首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1981—2010年黑龙江省夏季土壤湿度演变特征   总被引:1,自引:0,他引:1  
利用1981—2010年黑龙江省土壤湿度数据,以富锦县、龙江县、双城县、黑河市、海伦县和宁安县为代表站点,分析黑龙江省东、西、南、北部和中部及牡丹江半山区各区域夏季(7—8月)0—50 cm土层土壤湿度的趋势变化和干湿变化,并采用Mann-Kendall法对土壤湿度变化趋势进行显著性和突变点检验。结果表明:夏季0—50 cm土层,黑河市、海伦县和龙江县土壤湿度在30 a间均有不同程度下降,尤其是西部的龙江县土壤湿度下降剧烈;而东部富锦县、南部的双城县和牡丹江半山区的宁安县土壤湿度无明显下降趋势。Mann-Kendall检验结果:近30 a中,黑龙江省夏季0—50 cm土层北部、西部和中部的黑河市、龙江县及海伦县土壤湿度下降趋势显著,并出现了突变区域,表明黑河地区、松嫩平原的西部和北部夏季土壤湿度的干旱化趋势和程度均越来越明显。黑龙江省中西部夏季土壤湿度年际间的下降可能与气候条件及土壤理化性质的改变等因素密切相关。  相似文献   

2.
利用黑龙江省1981-2010年的土壤湿度数据,以富锦县、龙江县、双城县、黑河市、海伦县为代表点,分析了黑龙江省东、西、南、北、中各区域封冻前(11月8日)0~30 cm土层土壤湿度的趋势变化和干湿变化,采用线性趋势、5年滑动平均和Mann-Kendall法检验变化趋势,利用Mann-Kendall和Yamamoto法对土壤湿度变化趋势进行突变点检验.结果表明:封冻前0~30 cm土层各地土壤湿度在30年间均有不同程度下降,西部龙江县下降剧烈,中部海伦县较剧烈,北部黑河市和南部双城县次之,上述代表点20 cm土层土壤湿度下降均达到了P<0.05以内的显著水平,东部富锦县下降趋势最弱;经Mann-Kendall法检验,0~30 cm土层龙江县、海伦县土壤湿度出现了下降的突变区域,其余代表点的土壤湿度变化趋势在近几年中逐渐接近或已经超越了显著线;1994年是龙江县10 cm、20 cm土壤湿度下降的突变时期;黑龙江省各地土壤湿度的下降与封冻前一段时期内气温和降水变化密切相关,还与土壤物理性质的恶化等因素有关.  相似文献   

3.
利用1982—2020年三江平原19个国家气象观测站土壤湿度及同期降水、气温数据, 基于相关系数和自相关系数统计方法, 分析了黑龙江省三江平原土壤湿度记忆性及与降水、气温之间的关系。结果表明: 春、夏季三江平原土壤湿度记忆时间均在10—40 d, 各层土壤湿度记忆性的空间分布以中间层(10—20 cm)土壤湿度平均记忆时间最长, 呈上下层递减的趋势; 春季三江平原10—20 cm土层土壤湿度的记忆时长平均20 d, 夏季平均17 d; 夏季土壤湿度记忆性强度大于春季, 空间分布以三江平原西部的记忆性较强, 随着土层的增加土壤湿度记忆性有增大的趋势。降水是三江平原土壤湿度主要来源, 受降水和气温协同作用的影响, 夏、秋季土壤湿度与同期降水量、温湿指数均存在显著的正相关关系; 春季土壤湿度与前期秋冬季降水亦呈显著正相关, 与前期温湿指数呈负相关, 前期秋冬季气温的升高会促进土壤的融冻, 从而使当年春季土壤水分增加。  相似文献   

4.
利用最新的高时空分辨率(1 km、1 h)的中国气象局高分辨率陆面数据同化系统(HRCLDAS-V1.0)大气近地面强迫资料,驱动由NCAR发展的通用陆面模式(CLM),对青藏高原地区2015年1月1日至9月30日的土壤湿度开展了模拟研究。结果表明模拟得到的高时空分辨率(1 km、1 h)土壤湿度能够体现出青藏高原地区从东南向西北逐渐变低的空间分布特征,较好地表现出各层土壤湿度的时间变化特征,6~9月土壤湿度波动较大,1~5月波动较平缓,上层土壤湿度变幅较大,深层变化较平缓。0~5 cm、0~10 cm和10~40 cm深度土壤湿度模拟结果与观测值的相关系数均在0.8以上,其中0~5 cm土层的相关系数达到0.92,各层土壤湿度观测值与模拟值的均方根误差变化则相反,3个土层土壤湿度模拟结果与观测值的偏差均小于0.04 mm3 mm-3,但模式对于研究时段土壤湿度变化的低值有高估现象,且模拟能力随着土层深度的加深而减弱。  相似文献   

