首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excellent exposure, well-controlled palaeobathymetry, and tightly-spaced, high-precision radiometric age control in the El Gallo Fm. permit rigorous quantitative analysis. Backstripping of these proximal nonmarine, forearc basin deposits reveals that, during the Late Cretaceous, the Rosario embayment of the Peninsular Ranges forearc was undergoing an episode of rapid tectonic subsidence. This subsidence had several marked effects on the sedimentology of the Rosario embayment: formation of a broad alluvial plain consisting of coarse-grained clastics; rapid (∼ 600 m Myr-1) aggradation of sediments; and a retrogradational succession of facies, capped by a marine transgression, as deposition failed to keep pace with eustatic rise and subsidence.
Long-term sedimentation is driven by some combination of two allocyclic mechanisms: tectonic subsidence and eustatic sea-level rise. In order to evaluate which force predominated during deposition of the El Gallo Fm., the processes of sedimentation, compaction, and isostasy are evaluated through the interval in question. A sensitivity analysis is performed, in which the maximum tectonic and maximum eustatic contributions are estimated, along with the best-fit model. These results are qualitatively the same: tectonic subsidence was the major driving force of sedimentation in the Rosario embayment in late Campanian time. Regional sedimentological similarities suggest that this tectonic subsidence may have characterized the Peninsular Ranges forearc margin at this time, reflecting an episode of active down-faulting during the Late Cretaceous.  相似文献   

2.
Abstract The Amadeus Basin, a broad intracratonic depression (800 times 300 km) in central Australia, contains a complex Late Proterozoic to mid-Palaeozoic depositional succession which locally reaches 14 km in thickness. The application of sequence stratigraphy to this succession has provided an effective framework in which to evaluate its evolution. Analysis of major depositional sequences shows that the Amadeus Basin evolved in three stages. Stage 1 began at about 900 Myr with extensional thinning of the crust and formation of half-grabens. Thermal recovery following extension was well advanced when a second less intense crustal extension (stage 2) occurred towards the end of the Late Proterozoic. Stage 2 thermal recovery was followed by a major compressional event (stage 3) in which major southward-directed thrust sheets caused progressive downward flexing of the northern margin of the basin, and sediment was shed from the thrust sheets into the downwarps forming a foreland basin. This event shortened the basin by 50–100 km and effectively concluded sedimentation. The two stages of crustal extension and thermal recovery produced large-scale apparent sea-level effects upon which eustatic sea-level cycles are superimposed. Since the style of sedimentation and major sequence boundaries were controlled to a large degree by basin dynamics, depositional patterns within the Amadeus and associated basin are, to a large degree, predictable. This suggests that an understanding of major variables associated with basin dynamics and their relationship to depositional sequences may allow the development of generalized depositional models on a basinal scale. The Amadeus Basin is only one of a number of broad, shallow, intracratonic depressions that appeared on the Australian craton during the Late Proterozoic. The development of these basins almost certainly relates to the breakup of a Proterozoic supercontinent and in large part, basin dynamics appears to be tied to this global tectonic event. Onlap and apparent sea-level curves derived from the sequence analysis appear to be composite curves resulting from both basin dynamics and eustatic sea-level effects. It thus appears likely that sequence stratigraphy could be used as a basis for inter-regional correlation; a possibility that has considerable significance in Archaean and Proterozoic basins.  相似文献   

3.
A numerical model linking a coral growth algorithm and an algorithm for flexural subsidence reproduces many of the characteristics of drowned foreland basin carbonate platforms. This model successfully matches the observed distribution and drowning age of drowned carbonate platforms in the Huon Gulf, Papua New Guinea, a modern submarine foreland basin. Analysis of equations describing flexural subsidence and eustatic sea-level variations suggest that there are minimum convergence rates and periodicities of sea-level variation required to drown foreland basin carbonate platforms. For convergence rates on the order of a few millimetres per year, sea-level must vary on time-scales of about 105 years in order to induce a rate of relative sea-level rise great enough to drown an otherwise healthy foreland basin carbonate platform.  相似文献   

