首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Schurwedraai alkali granite is one of a number of prominent ultramafic-mafic and felsic intrusions in the Neoarchaean to Palaeoproterozoic sub-vertical supracrustal collar rocks of the Vredefort Dome, South Africa. The alkali granite intruded the Neoarchaean Witwatersrand Supergroup and has a peralkaline to peraluminous composition. A new zircon SHRIMP crystallization age of 2052 ± 14 Ma for the Schurwedraai alkali granite places it statistically before the Vredefort impact event at 2023 ± 4 Ma and within the accepted emplacement interval of 2050–2060 Ma of the Bushveld magmatic event. The presence of the alkali granite and associated small ultramafic-mafic intrusions in the Vredefort collar rocks extends the southern extremity of Bushveld-related intrusions to some 120 km south of Johannesburg and about 150 km south of the current outcrop area of the Bushveld Complex. The combined effect of these ultramafic-mafic and felsic bodies may have contributed to a pronouncedly steep pre-impact geothermal gradient in the Vredefort area, and to the amphibolite-grade metamorphism observed in the supracrustal collar rocks of the Vredefort Dome.  相似文献   

2.
Results of RbSr, PbPb and SmNd whole rock, Rbr biotite and PbPb zircon evaporation analyses are presented for certain granitoid rocks from the Johannesburg Dome. These data indicate that the granodiorite, granite and leucosome from migmatite were emplaced ∼ 3090 Ma ago, were genetically related and were derived primarily from a source between ∼ 3300 and ∼ 3500 Ma old. A portion of the granodiorite and granite might have been derived from a source between ∼ 4000 and ∼ 4300 Ma old. The tonalite was emplaced ∼ 3170 Ma ago and was derived from a source between 3.3 and 3.5 Ga old. RbSr biotite-whole rock ages, ranging between about ∼ 2614 and ∼ 2080 Ma, probably reflect complete resetting during differential uplift, erosion and cooling of the granitoid rocks in the Neoarchæan and Palæoproterozoic. If so, they apparently were not influenced by the emplacement of the ∼ 2060 Ma Bushveld Igneous Complex or the ∼ 2000 Ma Vredefort event. The granodiorite, granite and leucosome were emplaced coeval with and may be genetically related to compositionally similar plutonic and volcanic rocks in the Barberton area, Vredefort structure and Dominion Group.  相似文献   

3.
The Anna's Rust Sheet (ARS) and a suite of mineralogically and chemically related intrusions in the core and collar of the Vredefort Dome (in particular, the Vredefort Mafic Complex: VMC) represent a newly recognised type of high Ti gabbro in this central part of the Kaapvaal Craton. This lithology, referred to as the Vredefort Type IV mafic intrusion, is distinguished from chemically similar Type V intrusions (the Karoo dolerites) by the presence of glomeroporphyritic plagioclase and higher Th content and from Type III intrusions (≈ 1600 Ma gabbro) by the lack of cross-cutting pseudotachylitic breccia veinlets. Petrographic features and both major and trace element compositions of all Type IV intrusions are very similar. Based on its Rb-Sr isotope age and character, a gabbroic intrusion from Majuba Colliery (Mpumalanga Province) is also thought to belong to the ARS (Type IV) suite of tholeiitic intrusions. Rb-Sr isotopic analysis resulted in a preferred age of 1052±11 Ma (2ω) for biotite and plagioclase data for ARS, VMC and Majuba samples. The Rb-Sr age for the ARS is further supported by 40Ar-39Ar stepheating ages for plagioclase and pyroxene separates from two ARS and VMC samples, which favour formation of this gabbroic intrusion at ca 1000 Ma ago. These results suggest that an ≈ 120 m thick sheet intrusion may be present throughout a major part of the Vredefort Dome. While Kibaran-age (ca 1–1.2 Ga) alkaline, both mafic and felsic, magmatism, as well as tectonic and hydrothermal activity at that time, have been known in the central Kaapvaal Craton, a widespread tholeiitic magmatic component has now been added to this record. There is a strong likelihood that this magmatic event occurred throughout the southern African subcontinent and perhaps into Antarctica.  相似文献   

