首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inversion of seismic attributes for velocity and attenuation structure   总被引:1,自引:0,他引:1  
We have developed an inversion formuialion for velocity and attenuation structure using seismic attributes, including envelope amplitude, instantaneous frequency and arrival times of selected seismic phases. We refer to this approach as AFT inversion for amplitude, (instantaneous) frequency and time. Complex trace analysis is used to extract the different seismic attributes. The instantaneous frequency data are converted to t * using a matching procedure that approximately removes the effects of the source spectra. To invert for structure, ray-perturbation methods are used to compute the sensitivity of the seismic attributes to variations in the model. An iterative inversion procedure is then performed from smooth to less smooth models that progressively incorporates the shorter-wavelength components of the model. To illustrate the method, seismic attributes are extracted from seismic-refraction data of the Ouachita PASSCAL experiment and used to invert for shallow crustal velocity and attenuation structure. Although amplitude data are sensitive to model roughness, the inverted velocity and attenuation models were required by the data to maintain a relatively smooth character. The amplitude and t * data were needed, along with the traveltimes, at each step of the inversion in order to fit all the seismic attributes at the final iteration.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The energy–flux vector and other energy-related quantities play an important role in various wave propagation problems. In acoustics and seismology, the main attention has been devoted to the time-averaged energy flux of time-harmonic wavefields propagating in non-dissipative, isotropic and anisotropic media. In this paper, we investigate the energy–flux vector and other energy-related quantities of wavefields propagating in inhomogeneous anisotropic viscoelastic media. These quantities satisfy energy-balance equations, which have, as we show, formally different forms for real-valued wavefields with arbitrary time dependence and for time-harmonic wavefields. In case of time-harmonic wavefields, we study both time-averaged and time-dependent constituents of the energy-related quantities. We show that the energy-balance equations for time-harmonic wavefields can be obtained in two different ways. First, using real-valued wavefields satisfying the real-valued equation of motion and stress–strain relation. Second, using complex-valued wavefields satisfying the complex-valued equation of motion and stress–strain relation. The former approach yields simple results only for particularly simple viscoelastic models, such as the Kelvin–Voigt model. The latter approach is considerably more general and can be applied to viscoelastic models of unrestricted anisotropy and viscoelasticity. Both approaches, when applied to the Kelvin–Voigt viscoelastic model, yield the same expressions for the time-averaged and time-dependent constituents of all energy-related quantities and the same energy-balance equations. This indicates that the approach based on complex-valued representation of the wavefield may be used for time harmonic waves quite universally. This study also shows importance of joint consideration of time-averaged and time-dependent constituents of the energy-related quantities in some applications.  相似文献   

17.
A tomographic inversion technique that inverts traveltimes to obtain a model of the subsurface in terms of velocities and interfaces is presented. It uses a combination of refraction, wide-angle reflection and normal-incidence data, it simultaneously inverts for velocities and interface depths, and it is able to quantify the errors and trade-offs in the final model. The technique uses an iterative linearized approach to the non-linear traveltime inversion problem. The subsurface is represented as a set of layers separated by interfaces, across which the velocity may be discontinuous. Within each layer the velocity varies in two dimensions and has a continuous first derivative. Rays are traced in this medium using a technique based on ray perturbation theory, and two-point ray tracing is avoided by interpolating the traveltimes to the receivers from a roughly equidistant fan of rays. The calculated traveltimes are inverted by simultaneously minimizing the misfit between the data and calculated traveltimes, and the roughness of the model. This 'smoothing regularization' stabilizes the solution of the inverse problem. In practice, the first iterations are performed with a high level of smoothing. As the inversion proceeds, the level of smoothing is gradually reduced until the traveltime residual is at the estimated level of noise in the data. At this point, a minimum-feature solution is obtained, which should contain only those features discernible over the noise.
The technique is tested on a synthetic data set, demonstrating its accuracy and stability and also illustrating the desirability of including a large number of different ray types in an inversion.  相似文献   

18.
In this paper, attenuation values are obtained from seismic data using instantaneous-frequency matching and spectral ratios. to obtain differential t * values using instantaneous-frequency matching, a near offset reference pulse is attenuated until the resulting instantaneous frequency matches the observed value at the receiver. Prior to matching, filtering can be applied to each trace in order to reduce the effects of noise on the calculated instantaneous frequencies. In the second method, the spectral ratio between a receiver pulse and a reference pulse is used to obtain differential t * values. to obtain an unbiased estimate, a variable spectral bandwidth is used depending on the noise level of the data. the two methods are tested using synthetic traces and then applied to crustal refraction data from the 1986 PASSCAL Ouachita experiment. Results show that the differential t * values obtained using filtered, instantaneous-frequency matching are consistent with and have less scatter than those obtained from spectral ratios with a variable bandwidth.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号