4.
The stratigraphic development of an Upper Jurassic syn‐rift succession exposed at outcrop in the Inner Moray Firth Basin has been investigated using high‐resolution biostratigraphy and sedimentology. A continuous 970 m thick section, exposed in the hangingwall of the Helmsdale Fault was logged in detail. The succession spans 8 Ma and contains eight lithofacies types, which indicate deposition in a deep marine setting. Boulder beds contain large, angular clasts, with bed thicknesses typically >2 m and poor sorting suggesting deposition by debris flows. An inverse clast stratigraphy is observed; the oldest boulder beds contain sandstone clasts of Upper Old Red Sandstone (ORS) with younger debris flows containing clasts of Middle ORS calcareous siltstone. A marked change from siliciclastic to carbonate dominated sedimentation occurred during the Early Tithonian, interpreted primarily as a result of change in lithologies in the footwall catchment from sandstone to calcareous siltstone, which reduced supply of siliciclastic sediment. Secondary factors are identified as increased aridity in the Early Tithonian, which reduced sand supply from the hinterland and a third‐order Early Tithonian eustatic sea‐level rise, which trapped coarser clastic sediment within the hinterland. Biostratigraphy allows calculation of variations in sedimentation rates with recognition of: (1) an early rift phase characterised by sandy turbidite deposition, when sedimentation rates averaged 0.08 m/ky, (2) a rift climax phase from the Early Kimmeridgian where sedimentation rates increased steadily to a maximum of 0.64 m/ky in the Early Tithonian, with strata dominated by boulder scale clast‐supported debris flows and (3) a late stage of rifting from the mid Tithonian, where sedimentation rates decreased to 0.07 m/ky. Overall sedimentation rates are comparable to those of other deep marine rift basins. Unroofing a resistant lithology on the footwall of a rift has important implications for siliciclastic sediment supply in rift basins.  相似文献   

5.
Abstract The Jurassic-Cretaceous subsidence history of the Eromanga Basin, a large intracratonic sedimentary basin in central eastern Australia, has been examined using standard backstripping techniques, allowing for porosity reduction by compaction and cementation. Interpretation of the results suggests that during the Jurassic the basin was subsiding in a manner consistent with the exponentially decreasing form predicted by simple thermally based tectonic models. By the Early Cretaceous, the rate of subsidence was considerably higher than that expected from such models and nearly half of the total sediment thickness was deposited over the final 20 Myr of the basin's 95 Myr Mesozoic depositional history. The Early Cretaceous also marks the first marine incursion into the basin, consistent with global sea-level curves. Subsequently, however, the sediments alternate between marine and non-marine, with up to 1200 m of fluvial sediments being deposited, and this was followed by a depositional hiatus of about 50 Myr in the Late Cretaceous. This occurred at a time when global sea-level was rising to its peak. A model is presented which is consistent with the rapid increase in tectonic subsidence rate and the transgressive-regressive nature of the sediments. The model incorporates a sediment influx which is greater than that predicted by the thermally based tectonic models implied by the Jurassic subsidence history. The excess sedimentation results in the basin region attaining an elevation which exceeds that of the contemporary sea-level, and thereby giving the appearance of a regression. The present day elevation of the region predicted by the model is about 100–200 m above that observed. This discrepancy may arise because the primary tectonic subsidence is better represented by a linear function of time rather than an exponentially decreasing form.  相似文献   

6.
By calculating mass accumulation rates for foreland basin sediments, the changing capacity of the basin can be monitored through time. It has often been assumed that there was a direct link between foreland basin sedimentation and tectonic deformation and lithospheric loading in the adjacent orogenic belt. The results of this study suggest that tectonic deformation is most likely associated with the changing capacity of the basin and the rate at which sediments accumulate within it, However, there appears to be no relation between tectonic deformation and the lithology of sediment which accumulates in the foreland basin. Instead, eustatic sea-level fluctuations appear to have significant control, through their impact on water depth, on the lithology of sediments accumulating in the foreland basin. These relations are evidenced by mass accumulation rates calculated for foreland basin strata in north-west Alberta and north-east British Columbia, Canada.  相似文献   