4.
鞍山地区陈台沟壳岩时代归属的初步研究   总被引:3,自引:0,他引:3  
鞍山市东部约8km处的陈台沟村附近,出露一套以斜长角闪岩类、石英岩类和长英质片麻岩类组成的表壳岩。长期以来,大多数地质学者一直将该表壳岩划归为鞍山群,但在岩石组合、变质变形特征和含矿性等诸多方面,都与鞍山地区公认的鞍山群明显不同,因表壳岩本身缺少准确定年的对象,难以直接测年,笔者将侵入于长英质片麻岩中的花岗岩脉中的锆石颗粒,用Kober方法和离子探针质谱计(SHRIMP)测定年龄,取得了表壳岩的沉积年龄为3376±5Ma-3357±4Ma。说明该表壳岩形成时代远老于鞍山群。  相似文献   

5.
Thermal events at 1690-1680, 1660-1640 and 1600-1570 Ma have been resolved by SHRIMP U---Pb geochronological study on zircons and monazites from seven localities near to the Broken Hill Pb---Zn---Ag orebody, Australia. The earliest-recognized thermal event included intrusion of now deformed granites such as Rasp Ridge Gneiss and Alma Gneiss and intrusion of gabbro at Round Hill. Previously these have been interpreted as volcanic in origin, and have been assigned to different stratigraphic units of the Palaeoproterozoic Willyama Supergroup. Because these rocks are intrusions, they should be removed from the Supergroup stratigraphic sequence. The 1640–1660 Ma thermal event reached upper amphibolite to granulite conditions and produced melt segregations in parts of the Rasp Ridge Gneiss. Granites of this age are the Purnamoota Road Gneiss, previously correlated with 1690-1680 Ma rocks assigned to the Hores Gneiss stratigraphic unit, and granitic veins within Sundown Group metapelites. The 1600-1570 Ma thermal event also reached upper amphibolite to granulite conditions. The only possible 1600-1570 Ma intrusive rock reported in this study is ‘Lf-leucogneiss’ (granite) at the Purnamoota Road locality. Melt segregations of this age have been found in the Round Hill gabbro and metamorphic segregations have been found in the Purnamoota Road Gneiss. The granite intrusions and segregations are absolute time markers for fabric development and therefore can be used to re-evaluate tectonothermal evolution of rocks close to the Broken Hill Pb---Zn orebody. Within the studied rocks several discrete high grade deformation phases have been observed. The earliest detected deformation is older than 1640–1660 Ma, but syn- or post 1690 Ma. A later deformation phase can be constrained to be pre-or syn 1640–1660 Ma and a yet later deformation phase to be syn- or post- 1600-1570 Ma. The current consensus classifies the Broken Hill Pb---Zn---Ag orebody as the metamorphosed equivalent of classic SEDEX (sedimentary-exhalative) deposits, deposited at ca 1690 Ma. This interpretation heavily relies on the Hores Gneiss being a volcanic marker horizon, because the orebody is situated, apparently conformably, within the Hores Gneiss. However, results of this study show that rocks assigned to the Hores Gneiss are of different age, thus do not form a reliable marker horizon. The present results suggest that in the Thackaringa and Broken Hill Groups in the vicinity of Broken Hill, true supracrustal rocks are ≥ 1690 Ma, rather than ca 1690 Ma as previously suggested. Large parts of rocks surrounding the orebody are intrusions and together with their host supracrustal rocks were metamorphosed and locally remelted at 1660-1640 and 1600-1570 Ma.  相似文献   

