首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Uranium contents and234U/238U activity ratios have been determined for groundwaters from the Lincolnshire Limestone artesian aquifer in eastern England. Changes in the quantitative and isotopic chemistry of the dissolved uranium are explained in terms of a mixing model involving the rapidly moving fissure water and much older water stored in the pore system of this oolitic limestone. The western part of the aquifer, closest to recharge, is dominated by oxidising groundwaters which then enter a reducing zone towards the east, where there is an abrupt decrease in Eh and the chlorinity of the groundwaters begins to increase. Uranium contents in the oxidising zone range from 0.7 to 3.4 μg kg?1 and234U/238U activity ratio of this dissolved uranium is close to unity, the equilibrium value. The uranium content decreases abruptly when the grounwaaters enter the reducing zone, averaging 0.04 μg kg?1 east of the oxidation/reduction barrier. Simultaneously with the decrease in uranium content, there is an increase in234U/238U activity ratio and this ratio increases to a maximum within 7 km of the oxidation/reduction barrier. This increase in activity ratio is attributed to enhanced234U solution due to234Th recoil from uraniferous fissure surfaces east of the oxidising zone. The activity ratio of dissolved uranium in the ancient pore waters could in principle reach high values due to234Th recoil from the oolith surfaces. However, the activity ratio actually declines further east and this can only be explained as a consequence of mixing with pore waters in which the uranium activity ratio is closer to equilibrium.234Th recoil from the oolith surfaces has probably been inhibited by sealing of the uranium-bearing surfaces in the process of oolith cementation.  相似文献   

2.
Measurements of uranium concentration and the234U/238U activity ratio in oceanic basalts which have undergone low-temperature seafloor alteration indicate that uranium uptake is a pervasive occurrence but that the various phases involved behave differently with respect to this process. Palagonite exhibits uranium contents 8–20 times higher than unaltered glass coupled with low234U/238U, suggesting ongoing preferential leaching of234U. Altered crystalline interiors of several old basalts have234U/238U > 1, indicative of recent uranium exchange with seawater. The data also provide evidence for uranium sources with234U/238U higher than the seawater value of 1.14. Manganese crusts on basalts of a variety of ages have isotopic ratios indicating that they either are recent deposits or also have experienced continuing uranium exchange with seawater.  相似文献   

3.
Two expeditions (October 1989 and May 1992) were carried out to two points of the main Amazon River channel and four tributaries. The Solimões and Madeira rivers, taking their origin in the Andes, are whitewater rivers. The Negro River is a typical acid, blackwater river. The Trombetas River flows through bauxite‐rich areas, and is characterized by low concentrations of dissolved humic substances. The 238U, 234U, 232Th and 230Th activities were recorded from dissolved, suspended particulate phases and river bank sediments. The latter were analysed for their 226Ra, 228Ra and 210Pb contents, and also subjected to leaching with 0·2 M hydroxylamine–hydrochloride solution to determine the concentrations of radionuclides bound to amorphous Fe hydroxides and Mn oxides and hydroxides. The dissolved U average concentration in the Amazon system is ten times lower than the mean world river concentration. The uranium concentration observed at Óbidos in the lower Amazon (0·095 µg L?1), where the U content in the river bank sediments and suspended matter is lowest, suggests U release from the solid phase during river transport. About 485 t of U are transported annually to the Amazon delta area in dissolved form, and 1943 t bound to suspended particulate matter. Total U and Th concentrations in the river bank sediments ranged from 1·59 to 7·14 µg g?1 and from 6·74 to 32 µg g?1, respectively. The highest concentrations were observed in the Trombetas River. The proportion extracted by means of the hydroxylamine solution (HL) was relatively high for U in the Trombetas river bank sediment (31%) and for Th in the Solimões sediment (30%). According to the alpha recoil effects, the 234U/238U activity ratios of the Andean river waters and downstream Amazon water (Óbidos) were >1, but were <1 in the Negro River (at Manaus). The activity ratios of dissolved U correlate with pH and also with the U activity ratios in the river bank sediment hydroxylamine extracts. As expected, the 234U/238U activity ratios in river bank sediments were <1 in the Andean rivers and in the downstream Amazon, but they were >1 in the Trombetas and Negro rivers. Such ratios probably result from the binding of dissolved uranium to solid sediment. The 228Th/232Th ratios of river bank sediments were close to unity (except for the Negro River, where it is lower), suggesting no significant Th exchanges between the river water and the sediment. The 226Ra/232Th activity ratios were <1, and the 226Ra/228Ra activity ratios generally were significantly higher than the activity ratios of their respective parents. This perhaps is the result of easier leaching of the 226Ra parent, 230Th, from solid material (owing to the alpha recoil effect) than of the 228Ra parent. Uranium and thorium isotopes were used as tools to evaluate the chemical weathering rate of rocks in the Amazon system, which was estimated to be 2·7 cm 1000 year?1 s?1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The concentration of dissolved uranium and234U/238U alpha activity ratio (“A.R.”) were determined in water samples from 23 locations in the Edwards carbonate aquifer of south central Texas by isotope dilution methods and alpha spectrometry. This aquifer consists of two parts, an updip oxidized portion and a downdip reduced portion. At some places the boundary is associated with faulting and at others it is not. The boundary between the two portions of the aquifer can be located by an abrupt change in chemical properties of the water such as a large increase in concentration of Cl?, SO42? and total dissolved solids, the presence of H2S and a decrease in Eh in moving from updip to downdip. Compared with the oxidized samples, the uranium concentration is much lower and the A.R. higher in the reduced samples so that the uranium from each portion falls in a distinct field. The oxidized aquifer samples show very little variation in the measured uranium parameters even though, in some cases, there is evidence that the water has flowed through some tens of kilometers of aquifer. Samples collected near the boundary at those places not associated with faulting yield dissolved uranium values which fall in neither field and which, for the most part, cannot result from mixing of the oxidized and reduced waters. These samples probably result from changes in location of the oxidation-reduction boundary.  相似文献   

