over National Capital Territory Delhi using the surface emissivity information at pixel level. The spatial variations of LST over different land use/land cover (LU/LC) at day time and night time were analysed and relationship between the spatial distribution of LU/LC and vegetation density with LST was developed. Minimum noise fraction (MNF) was used for LU/LC classification which gave better accuracy than classification with original bands. The satellite derived emissivity values were found to be in good agreement with literature and field measured values. It was observed that fallow land, waste land/bare soil, commercial/industrial and high dense built-up area have high surface temperature values during day time, compared to those over water bodies, agricultural cropland, and dense vegetation. During night time high surface temperature values are found over high dense built-up, water bodies, commercial/industrial and low dense built-up than over fallow land, dense vegetation and agricultural cropland. It was found that there is a strong negative correlation between surface temperature and NDVI over dense vegetation, sparse vegetation and low dense built-up area while with fraction vegetation cover, it indicates a moderate negative correlation. The results suggest that the methodology is feasible to estimate NDVI, surface emissivity and surface temperature with reasonable accuracy over heterogeneous urban area. The analysis also indicates that the relationship between the spatial distribution of LU/LC and vegetation density is closely related to the development of urban heat islands (UHI).  相似文献   

12.
There has been an increasing interest in mapping and monitoring urban land use/land cover using remote sensing techniques. However, there still exist quite a number of challenges in deriving urban extent and its expansion density from remote sensing data quantitatively. This study utilized Landsat TM/ETM+ remote sensing data to assess urban expansion and its thermal characteristics with a case study in the city of Changsha, China. We proposed a new approach for quantitatively determining built-up area, its expansion density and their respective relationship with land surface temperature (LST) patterns. An urban expansion metric was also developed using a moving window mechanism to identify urban built-up area and its expansion density based on selected threshold values. The study suggested that urban extent and its expansion density, as well as surface thermal characteristics and patterns could be identified through quantitatively derived remotely sensed indices and LST, which offer meaningful characteristics in quantifying urban expansion density and urban thermal pattern. Results from the case study demonstrated that: (1) the built-up area and urban expansion density have significantly increased in the city of Changsha from 1990 to 2001; and (2) the differences of urban expansion densities correspond to thermal effects, where a high percentage of imperviousness is usually associated with the area covered by high surface temperature.  相似文献   

13.
Main objective of this study was to establish a relationship between land cover and land surface temperature (LST) in urban and rural areas. The research was conducted using Landsat, WorldView-2 (WV-2) and Digital Mapping Camera. Normalised difference vegetation index and normalised difference built-up index were used for establishing the relation between built-up area, vegetation cover and LST for spatial resolution of 30 m. Impervious surface and vegetation area generated from Digital Mapping Camera from Intergraph and WV-2 were used to establish the relation between built-up area, vegetation cover and LST for spatial resolutions of 0.1, 0.5 and 30 m. Linear regression models were used to determine the relationship between LST and indicators. Main contribution of this research is to establish the use of combining remote sensing sensors with different spectral and spatial resolution for two typical settlements in Vojvodina. Correlation coefficients between LST and LST indicators ranged from 0.602 to 0.768.  相似文献   

14.
One of the key impacts of rapid urbanization on the environment is the effect of urban heat island (UHI). By using the Landsat TM/ETM+ thermal infrared remote sensing data of 1993, 2001 and 2011 to retrieve the land surface temperature (LST) of Lanzhou City, and by adopting object-oriented fractal net evolution approach (FNEA) to make image segmentation of the LST, the UHI elements were extracted. The G* index spatial aggregation analysis was made to calculate the urban heat island ratio index (URI), and the landscape metrics were used to quantify the changes of the spatial pattern of the UHI from the aspects of quantity, shape and structure. The impervious surface distribution and vegetation coverage were extracted by a constrained linear spectral mixture model to explore the relationships of the impervious surface distribution and vegetation coverage with the UHI. The information of urban built-up area was extracted by using UBI (NDBI-NDVI) index, and the effects of urban expansion on city thermal environment were quantitatively analyzed, with the URI and the LST grade maps built. In recent 20 years, the UHI effect in Lanzhou City was strengthened, with the URI increased by 1.4 times. The urban expansion had a spatiotemporal consistency with the UHI expansion. The patch number and density of the UHI landscape were increased, the patch shape and the whole landscape tended to be complex, the landscape became more fragmented, and the landscape connectivity was decreased. The heat island strength had a negative linear correlation with the urban vegetation coverage, and a positive logarithmic correlation with the urban impervious surface coverage.  相似文献   

15.
王祎婷  谢东辉  李亚惠 《遥感学报》2014,18(6):1169-1181
针对城市及周边区域建造区和自然地表交织分布的特点,探讨了利用归一化植被指数(NDVI)和归一化建造指数(NDBI)构造趋势面的地表温度(LST)降尺度方法,以北京市市区及周边较平坦区域为例实现了LST自960 m向120 m的降尺度转换。分析了LST空间分布特征及NDVI、NDBI对地物的指示性特征;以北京市四至六环为界分析NDVI、NDBI趋势面对地表温度的拟合程度及各自的适用区域;在120 m、240 m、480 m和960 m 4个尺度上评价了NDVI、NDBI和NDVI+NDBI趋势面对LST的拟合程度和趋势面转换函数的尺度效应;对NDVI、NDBI和NDVI NDBI等3种方法的降尺度结果分覆盖类型、分区域对比评价。实验结果表明结合两种光谱指数的NDVI NDBI方法降尺度转换精度有所改善,改善程度取决于地表覆盖类型组合。  相似文献   