6.
The unique combination of its large size (250-300 km diameter), deep levels of erosion (>7 km), and widespread regional mining activity make the Vredefort impact structure in South Africa an exceptional laboratory for the study of impact-related deformation phenomena in the rocks beneath giant, complex impact craters. Two types of impact-generated melt rock occur in the Vredefort Structure: the Vredefort Granophyre - impact melt rock - and pseudotachylitic breccias. Along the margins of the structure, mining and exploration drilling in the Witwatersrand goldfields has revealed widespread fault-related pseudotachylitic breccias linked to the impact event. There, volumetrically limited melt breccia occurs in close association with cataclasite or mylonitic zones associated with bedding-parallel normal dip-slip faults that formed during inward slumping of the crater walls, and in rare subvertical faults oriented radially to the center of the structure. This association is consistent with formation of pseudotachylites by frictional melting. On the other hand, rocks in the Vredefort Dome - the central uplift of the impact structure - contain ubiquitous melt breccias that range in size from sub-millimeter pods and veinlets to dikes up to tens of meters wide and hundreds of meters long. Like fault-related pseudotachylites in the goldfields and elsewhere in the world, they display a close geochemical relationship to their wallrocks, indicating local derivation. However, although mm/cm- to, rarely, dm-scale offsets are commonly found along their margins, they do not appear to be associated with broader fault zones, are commonly considerably more voluminous than most known fault-related pseudotachylites, and show no consistent relationship between melt volumes and slip magnitude. Recent petrographic observations indicate that at least some of these melt breccias formed by shock melting, with or without frictional melting. Consequently, the non-genetic term “pseudotachylitic breccia” has been adopted for these Vredefort occurrences. These breccias formed during the impact in rocks at temperatures ranging from greenschist to granulite facies, and were subsequently annealed to varying degrees during cooling of the central uplift.In addition to the pseudotachylitic breccias, nine clast-laden impact melt dikes (Vredefort Granophyre), each up to several kilometers long, occur in vertical radial and tangential fractures in the Vredefort Dome. Unlike the pseudotachylitic breccias, they display a remarkably uniform bulk composition and clast populations that are largerly independent of their wallrocks, and they contain geochemical traces of the impactor. They represent intrusive offshoots of the homogenized impact melt body that originally lay within the crater. U-Pb single zircon and Ar-Ar dating indicates that the Vredefort Granophyre and pseudotachylitic breccias, and the Witwatersrand pseudotachylites all formed at 2020±5 Ma - the age of the impact event, making the breccias a convenient time marker in the evolution of the structurally complex Witwatersrand basin with its unique gold deposits.  相似文献   

7.
Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, DM=9.3°) and early Late Proterozoic (ca. 850–900 Ma) at 10°S, 163°E (dp=3.5°, DM=7.0°). A new 40Ar/39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred 200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.  相似文献   

8.
Summary The Vredefort Dome represents an area of significant ( 10 km) structural uplift within the central parts of the economically important Witwatersrand Basin. Its rocks experienced higher grades of metamorphism than the equivalent stratigraphic horizons exposed around the periphery of the basin. Recent studies of this medium- to high-grade metamorphism, as well as new evidence concerning the origin of the dome, have contributed to a metamorphic model for the Witwatersrand Basin as a whole. This evidence shows that the gold-bearing strata experienced at least two metamorphic events at ca. 2 Ga. The unusually high strain rate and shock deformation features exposed in the rocks of the dome rule out an endogenous origin by tectonic or diapiric processes. Recent work on these features has shown that the dome is best explained as the central uplift of a large, 250–300 km diameter, 2023±44 Ma old meteorite impact structure, the extent of which closely correlates with the present-day limits of the Witwatersrand Basin. Impact-related deformation features in the Vredefort rocks facilitate the separation of metamorphic textures developed during a pre-impact event associated with the 2.05–2.06 Ga Bushveld magmatism, and textures developed during a slightly lower-grade, post-impact, static overprint. The post-impact overprint decreases in intensity outwards from the dome. It is attributed to the massive disturbance of the thermal structure of the crust by impact-induced exhumation, and to shock heating of the rocks as a consequence of the impact event.
Die Bedeutung des Vredefort-Domes für die thermische und strukturelle Entwicklung des Witwatersrand-Beckens, Südafrika
Zusammenfassung Der Vredefort Dom ist ein Gebiet von signifikantem (ca. 10 km), strukturellem Uplift im Zentralbereich des wirtschaftlich bedeutungsvollen Witwatersrand-Beckens. Die Ges-teine des Doms haben höhere Metamorphosebedingungen erfahren als die stratigraphisch äquivalenten Lagen, die im Randbereich des Beckens aufgeschlossen sind. Kürzlich durchgeführte Untersuchungen dieser mittel-bis hochgradigen Metamorphose und neueste Ergebnisse zur Entstehung des Domes haben einen Beitrag zu einem Metamorphose-Modell für das gesamte Witwatersrand-Becken geleistet. Diese neuen Befunde zeigen, daß die Gold-hältigen Gesteinsschichten zumindest zwei metamorphe Ereignisse vor ca. 2 Ga erfahren haben. Die ungewöhnlich hohen Beanspruchungsraten und die Stoßwellendeformationsstrukturen, die in den Gesteinen des Doms belegt sind, sprechen gegen einen endogenen Ursprung durch tektonische oder diapirische Prozesse. Neuere Arbeiten an diesen Phänomenen haben gezeigt, daß der Dom am besten als die zentrale Struktureinheit (Zentralberg) einer sehr grossen, 250–300 km weiten und 2023±4 Ma alten Meteoriteneinschlagsstruktur verstanden werden kann, deren Ausmaß eng mit den jetzigen Grenzen des Witwatersrand-Beckens übereinstimmt. Die Gegenwart von Impakt-bezogenen Deformationsstrukturen in Vredefort-Gesteinen erlaubt es, die metamorphen Texturen, die während eines hochgradigen, mit dem 2.05–2.06 Ga Bushveld Magmatismus korrelierten, metamorphen Stadiums vor dem Impaktereignis entstanden sind, von den Texturen zu trennen, die ein statisch metamorphes Ereignis von etwas geringerer Stärke, das nach dem Impakt stattfand, produzierte. Die Spuren des post-Impakt Ereignisses nehmen in ihrer Stärke zum Rand des Domes ab. Dieser Effekt wird durch eine massive Störung der thermischen Krusten-Struktur erklärt, die als Resultat einer Kombination von Impakt-induzierter Exhumierung, von Schock-Aufheizung der Krustengesteine, und von Erwärmung durch einen gewaltigen, jetzt erodierten Impaktschmelzgesteinskörper gesehen wird.
  相似文献   