5.
234Th:238U disequilibria have been used extensively as tracers of particle dynamics in marine environments. 234Th (t1/2=24.1 days) can be used as “proxy” for particle reactive pollutants, due to their similar rapid rate of scavenging onto particles and subsequent removal from the water column, to the sediments. Radioactive disequilibrium can be exploited to determine the rates and time-scales of processes occurring over days to months; in this instance the residence times of dissolved and particulate species with the benthic nepheloid layer (BNL).Three sampling cruises were undertaken in Thermaikos Gulf (NW Aegean Sea) during contrasting periods, to examine the impact of natural and anthropogenic activity on sediment resuspension. September and October 2001 represented background and trawling periods, respectively; January 2002 represented a mixed period, of trawling and storms.Dissolved 234Th is scavenged actively at the BNL, in the presence of suspended particulate material (SPM), with a mean residence time of 16 days. There is a weak inverse correlation between dissolved 234Th residence time and SPM concentration in the BNL, with the shortest residence times occurring during October 2001. No relationship was observed between particulate 234Th activities and SPM concentrations, indicating that particles are rapidly removed from the system, either by sinking or advection. The mean particulate 234Th residence time is 5 days.  相似文献   

6.
This study presents uranium and thorium concentrations and activity ratios for all riverine phases (bedload, suspended load, dissolved load and colloids) from basaltic terrains in Iceland and the Azores. Small basaltic islands, such as these, are thought to account for ~ 25% of CO2 consumed by global silicate weathering, and for ~ 45% of the flux of suspended material to the oceans. These data indicate that [U] and [Th] in the dissolved and colloidal fractions are strongly controlled by pH, and to a much lesser extent by levels of dissolved organic carbon (which are low in these environments). At high pH, basalt glass dissolution is enhanced, and secondary mineral formation (e.g. Fe-oxyhydroxides and allophane) is suppressed, resulting in high dissolved [U], and low colloidal [U] and [Th], indicating a direct chemical weathering control on elemental abundances. When the dissolved (234U/238U) activity ratio is >~1.3 (i.e. when physical weathering, groundwater contribution or soil formation are high), there is little isotope exchange between dissolved and colloidal fractions. At lower activity ratios, the dissolved load and colloids have indistinguishable activity ratios, suggesting that when chemical weathering rates are high, secondary clay formation is also high, and colloids rapidly adsorb dissolved U. Many of the suspended sediment samples have (234U/238U) activity ratios of > 1, which suggests that uptake of U onto the suspended load is important. Identical (230Th/232Th) in suspended, dissolved and colloidal samples suggests that Th, like U, is exchanged or sorbed rapidly between all riverine phases. This particle-reactivity, combined with poorly constrained contributions from groundwater and hydrothermal water, and short-term variations in input to soils (volcanic and glacial), suggests that U-series nuclides in riverine material from such basaltic terrains are unlikely to reflect steady state erosion processes.  相似文献   