5.
利用黑龙江省1981~2010年的土壤湿度数据,以富锦县、龙江县、双城县、黑河市、海伦县为代表点,分析了黑龙江省东、西、南、北、中各区域春季播种期间(4月28日)各土层土壤湿度的趋势变化和干湿变化,并采用Mann-Kendall法对土壤湿度变化趋势进行显著性和突变点检验。结果表明:0~30 cm土层各地土壤湿度在30 ...  相似文献   

6.
2008年的湛江土壤湿度特征   总被引:1,自引:0,他引:1  
对湛江地面气象观测站2008年0~50 cm土壤湿度、降水及蒸发皿蒸发资料进行了分析。结果表明,湛江土壤湿度的垂直分布形态为垂直均匀型;按土壤湿度随时间的变化规律,可将其划分为春季相对稳定期、夏季增墒期和秋季迅速下降期3个时段。对0~10 cm、10~30 cm与30~50 cm土层土壤湿度进行回归分析,表明土壤湿度与降水量、蒸发皿蒸发量存在线性关系,除春季30~50 cm土壤湿度的预报值明显偏低外,其余回归方程的预报结果均较好。同一土壤类型、不同时段,或同一时段、不同的土壤层次,拟合的方程不同,反映出土壤湿度时间和空间分布的复杂性。  相似文献   

7.
中国土壤湿度的垂直变化特征   总被引:24,自引:0,他引:24  
使用中国 57个站 1981~ 2 0 0 0年 0~ 10 0cm的土壤湿度资料 ,逐站进行了垂直方向土壤湿度的诊断分析 ,根据湿度的垂直分布形态归纳为 3种主要类型 :夏季均匀型、急剧变化型和季节差异型 ;分析土壤湿度的年际变化发现 :多数测站湿度的距平符号在垂直方向是一致的 ,变化趋势以长时间持续干和湿以及 3~ 4a振荡周期为主 ;进一步对干和湿期土壤湿度和降水量进行合成 ,发现湿期和干期的土壤湿度垂直分布多数情况下保持了气候态的基本特征 ,湿期减干期的土壤湿度差与降水差有很好的对应关系  相似文献   

8.
土壤温、湿度是陆面过程的重要参数,也是大气数值模式下边界条件的重要物理参量。由于土壤湿度的观测站点较少,土壤温湿度的空间资料较少,另外,土壤温湿度作为干旱预测的主要内容,需要知道未来时刻的土壤温湿度变化。因此,如何获得未来时刻土壤温湿度的时空变化具有重要意义。本文根据土壤湿度的记忆性特点,通过机器学习方法试图获得模式中土壤湿度的时空变化。采用卷积神经网络算法(Convolutional Neural Networks,CNN),考虑土壤温度对土壤湿度的影响,选取ERA5 0~7、7~28、28~100、100~289 cm深度层土壤温、湿度作为预测因子,对月、季尺度上土壤湿度变化进行预测。结果表明,本方法能提前6个月对土壤湿度进行可靠有效地预测;预测的浅层(0~28 cm)与深层(28~289 cm)土壤湿度平均偏差分别小于0.05、0.02 m3·m-3;在湿润区,平均偏差基本在0.03 m3·m-3以内,表现出较好的效果。本文的预测方法和结果,既可用于土壤干旱的预测,也可作为数值模式初边界场的形...  相似文献   

9.
为研究在同一气候背景下气象观测场与农田两地土壤湿度之间的互可代替使用关系,对2006—2008年在宿州市气象观测场和农田内开展的3年土壤湿度平行对比监测试验所获取的每旬一次两地土壤湿度监测数据,采用对比差值率、相关性分析等数理统计手段,研究分析了两地不同季节不同深度的土壤湿度之间的关系。结果表明:春、夏、秋、冬4季气象观测场地与农田的土壤湿度具有一致性,均为统计正相关。春季,取土日前有降水时,气象观测场地与农田的土壤湿度的差异高于取土日前无降水时的差异。夏季,气象观测场地与农田0~30 cm土层之间的  相似文献   