9.
The highly deformed c. 3800 Ma Isua supracrustal belt is a fragment of a more extensive Early Archaean sedimentary and volcanic succession intruded by and tectonically intercalated with tonalitic and granitic Amftsoq gneisses in the period 3800-3600 Ma. The supracrustal rocks recrystallised under amphibolite facies conditions between 3800 and 3600 Ma, in the Late Archaean and locally at c. 1800 Ma. Layered sequences of rock of sedimentary and probable volcanic origin form over 50% of the belt. Bodies of high MgAl basic rocks and ultramafic rocks were intruded into the layered sequences prior to isoclinal folding and intrusion of Amitsoq gneisses. The layered rocks which are < 1 km thick are divided into two sequences, that are in faulted contact with each other. The way-up of these sequences has been determined from facing-directions of locally-preserved graded layering in felsic metasediments at several localities. The overall upwards change in sedimentary succession is interpreted as showing change from dominantly basic to dominantly felsic volcanism which provided the major clastic component of the sediments. Clastic sedimentation took place against a background of chemical sedimentation, shown by interlayers of banded iron formation, metachert and calc-silicate rocks throughout the sequences. The felsic rocks locally preserve graded bedding and possible conglomerate structures, indicating deposition from turbidite flows and possibly as debris flows. Nodules in the felsic rocks contain structures interpreted as fiammé. There is an irregular enrichment in K2O/Na2O in many of the felsic rocks at constant SiO2 and Al2O3 content, interpreted as owing to alteration of original andesitic to dacitic volcanic rocks. Banded iron formations locally contain conglomeratic structures suggesting sedimentary reworking, possibly under shallow water conditions. Lithological and geochemical characters of the clastic components of the supracrustal sequences are consistent with derivation from felsic and basic volcanic rocks and do not require a continental source.  相似文献   

10.
抚顺南部早前寒武纪变质杂岩的地质事件序列   总被引:8,自引:7,他引:1  
白翔  刘树文  阎明  张立飞  王伟  郭荣荣  郭博然 《岩石学报》2014,30(10):2905-2924
抚顺南部早前寒武纪变质杂岩是华北克拉通北缘辽北-吉南早前寒武纪变质地块的一个重要组成部分,主要由浑南群石棚子组角闪岩相变质火山岩、火山碎屑岩及相伴生的沉积岩等表壳岩系和侵位于其中的石英闪长质片麻岩、英云闪长质-奥长花岗质-花岗闪长质(TTG)片麻岩和花岗闪长岩-二长花岗岩-钾长花岗岩岩石组合组成。LA-ICP-MS锆石U-Pb同位素分析结果显示,侵位于表壳岩中的石英闪长质片麻岩样品12LN39-3的岩浆结晶年龄为2571±7Ma,指示存在老于该年龄的表壳岩系。英云闪长质片麻岩样品12LN04-1和奥长花岗质片麻岩样品13LB49-3的岩浆结晶年龄分别为2544±4Ma和2550±10Ma,记录了一期重要的英云闪长质-奥长花岗质片麻岩侵位事件。斜长角闪岩(样品12LN25-2)的岩浆结晶的最小年龄为2530±5Ma,指示另一火山喷发阶段。晚期钾长花岗岩样品12LN01-1和奥长花岗质片麻岩样品12LN27-1分别侵位于2522±4Ma和2518±23Ma,说明它们的岩浆作用发生于同一时期。而采自于晚期未变形侵入体的石英闪长岩样品12LN30-2的岩浆结晶年龄为2496±18Ma,与上述表壳岩和深成侵入体的主要变质作用(2510~2470Ma)同期发生。这些年代学结果表明,抚顺南部地区新太古代大规模的铁镁质火山喷发作用在大于2571±7Ma已经发生,紧接着2571±7Ma发生石英闪长质岩浆侵位,在2550±10Ma~2544±4Ma之间发生英云闪长质-奥长花岗质岩浆侵位。接下来铁镁质火山再度喷发(~2530±5Ma),随后为钾长花岗岩和奥长花岗质岩浆的侵位(2522±4Ma~2518±23Ma)。晚期为角闪岩相变质作用时期(2510~2470Ma),伴随一定规模的石英闪长岩侵位。  相似文献   