7.
The Ulleung Basin, East Sea/Japan Sea, is a Neogene back-arc basin and occupies a tectonically crucial zone under the influence of relative motions between Eurasian, Pacific and Philippine Sea plates. However, the link between tectonics and sedimentation remains poorly understood in the back-arc Ulleung Basin, as it does in many other back-arc basins as well, because of a paucity of seismic data and controversy over the tectonic history of the basin. This paper presents an integrated tectonostratigraphic and sedimentary evolution in the deepwater Ulleung Basin using 2D multichannel seismic reflection data. The sedimentary succession within the deepwater Ulleung Basin is divided into four second-order seismic megasequences (MS1 to MS4). Detailed seismic stratigraphy interpretation of the four megasequences suggests the depositional history of the deepwater Ulleung Basin occurred in four stages, controlled by tectonic movement, volcanism, and sea-level fluctuations. In Stage 1 (late Oligocene through early Miocene), syn-rift sediment supplied to the basin was restricted to the southern base-of-slope, whereas the northern distal part of the basin was dominated by volcanic sills and lava flows derived from initial rifting-related volcanism. In Stage 2 (late early Miocene through middle Miocene), volcanic extrusion occurred through post-rift, chain volcanism in the earliest time, followed by hemipelagic and turbidite sedimentation in a quiescent open marine setting. In Stage 3 (late middle Miocene through late Miocene), compressional activity was predominant throughout the Ulleung Basin, resulting in regional uplift and sub-aerial erosion/denudation of the southern shelf of the basin, which provided enormous volumes of sediment into the basin through mass transport processes. In Stage 4 (early Pliocene through present), although the degree of tectonic stress decreased significantly, mass movement was still generated by sea-level fluctuations as well as compressional tectonic movement, resulting in stacked mass transport deposits along the southern basin margin. We propose a new depositional history model for the deepwater Ulleung Basin and provide a window into understanding how tectonic, volcanic and eustatic interactions control sedimentation in back-arc basins.  相似文献   

8.
Sea level has been estimated for the last 108 million years through backstripping of corehole data from the New Jersey and Delaware Coastal Plains. Inherent errors due to this method of calculating sea level are discussed, including uncertainties in ages, depth of deposition and the model used for tectonic subsidence. Problems arising from the two-dimensional aspects of subsidence and response to sediment loads are also addressed. The rates and magnitudes of sea-level change are consistent with at least ephemeral ice sheets throughout the studied interval. Million-year sea-level cycles are, for the most part, consistent within the study area suggesting that they may be eustatic in origin. This conclusion is corroborated by correlation between sequence boundaries and unconformities in New Zealand. The resulting long-term curve suggests that sea level ranged from about 75–110 m in the Late Cretaceous, reached a maximum of about 150 m in the Early Eocene and fell to zero in the Miocene. The Late Cretaceous long-term (107 years) magnitude is about 100–150 m less than sea level predicted from ocean volume. This discrepancy can be reconciled by assuming that dynamic topography in New Jersey was driven by North America overriding the subducted Farallon plate. However, geodynamic models of this effect do not resolve the problem in that they require Eocene sea level to be significantly higher in the New Jersey region than the global average.  相似文献   

9.
Basement heat flow is one of the key unknowns in sedimentary basin analysis. Its quantification is challenging not in the least due to the various feedback mechanisms between the basin and lithosphere processes. This study explores two main feedbacks, sediment blanketing and thinning of sediments during lithospheric stretching, in a series of synthetic models and a reconstruction case study from the Norwegian Sea. Three types of basin models are used: (1) a newly developed one‐dimensional (1D) forward model, (2) a decompaction/backstripping approach and (3) the commercial basin modelling software TECMOD2D for automated forward basin reconstructions. The blanketing effect of sedimentation is reviewed and systematically studied in a suite of 1D model runs. We find that even for moderate sedimentation rates (0.5 mm year?1), basement heat flow is depressed by ~25% with respect to the case without sedimentation; for high sedimentation rates (1.5 mm year?1), basement heat flow is depressed by ~50%. We have further compared different methods for computing sedimentation rates from the presently observed stratigraphy. Here, we find that decompaction/backstripping‐based methods may systematically underestimate sedimentation rates and total subsidence. The reason for this is that sediments are thinned during lithosphere extension in forward basin models while there are not in backstripping/decompaction approaches. The importance of sediment blanketing and differences in modelling approaches is illustrated in a reconstruction case study from the Norwegian Sea. The thermal and structural evolution of a transect across the Vøring Basin has been reconstructed using the backstripping/decompaction approach and TECMOD2D. Computed total subsidence curves differ by up to ~3 km and differences in computed basement heat flows reach up to 50%. These findings show that strong feedbacks exist between basin and lithosphere processes and that resolving them require integrated lithosphere‐scale basin models.  相似文献   