7.
Rare earth elements in the pore waters of reducing nearshore sediments   总被引:4,自引:0,他引:4  
The REE are mobile during early diagenesis in reducing nearshore sediments of Buzzards Bay leading to greatly enhanced concentrations in pore waters, e.g. 815 pmol kg−1 Nd and 1910 pmol kg−1 Ce within 30 cm of the sediment-seawater interface, about 10–50 times local seawater values. Two principal diagenetic reactions have been identified. Preferential Ce enrichment (positive Ce anomalies) and preferential heavy REE enrichment (light REE removal) in the pore waters is associated with redox cycling of Fe and Mn within the upper few centimeters of the sediment. Release of REE, without fractionation, from sediments and addition to pore waters occurs deeper within the sediment column. The impact on the bulk sediment chemistry is undetectable but the porewater gradients imply that there are significant dissolved REE fluxes, both internal to the sediment system and across the sediment-seawater interface.  相似文献   

8.
Uranium isotopes were measured in waters and suspended particulate matters (SPM) of the main channel of Yellow River, China that were sampled during four field trips between August 2005 and July 2006. The results show that the concentration of dissolved U (2.04–7.83 μg/l) and the activity ratio of 234U/238U (1.36–1.67) are much higher than the average U concentrations and activity ratios of global major rivers. Mass balance calculations using the results of simulated experiments and measurement data show that the section of the Yellow River between Lanzhou and Sanmenxia has its dissolved U derived from two sources: suspended sediments (68%) and groundwater/runoff from loess deposits (32%). Both sources are related to the heavy erosion of the Chinese Loess Plateau.  相似文献   

9.
The234Th/238U activity ratios in the near-bottom waters at a station in the South Pacific have been measured. The activity ratios are close to the secular equilibrium value, ranging between 0.9 and 1.13 (± 8%), suggesting that the rate of removal of234Th by bottom-water scavenging processes at this station is slow compared to its rate of radioactive decay. The mean234U/238U activity ratios in these waters is 1.14 ± 0.02, the same as the reported values for the world oceans.  相似文献   

10.
234Th alpha-recoil appears to be a valid mechanism for explaining the generation of extreme234U/238U disequilibria found in the waters of the Trinity aquifer.  相似文献   

11.
The concentrations of radionuclides of the U-Th series (238U,234Th,234U,230Th,226Ra,210Pb,210Po, and232Th,228Ra,228Th) in the water of Narragansett Bay are reported. Analysis of the total, particulate, dissolved and colloidal forms of Th isotopes reveal a consistent removal behavior which is controlled mainly by the particulate matter concentration and the sediment resuspension rate. Half-removal times of Th from solution onto particles range from 1.5 to 15 days, and settling velocities of Th containing particles range generally between 1 and 11 m/day.210Pb and210Po concentrations are seasonally dependent, with higher concentrations and slower removal during the early summer (half-removal times from solution onto particles of 1–5 days in winter and up to 2 months in early summer).  相似文献   

12.
Strong isotopic fractionation between234U and238U has been noted in deep oil-well brines. The waters are stratigraphically and structurally isolated from fresh-water inflow and have remained stagnant for more than five half-lifes of234U. Excess234U is explained by the234Th alpha-recoil nucleus event.  相似文献   