11.
朝鲜半岛平南盆地中元古代岩浆事件   总被引:4,自引:2,他引:2  
朝鲜平南盆地翁津地区发育中元古代黄海群和同时期(称之为瓮津期)花岗岩,花岗岩体侵入于黄海群。本文采用锆石原位微区U-Pb定年技术,对黄海群中的酸性火山岩及花岗岩进行了年龄测试。获得的数据表明,黄海群中下部层位及上部层位的酸性火山岩分别在1235±5Ma和1203±7Ma喷发,由此说明黄海群的沉积时代应为中元古代,而不是传统上认为的古元古代;两个翁津期花岗岩体(翁津和黄衣山岩体)的侵位年龄分别为1251±22Ma和1248±13Ma,为中元古代花岗质岩浆活动的产物。上述1251~1203Ma年龄的获得,表明朝鲜半岛发育中元古代岩浆作用,从而明确朝鲜黄海裂谷与华北东缘裂谷在时间上具有同期性,同时也表明中国华北与朝鲜在中元古代具有类似的发展历史。  相似文献   

12.
Eocene to late Miocene magmatism in the central Peruvian high-plain (approx. between Cerro de Pasco and Huancayo; Lats. 10.2–12°S) and east of the Cordillera Occidental is represented by scattered shallow-level intrusions as well as subaerial domes and volcanic deposits. These igneous rocks are calc-alkalic and range from basalt to rhyolite in composition, and many of them are spatially, temporally and, by inference, genetically associated with varied styles of major polymetallic mineralization. Forty-four new 40Ar–39Ar and three U/Pb zircon dates are presented, many for previously undated intrusions. Our new time constraints together with data from the literature now cover most of the Cenozoic igneous rocks of this Andean segment and provide foundation for geodynamic and metallogenetic research.The oldest Cenozoic bodies are of Eocene age and include dacitic domes to the west of Cerro de Pasco with ages ranging from 38.5 to 33.5 Ma. South of the Domo de Yauli structural dome, Eocene igneous rocks occur some 15 km east of the Cordillera Occidental and include a 39.34 ± 0.28 Ma granodioritic intrusion and a 40.14 ± 0.61 Ma rhyolite sill, whereas several diorite stocks were emplaced between 36 and 33 Ma. Eocene mineralization is restricted to the Quicay high-sulfidation epithermal deposit some 10 km to the west of Cerro de Pasco.Igneous activity in the earliest Oligocene was concentrated up to 70 km east of the Cordillera Occidental and is represented by a number of granodioritic intrusions in the Milpo–Atacocha area. Relatively voluminous early Oligocene dacitic to andesitic volcanism gave rise to the Astabamba Formation to the southeast of Domo de Yauli. Some stocks at Milpo and Atacocha generated important Zn–Pb (–Ag) skarn mineralization. After about 29.3 Ma, magmatism ceased throughout the study region. Late Oligocene igneous activity was restricted to andesitic and dacitic volcanic deposits and intrusions around Uchucchacua (approx. 25 Ma) and felsic rocks west of Tarma (21–20 Ma). A relationship between the Oligocene intrusions and polymetallic mineralization at Uchucchacua is possible, but evidence remains inconclusive.Widespread magmatism resumed in the middle Miocene and includes large igneous complexes in the Cordillera Occidental to the south of Domo de Yauli, and smaller scattered intrusive centers to the north thereof. Ore deposits of modest size are widely associated with middle Miocene intrusions along the Cordillera Occidental, north of Domo de Yauli. However, small volcanic centers were also active up to 50 km east of the continental divide and include dacitic dikes and domes, spatially associated with major base and precious metal mineralization at Cerro de Pasco and Colquijirca. Basaltic volcanism (14.54 ± 0.49 Ma) is locally observed in the back-arc domain south of Domo de Yauli approximately 30 km east of the Cordillera Occidental.After about 10 Ma intrusive activity decreased throughout Central Perú and ceased between 6 and 5 Ma. Late Miocene magmatism was locally related to important mineralization including San Cristobal (Domo de Yauli), Huarón and Yauricocha.Overall, there is no evidence for a systematic eastward migration of the magmatic arc through time. The arc broadened in the late Eocene to early Oligocene, and thereafter ceased over wide areas until the early Miocene, when magmatism resumed in a narrow arc. A renewed widening and subsequent cessation of the arc occurred in the late middle and late Miocene. The pattern of magmatism probably reflects two cycles of flattening of the subduction in the Oligocene and late Miocene. Contrasting crustal architecture between areas south and north of Domo de Yauli probably account for the differences in the temporal and aerial distribution of magmatism in these areas.Ore deposits are most abundant between Domo de Yauli and Cerro de Pasco and were generally emplaced in the middle and late Miocene during the transition to flat subduction and prior to cessation of the arc. Eocene to early Oligocene mineralization also occurred, but was restricted to a broad east–west corridor from Uchucchacua to Milpo–Atacocha, indicating a major upper-plate metallogenetic control.  相似文献   