10.
Abstract The sensitivity of backstripping calculations (sedimentation rates and tectonic subsidence) to uncertainties regarding porosity reduction is examined. Models simulating compaction and externally sourced cementation are considered to provide first-order bounds on the thickness and mass changes for individual sedimentary units. These bounds can be used to estimate uncertainties in sedimentation rate and subsidence estimates. With these models, the timing of cement development can be regarded as unimportant for backstripping calculations. Calculations have been made to evaluate the effect on backstripping calculations of uncertainties in sediment porosity, density and the mechanisms of porosity reduction. Departures from theoretically predicted subsidence curves of the order of 100 m or so have been variously interpreted as the result of fluctuations or uncertainties in sea-level, palaeobathymetry, tectonic stress, sedimentation rates and stratigraphic age. Two examples are given to illustrate that such departures may occur in some subsidence curves merely as a result of imprecise assumptions regarding porosity reduction. Consideration should be given to the uncertainties in models for porosity reduction when using subsidence curves to infer second order tectonic influence during basin evolution.  相似文献   

11.
The aim of this paper is to quantify the evolution in time and space of the accommodation (space available for sedimentation) in the case of a growth fault structure resulting from gravity‐induced extension comprising a listric fault/raft system located along the West African margin. To achieve this, use was made of an original approach combining two complementary techniques (accommodation variation measurements and 3‐D restoration) in order to quantify vertical and horizontal displacement related to deformation, using a data set made up of a 3‐D seismic survey and well logs. We applied sequence stratigraphic principles to (i) define a detailed stratigraphic framework for the Albo‐Cenomanian and (ii) measure subsidence rates from accommodation variations. 3‐D restoration was used to (iii) reconstruct the evolution of the 3‐D geometry of the fault system. The rates of horizontal displacement of structural units were measured and linked to successive stages in the growth of the fault system. Subsidence of the structural units exhibits three scales of variation: (1) long‐term variation (10 Ma) of c. 80 m Ma?1 for a total subsidence of about 1400 m, compatible with the general subsidence of a passive margin, and (2) short‐term variations (1–5 Ma) corresponding to two periods of rapid subsidence (about 150–250 m Ma?1) alternating with periods of moderate subsidence rate (around 30 m Ma?1). These variations are linked to the development of the fault system during the Albian (with downbuilding of the raft and development of the initial basin located in between). During the Cenomanian, the development of the graben located between the lower raft and the initial basin did not seem to affect the vertical displacements. (3) High‐frequency variations (at the scale of genetic unit sets) range between ?50 and 250 m for periods of 0.2–2 Ma. Accommodation variations governed these cycles of progradation/retrogradation rather than sediment flux variations. In addition, the nine wells display a highly consistent pattern of variation in accommodation. This suggests that the genetic unit sets were controlled at a larger scale than the studied system (larger than 20 km in wavelength), for example, by eustatic variations. Translation rates are between 3 and 30 times higher than subsidence rates. Therefore, in terms of amplitude, the main parameter controlling the space available for sedimentation is the structural development of the fault system, that is to say, the seaward translation of the raft units, itself resulting from a regional gravity‐driven extension.  相似文献   

12.
ABSTRACT This study addresses the complex relationship between an evolving fault population and patterns of synrift sedimentation during the earliest stages of extension. We have used 3D seismic and well data to examine the early synrift Tarbert Formation from the Middle–Late Jurassic northern North Sea rift basin. The Tarbert Formation is of variable thickness across the study area, and thickness variations define a number of 1- to 5-km-wide depocentres bounded by normal faults. Seismic reflections diverge towards the bounding faults indicating that the faults were active contemporaneous with the deposition of the formation. Many of these faults became inactive during later Heather Formation times. The preservation of the Tarbert Formation in both footwall and hangingwall locations demonstrates that, during the earliest synrift, the rate of deposition balanced the rate of tectonic subsidence. Local space generated by hangingwall subsidence was superimposed upon accommodation generated due to a regional rise in relative sea-level. In basal Tarbert Formation times, transgression across the prerift coastal plain produced lagoons and bays, which became increasingly marine. During continued transgression, barrier islands moved landward across the drowned bays. In the southern part of our study area, shallow marine sediments are erosionally truncated by fluvial deposition. These fluvial systems were constrained by fault growth monoclines, and flowed parallel to the main faults. We illustrate that stratal architecture and facies distribution of early sedimentation is strongly influenced by the active short-lived faults. Local depocentres adjacent to fault displacement maxima focused channel stacking and allowed the aggradation of thick shoreface successions. These depocentres formed early in the rift phase are not necessarily related to Late Jurassic – Early Cretaceous depocentres developed along the major linked normal fault systems.  相似文献   