10.
盛绍学 《气象》1987,13(8):54-54
在自然条件下,土壤水分主要受环境条件制约。为探索作物耕作层(0—30cm土层)内土壤有效水分含量的变化与气象条件的关系,对土壤有效含水量与气温、降水量、日照以及空气湿度等的关系进行初步分析。 1.土壤有效含水量与气温及降水的关系 自然条件下降水是土壤水分的最主要的来源,  相似文献   

11.
利用陕西省咸阳国家一级农业气象试验站1992—2021年的土壤湿度资料,采用线性评估、回归分析等方法分析了咸阳30 a来土壤湿度在自然状态下的变化规律。结果表明:三个层次土壤湿度均呈现明显下降趋势,0~10 cm年平均土壤湿度的变化趋势率为-0.99%/10 a, 20~30 cm为-1.03%/10 a, 40~50 cm为-0.87%/10 a;各季节三个层次土壤湿度也呈下降趋势,其中春季降幅最大,其次为冬季、夏季,秋季降幅最小。0 cm土壤解冻有推迟趋势,平均变化趋势率-2.92 d/10 a; 0 cm土壤冻结有提早趋势,平均变化趋势率为-1.81 d/10 a。土壤湿度影响因子中,气压、降水量与土壤湿度成正相关,地温、气温与土壤湿度成负相关;某些年份在降水量增加的前提下,由于地面温度和地温增加的影响,也会造成土壤湿度下降。  相似文献   

12.
冬小麦土壤深松保墒增产效应试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用土壤深松 45cm、30 cm处理打破犁底层 ,1 996~ 1 998年连续进行 2个年度的冬小麦保墒、增产效应田间试验 .试验结果表明 :土壤深松处理后可减少冬小麦全生育期 0~ 1 0 0 cm的作物耗水量 ,促进根系对 1 0 0~ 2 0 0 cm土层土壤水分的利用 ,提高冬小麦的产量耗水比 .土壤深松处理能明显增加 0~ 30 cm土层的土壤湿度和含水量 ,降低 0~ 50 cm土层的土壤容重 .有利于冬小麦根系、茎、叶的生长发育和总生物量的累积 .土壤深松 45cm处理 2年平均冬小麦增产 7.0 % ,土壤深松 30 cm处理第一年增产 7.7% .冬小麦土壤深松保墒增产效应的适宜深松深度为 30 cm.  相似文献   

13.
天气现象自动化观测系统,通过图像自动化识别技术,能自动观测地表结露天气现象,并能记录结露发生的时间。北京市平谷气象站安装了土壤湿度仪和天气现象自动化观测系统,通过统计分析平谷气象站2011年4—9月天气现象自动化观测系统得到的结露时间资料与浅层土壤湿度资料,得到结露时间与土壤湿度具有一定的相关关系,即0~10cm层土壤湿度越大结露时间越早。相反,0~10cm土壤湿度越小,结露时间越晚,当0~10cm土壤湿度小于一定值后就不发生结露现象。为了进一步验证结露时间与土壤湿度具有一定的相关关系,分析了北京市怀柔、门头沟、朝阳、大兴和延庆等站结露时间与降水后日数的关系。  相似文献   

14.
本文运用统计学方法,建立西乡县旬土壤水分的预报模式,并在农气服务中初步使用,效果较好.在制作土壤水分旬预报时,计算的是0—50cm深土层的土壤含水量,而实际土壤水分观测资料,通常是以土壤含水量占干土重的百分比表示.换算成毫米为单位,用Z=Z′×((D×H×10)/100)=Z′×((D×H)/10)式中Z、Z′分别为以毫米和占干土重的百分数为单位的土壤含水量,D为该土层的容重(g/cm~3),H为土层厚度(cm),50cm深土层取6个层次,表示在0-5cm和5cm—10cm,表层以下每隔10cm取土样.每次测定取四个重复,其平均值即我们使用的土壤含水量.  相似文献   

15.
对鄂托克旗气象局1985—2007年测定的有关气象资料进行统计分析,结果表明:内蒙古鄂托克地区天然草地的产草量取决于当年6—7月份的降水量,而且与6—7月份的土壤湿度(5~20cm)有直接相关。  相似文献   