13.
To obtain the chemical Th*–Pb isochron ages and surface maps of monazite crystals in igneous and metamorphic rocks from the southern Brazilian Shield, we employ Th–U-total Pb dating by an electron probe microanalyzer. The ages of two Trans-Amazonian metamorphic events are given by a felsic, garnet-bearing granulite from the Santa Maria Chico granulitic complex. The age of the first event, at approximately 2.35 Ga, was obtained by surface mapping in a grain included in garnet. The dating of the second event, 1899±43 Ma, is in agreement with previous data obtained in zircon crystals with sensitive high-resolution ion microprobe. Other determinations belong to the Brasiliano cycle. In the São Gabriel block, an age of 643±129 Ma was obtained on monazite from a staurolite-garnet schist of the Cambaizinho Formation, whereas a staurolite-bearing schist from the Passo Feio complex yielded a 510±68 Ma age. Several units in the Dom Feliciano belt were dated, including the biotite-sillimanite gneisses of the Várzea do Capivarita complex (552±90 Ma), the sillimanite-garnet gneisses of Camboriú complex (565±77 Ma), the Três Figueiras granite (558±57 Ma), and the Plaza Itapema granite (545±55 Ma). The ages presented in this study, obtained through monazite chemical dating, are confirmed through comparison with previous data regarding zircon crystals from the same geological units.  相似文献   

14.
Determining an age framework for Precambrian crystalline rocks and associated granulite-facies metamorphism of the inner blocks in the North China Craton (NCC) is important for determining the tectonic setting and evolution of the craton during the Neoarchaean–Palaeoproterozoic. The Eastern Hebei terrane (EHT), located in the Eastern Block of the NCC, is composed of tonalitic-trondhjemitic-granodioritic (TTG) gneisses and potassium-rich granitoids, along with rafts of supracrustal rocks that are intruded by basic dikes. TTG gneisses in the EHT yield crystallization ages of 2516–2527 Ma. The oldest age of inherited zircons from a mylonitic TTG gneiss is ~2918 Ma. Granulite-facies supracrustal metamorphic rocks in the Zunhua high-grade meta-greenstone belt indicate an andesitic/basaltic protolith that was formed at ~2498 Ma. A syn-deformational granite in the Jinchangyu greenschist-facies shear zone yields a crystallization age of ~2474 Ma. Metamorphism of the supracrustal rocks and mylonitic greenschist took place at ~2461 and ~2475 Ma, respectively. Rare earth elements (REE) patterns and slightly negative Nb and Ta anomalies indicate that the magmatic precursors of the supracrustal rocks might be derived from partial melting of a sub-arc mantle wedge and metasomatized by fluids derived from a subducting slab. These rocks plot in the island arc basalts (IAB) field on a La/Nb vs. La diagram, further supporting this interpretation. The microstructures of a garnet–two-pyroxene granulite indicate an approximately clockwise P-T path. The crystallization ages of the TTG gneisses represent periods of the major crustal growth in the NCC, and the granulite- and greenschist-facies metamorphism indicates an orogenic event that involved crustal thickening at ~2.47 Ga.  相似文献   