13.
The objectives of this study were to examine both spatial and temporal changes of particulate major elements and minor metals, as well as dissolved Mn and Cd, in the waters of Thermaikos Gulf. Collections of water and suspended particulate matter (SPM), as depth profiles (5–8 depths), were undertaken at 10 principal stations, essentially on a N–S traverse of the western side of the Gulf.One of the principal aims of the study was to observe if there was any change in the patterning of the elements between the three occupations of the stations: (a) in September 2001, immediately before the commencement of trawling; (b) in October 2001, whilst fishing was active; and (c) in winter/early spring conditions (February 2002), when fishing was still active, but after a change of river/atmospheric conditions.Bottom (20 m) waters were dominated by sediment resuspension; this was identified by concentration changes in the aluminosilicate elements (e.g. Al, Ti, K, Fe) of the SPM. A two- to three-fold increase occurred between September and October, caused probably by trawling; this was sustained at the offshore stations, in February. During February, the western inshore stations showed little sediment resuspension, caused by extreme winter cooling and the sinking of water. Consequently, a N–S density discontinuity existed at all water depths, which prevented the thermohaline cyclonic circulation from penetrating into the western seaboard of the Gulf. The distribution of dissolved and particulate Mn in the lower waters was due to redox cycling of the element at the benthic boundary; this was more intense in the north, where the organic supply was higher.Biogenic element concentrations and Ca/Al, Si/Al ratios showed no evidence that trawling activity promoted higher biological production. Strong correlations of Co, Cr, Ni and V, with Al and K, showed that these elements were associated strongly with detrital aluminosilicates. However, the variable association of Cd, Pb and Zn, with K (and Al), especially in the upper waters, implied an anthropogenic source derived from the rivers and the city of Thessaloniki. Examination of the Kd's of Cd showed a two-order of magnitude decrease with depth, caused by resuspension and possible advection of relatively unpolluted sediments, into the western Gulf.  相似文献   

14.
We have used in-situ pumps which filter large volumes of sea water through a 1 μm cartridge prefilter and two MnO2-coated cartridges to obtain information on dissolved and particulate radionuclide distributions in the oceans. Two sites in the northwest Atlantic show subsurface maxima of the fallout radionuclides137Cs,239,240Pu and241Am. Although the processes of scavenging onto sinking particles and release at depth may contribute to the tracer distributions, comparison of predicted and measured water column inventories suggests that at least 35–50% of the Pu and241Am are supplied to the deep water by advection.The depth distributions of the naturally occurring radionuclides232Th,228Th and230Th reflect their sources to the oceans.232Th shows high dissolved concentrations in surface waters, presumably as a result of atmospheric or riverine supply. Activities of232Th decrease with depth to values 0.01 dpm/1000 l.228Th shows high activities in near surface and near bottom water, due to the distribution of its parent,228Ra. Dissolved230Th, produced throughout the water column from234U decay, increases with depth to 3000 m. Values in the deep water (> 3000 m) are nearly constant ( 0.6–0.7 dpm/1000 l), and the distribution of this tracer (and perhaps other long-lived particle-reactive tracers as well) may be affected by the advection inferred from Pu and241Am data.The ratio of particulate to dissolved activity for both230Th and228Th is 0.15–0.20. This similarity precludes the calculation of sorption rate constants using a simple model of reversible sorption equilibrium. Moreover, in mid-depths228Th tends to have a higher particulate/dissolved ratio than230Th, suggesting uptake and release of230Th and228Th by different processes. This could occur if228Th, produced in surface water, were incorporated into biogenic particles formed there and released as those particles dissolved or decomposed during sinking.230Th, produced throughout the water column, may more closely approach a sorption equilibrium at all depths.230Th,241Am and239,240Pu are partitioned onto particles in the sequence Th > Am > Pu with 15% of the230Th on particles compared with 7% for Am and 1% for Pu. Distribution coefficients (Kd) are 1.3–1.6 × 107 for Th, 5–6 × 106 for Am and 7–10 × 105 for Pu. The lower reactivity for Pu is consistent with analyses of Pu oxidation states which show 85% oxidized (V + VI) Pu. However, theKd value for Pu may be an upper limit because Pu, like228Th, may be incorporated into particles in surface waters and released at depth only by destruction of the carrier phase.  相似文献   