13.
ABSTRACT The Eridanos fluvio‐deltaic system, draining most of north‐western Europe, developed during the Late Cenozoic as a result of simultaneous uplift of the Fennoscandian shield and accelerated subsidence in the North Sea Basin. This seismo‐stratigraphic study aims to reconstruct the large‐scale depositional architecture of the deltaic portion of the basin fill and relate it to external controls. A total of 27 units have been recognized. They comprise over 62×103 km3 in the Southern North Sea Basin alone, and have an average delta surface area of 28×103 km2, which suggests that the size of the drainage area was about 1.1×106 km2. Water depth in the depocentre is seen to decrease systematically over time. This trend is interrupted by a deepening phase between 6.5 and 4.5 Ma that can be correlated with the simultaneous occurrence of increased uplift of the Fennoscandian shield, increased subsidence of the Southern North Sea Basin, and a long‐term eustatic highstand. All these observations point to a tectonic control on long‐term average rates of accommodation and supply. Controls on short‐term variations are inferred from variations in rates of sediment supply and bifurcation of the delta channel network. Both rates were initially low under warm, moist, relatively stable climate conditions. The straight wave‐dominated delta front gradually developed into a lobate fluvial‐dominated delta front. Two high‐amplitude sea‐level falls affected the Pliocene units, which are characterized by widespread delta‐front failures. Changes in relative sea level and climate became more frequent from the late Pliocene onward, as the system experienced the effects of glacial–interglacial transitions. Peaks in sedimentation and bifurcation rates were coeval with cold (glacial) conditions. The positive correlation between rates of supply and bifurcation on the one hand, and climate proxies (pollen and δ18O records) on the other hand is highly significant. The evidence presented in this study convincingly demonstrates the control of climate on time‐averaged sediment supply and channel‐network characteristics, despite the expected nonuniformity and time lags in system response. The presence of a clearly discernible climate signal in time‐averaged sediment supply illustrates the usefulness of integrated seismo‐stratigraphic studies for basin‐wide analysis of delta evolution on geological time scales.  相似文献   

14.
The mechanical denudation rates of 81 large lake basins (lake area > 500 km2) were determined from long-term river loads and erosion maps. Using the drainage area/lake area ratios the mean sedimentation rates of the lakes were calculated for a porosity of 0.3. The mean sedimentation rates of different lake types vary between 0.1 mm/a (glacial lakes, lowland) and 5.4 mm/a (mostly sag basin lakes). The calculated lifetimes of the lakes are based on the lake volumes and mean sedimentation rates, assuming steady-state conditions and solely clastic material. On average, glacial lakes in highlands and fault-related lakes show the shortest lifetimes (c. 70 ka), glacial lakes in lowlands and rift lakes have the longest lifetimes (c. 1 Ma). Some lakes remain unfilled for very long time spans due to rapid subsidence of their basin floors. The calculated lifetimes are compared with those derived from sediment core studies. Most core studies indicate lower mechanical sedimentation rates than the calculated ones because a major part of the incoming sediment is trapped in deltas. However, a number of lakes (e.g., the Great Lakes of North America) show the opposite tendency which is largely caused by extensive shoreline erosion and resuspension. The lifetimes of large glacial lakes often exceed the duration of interglacials. Hence, their lifetimes are restricted by glaciation and not by sediment infill. Rift lakes persist for long time periods which exceed the calculated lifetimes in some cases. Time-dependent subsidence, basin extension, as well as the impact of climate change are briefly described.  相似文献   

15.
Subsidence and provenance analysis has been used as a tool to quantify and discriminate the role of tectonics and eustasy in the Veneto and Friuli Basin, north-east Italy, using 17 sections distributed along east–west-trending outcrops of Oligo-Miocene deposits. The basin can be considered a two-phase foreland; first, during late Oligocene to Langhian with respect to the NW–SE-trending Dinaric Chain, and then with respect to the south-vergent South-Alpine Chain.The clastic succession is up to 4000 m thick, and was deposited in a generally shallow-marine to nonmarine environment. Subsidence diagrams reconstructed for each section and E–W subsidence profiles indicate a compound effect of the Dinaric and South-Alpine tectonics as well as interference with eustatic sea-level changes.During the Oligocene and the early Miocene, the cycles recognized within the basin approximately match sea-level curves, the inferred cyclicity being primarily eustatic. However, the westward migration of the sedimentary depocentre during the same interval of time indicates activity of Dinaric thrusts.From Burdigalian (20 Ma) onwards, differential subsidence between the northernmost and the southernmost sectors of the basin suggests initiation of South-Alpine uplift in the frontal parts. During Tortonian and early Messinian uplift, erosion and southward migration of the thrust system was associated with the progressive closure of the basin from open marine influence. During Messinian sea-level drop, up to 2500 m of alluvial sediments were deposited at the same time as the South-Alpine thrusts were emerging, as confirmed by progressive angular unconformities within the continental succession.  相似文献   