15.
The paper presents new geological, geochemical, and isotopic data on igneous rocks from a thoroughly studied area in the western Baikal-Muya Belt, which is a representative segment of the Neoproterozoic framework of the Siberian Craton. Three rock associations are distinguished in the studied area: granulite-enderbite-charnockite and ultramafic-mafic complexes followed by the latest tonalite-plagiogranitegranite series corresponding to adakite in geochemical characteristics. Tonalites and granites intrude the metamorphic and gabbroic rocks of the Tonky Mys Point, as well as Slyudyanka and Kurlinka intrusions. The tonalites yielded a U-Pb zircon age of 595 ± 5 Ma. The geochronological and geological information indicate that no later than a few tens of Ma after granulite formation they were transferred to the upper lithosphere level. The Sm-Nd isotopic data show that juvenile material occurs in rocks of granitoid series (?Nd(t) = 3.2–7.1). Ophiolites, island-arc series, eclogites, and molasse sequences have been reviewed as indicators of Neoproterozoic geodynamic settings that existed in the Baikal-Muya Belt. The implications of spatially associated granulites and ultramafic-mafic intrusions, as well as granitoids with adakitic geochemical characteristics for paleogeodynamic reconstructions of the western Baikal-Muya Belt, are discussed together with other structural elements of the Central Asian Belt adjoining the Siberian Platform in the south.  相似文献   

16.
The Cheyenne belt of southeastern Wyoming is a major shear zone which separates Archean rocks of the Wyoming province to the north from 1800-1600 Ma old eugeoclinal gneisses to the south. Miogeoclinal rocks (2500-2000 Ma old) unconformably overlie Archean basement immediately north of the shear zone and were deposited under transgressive conditions along a rift-formed continental margin. Intrusive tholeiitic sills and dikes are interpreted as rift-related intrusions and a date of 2000 Ma on a felsic differentiate of these intrusions gives the approximate age of rifting. There are no known post-2000 Ma felsic intrusions north of the Cheyenne belt.Volcanogenic gneisses and abundant syntectonic calc-alkaline plutons of the southern terrane are interpreted as island are volcanic and plutonic rocks. The volcanics are a bimodal basalt-rhyolite assemblage. Plutons include large gabbroic complexes and quartz diorite (1780 Ma), syntectonic granitoids (1730-1630 Ma) and post-tectonic anorthosite and granite (1400 Ma). There is no evidence for Archean crust south of the Cheyenne belt.Structural data (thrusts in the miogeoclinal rocks, vertical stretching lineations, and the same fold geometries north and south of the shear zone) suggest that juxtaposition of the two terranes took place by thrusting of the southern terrane (island arc) over the northern terrane (craton and miogeocline), probably as a continuation of the south-dipping subduction which generated calc-alkaline plutons of the southern terrane. A metamorphic discontinuity across the shear zone, with greenschist facies rocks to the north and upper amphibolite facies rocks and migmatites to the south, also suggests thrusting of the southern terrane (deeper crustal levels) over the northern terrane (shallower levels).The Cheyenne belt may be a deeply-eroded master decollement, perhaps analogous to a ramp in the master decollement in the southern Appalachians. This interpretation of the Cheyenne belt as a Proterozoic suture zone provides an explanation for the geologic, geochronologic, geophysical, metallogenic, and metamorphic discontinuities across the shear zone.  相似文献   

17.
《Precambrian Research》2006,144(3-4):261-277
The English River Subprovince is a prominent belt of metasedimentary rocks in the Archean Western Superior Province. The structure of its western half was investigated by using techniques of enhancement and automatic interpretation of magnetic data, and integration of magnetic-derived information with seismic and gravity data. The results indicate that a suite of exposed felsic plutons that intruded the belt at ca. 2698 Ma extends under most of the metasedimentary rocks that are exposed at the surface. The thickness of the metasedimentary rocks is interpreted to be less than 1 km in areas where it is underlain by the members of this intrusive suite. In other areas, the metasedimentary rocks attain thicknesses of 3–4 km and appear to be underlain by rocks similar to the gneissic rocks that are exposed in the adjacent metaplutonic Winnipeg River Subprovince. The integration of enhanced magnetic data with gravity data indicates that the large gravity anomaly that extends along the English River belt correlates well spatially and morphologically with the extensive suite of felsic intrusions that underlies the belt, suggesting that the crustal component of the gravity anomaly is related to this suite of intrusions. We interpret the source of the gravity anomaly as a dense unit comprising anhydrous mineral assemblages that formed within these felsic intrusions in response to low-pressure, high-temperature metamorphism that affected the belt at ca. 2691 Ma. On the basis of geochronological, geological and geophysical constraints, we propose that this metamorphic episode is linked to the continuation of magmatism at depth after the emplacement of the ca. 2698 Ma felsic plutons, being ultimately related to the advection of mantle heat into the crust during a period of regional extension.  相似文献   