16.
利用吉林省西部10个自动土壤水分观测站数据与人工取土烘干法实测土壤湿度数据,制作吉林省西部土壤墒情监测及干旱预报模型.结果表明:不同气候背景下在作物不同生育期、土壤不同深度、不同初始湿度下的土壤湿度的变化趋势大致相同,但在相同的无降水日数或降水量时,不同台站不同深度的土壤湿度变化率却有一定的差异.各站农田土壤初始湿度越大,无降水时初期墒情下降速率越明显;而土壤湿度初始值越低,则失墒速率越慢.土壤不同深度均是开始时间失墒较快,后期变化逐渐趋于减弱状态.土壤深度越深则水分变化速率越缓,降水量越大,0~50 cm土壤湿度变化曲线整体越接近一致,直到从上而下几层土壤湿度全部达到饱和.通过对2017—2019年吉林省西部玉米农田土壤湿度预报结果和实测值进行对比检验,基于自动土壤水分观测数据的吉林省西部干旱模型预报的准确率超过80%.  相似文献   

17.
夏季青藏高原不同层次土壤湿度时空变化特征   总被引:1,自引:0,他引:1  
孙夏  范广洲  张永莉  赖欣 《干旱气象》2019,37(2):252-261
基于1950—2009年GLDAS Noah 2.0逐月平均土壤湿度资料,分析了夏季青藏高原各层土壤湿度的时空变化特征。结果表明:(1)夏季青藏高原各层土壤湿度整体上呈自南向北递减的空间分布,但在高原中部地区中层、深层土壤湿度均有一个极值中心。(2)夏季高原中东部地区表层、浅层、中层、深层土壤湿度之间的差值(深层与中层除外)均表现为"上湿下干"的垂直分布,而中部偏西地区各层土壤湿度差值则表现为"下湿上干"的垂直分布。(3)夏季高原各层土壤湿度第一模态均呈现西南—东北反向型分布,且随着深度的增加,零线向东北移。(4)夏季高原主体各层土壤湿度的年际变化特征明显,除深层(呈现不显著增加趋势)外整体均呈现显著下降趋势,前期土壤湿度较高,后期较低。从空间趋势分布来看,除深层土壤湿度在高原中部有增大趋势外,各层土壤湿度变化趋势在高原上均以减小为主。(5)去趋势后,除深层外其他各层土壤湿度最大年际变化幅度在高原中部随着土层的增加而减小,而高原中东部则随土层的增加而增大。  相似文献   

18.
为了研究青藏高原(简称高原)春末(5月)土壤湿度与初夏(6月)降水的关系,利用1979-2019年ERA-Interim土壤湿度月平均资料和同时段高原109站观测降水资料,分析了高原春季土壤湿度与汛期(5-9月)降水之间的关系.结果 表明:春末表层(0~28 cm)土壤湿度与高原初夏降水呈显著的正相关,在空间上土壤湿度...  相似文献   

19.
中国西北区西部土壤湿度及其气候响应   总被引:19,自引:4,他引:15  
利用中国西北区西部7个农业试验站1981—2001年0~40 cm的土壤湿度、降水、气温、水面蒸发和相对湿度观测资料,分析了逐站土壤湿度的月变化、年际特征及其气候响应。结果表明:(1)7站土壤湿度月变化分为平稳型和波动型;新疆各站土壤湿度沿垂直方向年际变化比较一致,但青海2个测站上下层趋势基本相反;新疆各站整层年际变化相对较大,而青海2个测站年际变化相对稳定;土壤湿度年际变化总体趋势随深度增加而减小。(2)进入20世纪90年代,多数站点土壤明显干化,个别站还存在突变现象,土壤湿度与气温有着显著的负相关。(3)土壤湿度和气候因子之间存在相互响应,土壤湿度与气温普遍存在负相关,土壤湿度与降水之间总体响应不明显。  相似文献   

20.
我们用近9年(1970—1978年)吉林市郊的土壤湿度资料,对春季墒情变化作了初步分析。通过分析发现,春播期墒情的好坏,并不完全取决于春季雨水的多少,而在很大程度上取决于前一年秋雨的多寡和封冻时的土壤水分储存量。 9年中秋雨(9—11月)多的有3年(1971、1972、1974),均超过150mm,封冻时土壤湿度均在  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号