16.
Reconstructions of grain-size trends in alluvial deposits can be used to understand the dominant controls on stratal architecture in a foreland basin. Different initial values of sediment supply, tectonic subsidence and base-level rise are investigated to constrain their influence on stratal geometry using the observed grain-size trends as a proxy of the goodness of fit of the numerical results to the observed data. Detailed measurements of grain-size trends, palaeocurrent indicators, facies and thickness trends, channel geometries and palynological analyses were compiled for the middle Campanian Castlegate Sandstone of the Book Cliffs and its conglomerate units in the Gunnison and Wasatch plateaus of central Utah. They define the initial conditions for a numerical study of the interactions between large-scale foreland basin and small-scale sediment transport processes. From previous studies, the proximal foreland deposits are interpreted as recording a middle Campanian thrusting event along the Sevier orogenic belt, while the stratal architecture in the Book Cliffs region is interpreted to be controlled by eustatic fluctuation with local tectonic influence. Model results of stratal geometry, using a subsidence curve with a maximum rate of ≈45 m Myr?1 for the northern Wasatch Plateau region predict the observed grain-size trends through the northern Book Cliffs. A subsidence curve with a maximum rate of ≈30 m Myr?1 in the Gunnison–Wasatch Plateaus best reproduces the observed grain-size trends in the southern transect through the southern Wasatch Plateau. Eustasy is commonly cited as controlling Castlegate deposition east of the Book Cliffs region. A eustatic rise of 45 m Myr?1 produces grain-size patterns that are similar to the observed, but a rate of eustatic rise based on Haq et al. (1988) will not produce the observed stratal architecture or grain-size trends. Tectonic subsidence alone, or a combined rate of tectonic subsidence and a Haq et al. (1988) eustatic rise, can explain the stratal and grain-size variations in the proximal and downstream regions.  相似文献   

17.
ABSTRACT From study of Palaeozoic formations in the Appalachian foreland basin, a predictive stratigraphic model is proposed based on facies tract development during convergent-margin structural evolution. Five major facies tracts are recognized: shallow-water carbonates that formed during interorogenic quiescence and initial foreland subsidence; deep-water siliciclastics that accumulated in the proximal foreland basin during early collision; syn-collisional shallow-water siliciclastics; syn-collisional, channellized fluvial sandstones that aggraded in the proximal foreland; and progradational shoreline sandstones that were deposited in response to filling of the proximal foreland. Two other facies tracts that occur are organic-rich siliciclastics ('black shales'), which accumulated in oxygen-deficient areas of low clastic-sediment influx, and incised valley-fill deposits, which formed where subsidence rate was low.
Because the origin of each facies tract is dependent upon a unique combination of rate of accommodation change and rate of sediment supply, facies tract distribution is predictable from spatial and temporal patterns of subsidence and uplift associated with plate convergence. Alternating phases of thrust loading and quiescence caused fluctuations between underfilled and overfilled conditions during Palaeozoic evolution of the Appalachian basin. Along-strike variations in stratigraphic thickness, facies tract distribution, and development of unconformities in the Appalachian basin reflect the influence of structural irregularities along the collisional margin. In distal parts of the Appalachian foreland and in areas of structural recesses, eustatic influence on stratigraphic patterns is expressed more clearly than in areas of higher subsidence rate.  相似文献   