18.
选择3个典型岩体,即位于西南天山东段的拜城县英买来岩体和位于西段阔克萨岭区的川乌鲁岩体、巴雷公岩体(为了对比,也选择了位于塔里木盆地西北缘的麻扎山岩体),进行了岩石学和地球化学研究。结果表明,这些岩体具有不同的特点。英买来岩体为黑云母花岗岩和二云母花岗岩,具有高的SiO2含量,弱过铝,高的Sr同位素初始值(约0.710)和负的εNd(t)值(-4~-6),属于S—A型之间的过渡类型。麻扎山岩体由正长岩组成,属于碱性岩,微量元素标准化图解和其他岩体明显不同的是没有明显的Nb和Ta的负异常。川乌鲁岩体是一个由3个不同期次岩石组成的杂岩体,主体为正长岩-二长岩,地球化学特征显示是由基性岩浆和酸性岩浆不同程度混合形成的。位于同一构造区的巴雷公岩体则与川乌鲁岩体中的花岗斑岩的地球化学特征相似。综合岩石学和地球化学特征推测,南天山东段的英买来岩体是地壳熔融的结果,没有任何地幔物质加入的地球化学信息,西段的阔克萨岭地区酸性岩浆的形成则可能是来自于幔源底侵的基性岩浆导致薄的地壳发生熔融的结果。麻扎山岩体则完全是不同构造背景的产物,有可能与发生在塔里木盆地的二叠纪大规模的岩浆活动有关。因此,二叠纪岩浆活动的性质主要受地壳成分和结构的控制。  相似文献   

19.
An age of 3112 ± 6 (2σ) Ma, determined by conventional techniques on single zircons from a felsic volcanic rock from the Sholl Belt in the western part of the Archaean Pilbara Craton of Western Australia, is interpreted as the age of felsic volcanism. This is about 100 Ma older than felsic volcanic rocks in the nearby but unconnected Whim Creek Belt and is significantly younger than felsic volcanism in the East Pilbara, which took place during two distinct episodes at 3450 Ma and 3300 Ma. The present results rule out previous correlations between the felsic volcanic rocks of the Sholt Belt and the 3452 ± 16 Ma old Duffer Formation in the East Pilbara.  相似文献   

20.
Previous models for the temporal evolution of greenstone belts and surrounding granitoid gneisses in the northern Kaapvaal Craton can be revised on the basis of new single zircon ages, obtained by conventional U---Pb dating and Pb---Pb evaporation. In the Pietersburg greenstone belt, zircons from a metaquartz porphyry of the Ysterberg Formation yielded an age of 2949.7±0.2 Ma, while a granite intruding the greenstones, and deformed together with them, has an age of 2853 + 19/−18 Ma. These data show felsic volcanism in this belt to have been coeval with felsic volcanism in the Murchison belt farther east, and the date of 2853 Ma provides an older age limit for deformation in the region. In contrast, a meta-andesite of the Giyani greenstone belt has a zircon age of 3203.3±0.2 Ma, while a younger and cross-cutting feldspar porphyry has an emplacement age of 2874.1±0.2 Ma. The meta-andesite is intercalated with various mafic and ultramafic rocks and, therefore, the age of 3.2 Ga appears plausible for the bulk of the Giyani greenstones.Granitoid gneisses surrounding the Pietersburg and Giyani belts vary in composition from tonalite to granite and texturally from well-layered to homogeneous but strongly foliated. These rocks yielded zircon ages between 2811 and 3283 Ma. The pre-3.2 Ga gneisses are polydeformed and may have constituted a basement to the Giyani greenstone sequence, while the younger gneisses are intrusive into the older gneiss assemblage and/or into the greenstones. The Giyani and Pietersburg belts probably define two separate crustal entities that were originally close together but were later displaced by strike-slip movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号