15.
Two diagenetic manganese nodules from the Peru Basin were investigated by thermal ionization mass spectrometry and high resolution alpha spectrometry for uranium and thorium. The TIMS concentrations for nodule 62KD (63KG) vary as follows: 0.12–1.01 ppb (0.06–0.59) 230Th, 0.51–1.98 ppm (0.43–1.40) 232Th, 0.13–0.80 ppb (0.09–0.49) 234U, and 1.95–13.47 ppm (1.66–8.24) 238U. Both nodules have average growth rates of 110 mm per million years. However, from the variations of excess 230Th with depth we estimate partial accumulation rates which range from 50 to 400 mm per million years. The δ234U dating method cannot be applied due to remobilization of U from the sediment and subsequent incorporation into the nodules' crystal lattice, reflected by decay corrected δ234U values far above the ocean water value. Sections of fast nodule growth are related to those layers having high Mn/Fe ratios (up to 200) and higher densities. As a possible explanation we develop a scenario that describes similar glacial/interglacial trends in both nodules as a record of regional changes of sediment and/or deep water chemistry.  相似文献   

16.
An iron-rich deposit dredged from the upper flank of Dellwood Seamount in the Northeast Pacific has been analyzed for major and trace elements, rare-earth contents and uranium isotopic composition. In terms of mineralogy and overall chemical composition, the deposit resembles other iron-rich deposits variously attributed to volcanic hydrothermal activity. Both the relative concentrations of the rare-earth elements and the isotopic composition of uranium rule out seawater as the sole source of elements in this deposit. The rare-earth element pattern indicates that these elements were derived from the underlying basalt. The234U/238U ratio is significantly higher than in seawater and can best be explained by preferential leaching of234U generated by decay from its parent238U in the underlying rock and subsequent redeposition of the excess234U together with the Fe and minor metals. These data are consistent with a model for the origin of submarine metal-rich solutions involving mobilization of elements from the interior of slowly cooling basalts by circulating seawater.  相似文献   

17.
The determination of uranium series disequilibria in fluvial environments is proposed as a method of calculating catchment mass balances. The technique is based on two main principles. Firstly, 234U is more mobile than 238U, especially during the early stages of weathering. Secondly, uranium is far more mobile than either thorium or protactinium. Consequently, teaching during weathering results in the loss of the uranium found in the fresh rock, leaving the two immobile daughters behind. The ratio of uranium carried by sediment to that dissolved, US/UW can, therefore, be determined from river water and sediment isotopic activity ratios. Fluxes of uranium can then be calculated from average concentrations in the water and the associated sediment, from which a sediment yield can be inferred. The Witham catchment in Lincolnshire has been used to test the proposed method. A US/UW ratio of between 5 and 7 is determined and a sediment yield of 2.51 ± 2.12 tonnes yr?1 km?2 is proposed. Although some problems concerning environmental chemistry have arisen, the validity of the approach is confirmed by the close correspondence between the results obtained and those inferred by earlier workers using more conventional methods.  相似文献   

18.
The234U and238U concentration in brine from six Gulf Coast geopressured aquifers has been determined. The results reveal very low uranium concentrations (from 0.003 to 0.03 μg/l) and uranium activity ratios slightly greater than unity (from 1.06 to 1.62). Reducing conditions within the aquifers are responsible for the low uranium concentrations. The uranium activity ratios observed are well below those calculated using theoretical considerations of alpha-particle recoil effects. This can be explained by interference with alpha-recoil nuclides entering the liquid phase as a result of quartz overgrowths on sand grains and high-temperature re-equilibration that tends to minimize the effects of the alpha-recoil process.The fact that the uranium activity ratios of the brines are slightly greater than unity instead of the equilibrium value of 1.000 indicates that either the alpha particle recoil blocking and re-equlibration effects are not complete or that another process is operative that enriches the fluid in excess234U by selectively removing uranium from radiation induced damage sites in the mineral (sand grain) matrix.  相似文献   

19.
A young (<1 m.y.) tholeiitic basalt dredged from the Mid-Atlantic Ridge displays a234U excess and a230Th deficiency that have resulted from the addition of seawater uranium during weathering at seafloor temperatures. Two older samples, though they acquired substantial amounts of uranium from seawater, are depleted in234U, indicating preferential leaching of this isotope. Hydrothermally altered samples suggest that some uranium loss may have occurred. Possible isotopic effects of preferential234U leaching, however, are obscured by secondary addition of seawater uranium at lower temperatures.  相似文献   

20.
Isotopic characteristics (δ2H, δ18O, 234U/238U, Ar, 3H) of natural and technogenically affected waters were determined in the area around the burying grounds of the Siberian Chemical Combine with the aim to assess the circulation conditions of natural waters and the safety of radioactive waste disposal in reservoir beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号