18.
The nature and evolution of deep-sea channel systems   总被引:1,自引:0,他引:1  
Abstract A distinction is drawn between sea-floor canyons, which are incised into bedrock, and fan valleys and deep-sea channels, which are cut in unconsolidated sediment. The formation of continental margin canyons/fans and deep-sea channels is an inevitable consequence of continental margin rifting and sea-floor subsidence. Such submarine sediment transport systems are amongst the longest-lived physiographic features on earth, with the Bounty Channel system being more than 50 Myr old. Many deep-sea channels form the distal part of ocean-margin sediment transport systems, being incised 100–350 m into ocean-floor sediments, traversing great distances over the ocean-basin floor, and generally terminating on an abyssal plain. The course of each deep-sea channel is, however, unique. Channel locations are controlled primarily by inherited basement relief, and, during their evolution, by rates and patterns of lithospheric subsidence and sedimentation. In the early stages of ocean-basin formation, deep-sea channels may issue from the axial parts of marginal rifts, or directly from slope canyon-fan systems. As an ocean basin widens, margin-connected channels may become trapped within the strip of oldest (and therefore deepest) oceanic crust at the continent/ocean interface, and will therefore be margin-parallel features. In some cases, as for the Cascadia Channel, channels may escape from the ocean-margin deep, bypassing the spreading ridge via a fracture zone. Deep-sea channels and their associated sediments are influenced also by global sea-level change, by rate of turbidity current generation from the headward continental margin, by rates of pelagic sediment supply, by differential levee development consequent upon the Coriolis effect, and by the operation of deep-sea current systems with their associated sediment drifts. The survival of deep-sea channels as long-lived features necessitates that rates of long-term subsidence at the channel terminus exceed sediment accumulation.  相似文献   

19.
Provision of accommodation space for aggradation in Holocene deltaic basins is usually ascribed to eustatic sea‐level rise and/or land subsidence due to isostasy, tectonics or sediment compaction. Whereas many Holocene deltas contain peat, the relative contribution of peat compaction to total subsidence has not yet been quantified from field data covering an entire delta. Subsidence due to peat compaction potentially influences temporal and spatial sedimentation patterns, and therefore alluvial architecture. Quantification of the amount and rate of peat compaction was done based on (1) estimates of the initial dry bulk density of peat, derived from a relation between dry bulk density and organic‐matter content of uncompacted peat samples and (2) radiocarbon‐dated basal peat used to reconstruct initial levels of peat formation of currently subsided peat samples. In the Rhine‐Meuse delta, peat compaction has contributed considerably to total basin subsidence. Depending on the thickness of the compressible sequence, weight of the overburden and organic‐matter content of peat, subsidence of up to approximately 3 m in a 10‐m thick Holocene sequence has been calculated. Calculated local subsidence rates of peat levels are up to 0.6 mm year?1, averaged over millennia, which are twice the estimated Holocene‐averaged basin subsidence rates of 0.1–0.3 mm year?1 in the study area. Higher rates of subsidence due to compaction, on the order of a few mm year?1, occur over decades to centuries, following a substantial increase in effective stress caused by sediment loading. Without such an increase in effective stress, peat layers may accumulate for thousands of years with little compaction. Thus, the contribution of peat compaction to total delta subsidence is variable in time. Locally, up to 40% of total Holocene accommodation space has been provided by peat compaction. Implications of the large amount of accommodation space created by peat compaction in deltaic basins are: (1) increased sediment trap efficiency in deltas, which decelerates delta progradation and enhances the formation of relatively thick clastic sequences and (2) enhanced local formation of thick natural levees by renewing existing accommodation space.  相似文献   

20.
Abstract Low‐angle detachment faults and thrust‐sheet top basins are common features in foreland basins. However, in stratigraphic analysis their influence on sequence architecture is commonly neglected. Usually, only eustatic sea level and changing flexural subsidence are accounted for, and when deformation is considered, the emphasis is on the generation of local thrust‐flank unconformities. This study analyses the effects of detachment angle and repetitive detachment activation on stratigraphic stacking patterns in a large thrust‐sheet top basin by applying a three‐dimensional numerical model. Model experiments show that displacement over low‐angle faults (2–6°) at moderate rates (~5.0 m kyr?1) results in a vertical uplift component sufficient to counteract the background flexural subsidence rate. Consequently, the basin‐wide accommodation space is reduced, fluvio‐deltaic systems carried by the thrust‐sheet prograde and part of the sediment supply is spilled over towards adjacent basins. The intensity of the forced regression and the interconnectedness of fluvial sheet sandstones increases with the dip angle of the detachment fault or rate of displacement. In addition, the delta plain is susceptible to the formation of incised valleys during eustatic falls because these events are less compensated by regional flexural subsidence, than they would be in the absence of fault displacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号