16.
As more than 50% of the human population are situated in cities of the world, urbanization has become an important contributor to global warming due to remarkable urban heat island (UHI) effect. UHI effect has been linked to the regional climate, environment, and socio-economic development. In this study, Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery, respectively acquired in 1989 and 2001, were utilized to assess urban area thermal characteristics in Fuzhou, the capital city of Fujian province in south-eastern China. As a key indicator for the assessment of urban environments, sub-pixel impervious surface area (ISA) was mapped to quantitatively determine urban land-use extents and urban surface thermal patterns. In order to accurately estimate urban surface types, high-resolution imagery was utilized to generate the proportion of impervious surface areas. Urban thermal characteristics was further analysed by investigating the relationships between the land surface temperature (LST), percent impervious surface area, and two indices, the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI). The results show that correlations between NDVI and LST are rather weak, but there is a strong positive correlation between percent ISA, NDBI and LST. This suggests that percent ISA, combined with LST, and NDBI, can quantitatively describe the spatial distribution and temporal variation of urban thermal patterns and associated land-use/land-cover (LULC) conditions.  相似文献   

17.
Mitigating urban heat island (UHI) effects, especially under climate change, is necessary for the promotion of urban sustainability. Shade is one of the most important functions provided by urban trees for mitigating UHI. However, the cooling effect of tree shade has not been adequately investigated. In this study, we used a simple and straightforward method to quantify the spatial and temporal variation of tree shade and examined its effect on land surface temperature (LST). We used the hillshade function in a geographic information system to quantify the spatiotemporal patterns of tree shade by integrating sun location and tree height. Relationships between shade and LST were then compared in two cities, Tampa, Florida and New York City (NYC), New York. We found that: (1) Hillshade function combining the sun location and tree height can accurately capture the spatial and temporal variation of tree shade; (2) Tree shade, particularly at 07:30, has significant cooling effect on LST in Tampa and NYC; and (3) Shade has a stronger cooling effect in Tampa than in NYC, which is most likely due to the differences in the ratio of tree canopy to impervious surface cover, the spatial arrangements of trees and buildings, and their relative heights. Comparing the cooling effects of tree shade in two cities, this study provides important insights for urban planners for UHI mitigation in different cities.  相似文献   

18.
The urban heat island (UHI) is increasingly recognized as a serious, worldwide problem because of urbanization and climate change. Urban vegetation is capable of alleviating UHI and improving urban environment by shading together with evapotranspiration. While the impacts of abundance and spatial configuration of vegetation on land surface temperature (LST) have been widely examined, very little attention has been paid to the role of vertical structure of vegetation in regulating LST. In this study, we investigated the relationships between horizontal/vertical structure characteristics of urban tree canopy and LST as well as diurnal divergence in Nanjing City, China, with the help of high resolution vegetation map, Light Detection and Ranging (LiDAR) data and various statistical analysis methods. The results indicated that composition, configuration and vertical structure of tree canopy were all significantly related to both daytime LST and nighttime LST. Tree canopy showed stronger influence on LST during the day than at night. Note that the contribution of composition of tree canopy to explaining spatial heterogeneity of LST, regardless of day and night, was the highest, followed by vertical structure and configuration. Combining composition, configuration and vertical structure of tree canopy can take advantage of their respective advantages, and best explain variation in both daytime LST and nighttime LST. As for the independent importance of factors affecting spatial variation of LST, percent cover of tree canopy (PLAND), mean tree canopy height (TH_Mean), amplitude of tree canopy height (TA) and patch cohesion index (COHESION) were the most influential during the day, while the most important variables were PLAND, maximum height of tree canopy (TH_Max), variance of tree canopy height (TH_SD) and COHESION at night. This research extends our understanding of the impacts of urban trees on the UHI effect from the horizontal to three-dimensional space. In addition, it may offer sustainable and effective strategies for urban designers and planners to cope with increasing temperature.  相似文献   

19.
20.
Alteration in climatic pattern has resulted to a steady decline in quality of life and the environment, especially in and around urbanized areas. These areas are faced with increasing surface temperature arising mostly from human activities and other natural sources; hence land surface temperature has become an important variable in global climate change studies. In this paper, Landsat TM/ETM imagery acquired between 1997 and 2013 were used to extract ground brightness temperature and land use/land cover change in Kuala Lumpur metropolis. The main objective of this paper is to examine the effectiveness of quantifying UHI effects, in space and time, using remote sensing data and, also, to find the relationship between UHI and land use change. Four land use types (forest, farmland, built-up area and water) were classified from the Landsat images using maximum likelihood classification technique. The result reveals that Greater KL experienced an increase in average temperature from 312.641°K to 321.112°K which was quite eminent with an average gain in surface temperature of 8.4717°K. During the period of investigation (1997–2013), generally high temperature is been experienced mostly in concentrated built-up areas, the less concentrated have a moderate to intermediate temperature. Again, the study also shows that low and intermediate temperature classes loss more spatial extent from 2,246.89 Km2 to 1,164.53 Km2 and 6,102.42 Km2 to 3,013.63 Km2 and a gain of 4,165.963 Km2 and 307.098 Km2 in moderate and high temperature respectively from 1997 to 2013. The results of this study may assist planners, scientists, engineers, demographers and other social scientists concerned about urban heat island to make decisions that will enhance sustainable environmental practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号