首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
赵明  滕斌 《中国海洋工程》2004,18(2):267-280
The incompressible viscous uniform and shear flow past a circular cylinder is studied. The two-dimensional Navier-Stokes equations are solved by a finite element method. The governing equations are discretized by a weighted residual method in space. The stable three-step scheme is applied to the momentum equations in the time integration. The numerical model is firstly applied to the computation of the lid-driven cavity flow for its validation. The computed results agree well with the measured data and other numerical results. Then, it is used to simulate the viscous uniform and shear flow over a circular cylinder for Reynolds numbers from lO0 to lO00. The transient time interval before the vortex shedding occurs is shortened considerably by introduction of artificial perturbation. The computed Strouhal number, drag and lift coefficients agree well with the experimental data. The computation shows that the finite element model can be successfully applied to the viscous flow problem.  相似文献   

2.
A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.  相似文献   

3.
A coastal ocean model of semi-implicit finite volume unstructured grid   总被引:1,自引:0,他引:1  
A two-dimensional coastal ocean model based on unstructured C-grid is built, in which the momentum equation is discretized on the faces of each cell, and the continuity equation is discretized on the cell. The model is discretized by semi-implicit finite volume method, in that the free surface is semi-implicit and the bottom friction is implicit, thereby removing stability limitations associated with the surface gravity wave and friction. The remaining terms in the momentum equations are discretized explicitly by integral finite volume method and second-order Adams-Bashforth method. Tidal flow in the polar quadrant with known analytic solution is employed to test the proposed model. Finally, the performance of the present model to simulate tidal flow in a geometrically complex domain is examined by simulation of tidal currents in the Pearl River Estuary.  相似文献   

4.
A 3-D time-domain numerical coupled model is developed to obtain an efficient method for nonlinear waves acting on a box-shaped ship fixed in a harbor. The domain is divided into the inner domain and the outer domain. The inner domain is the area beneath the ship and the flow is described by the simplified Euler equations. The remaining area is the outer domain and the flow is defined by the higher-order Boussinesq equations in order to consider the nonlinearity of the wave motions. Along the interface boundaries between the inner domain and the outer domain, the volume flux is assumed to be continuous and the wave pressures are equal. Relevant physical experiment is conducted to validate the present model and it is shown that the numerical results agree with the experimental data. Compared the coupled model with the flow in the inner domain governed by the Laplace equation, the present coupled model is more efficient and its solution procedure is simpler, which is particularly useful for the study on the effect of the nonlinear waves acting on a fixed box-shaped ship in a large harbor.  相似文献   

5.
A 2-D time-domain numerical coupled model is developed to obtain an efficient method for nonlinear wave forces on a fixed box-shaped ship in a harbor.The domain is divided into an inner domain and an outer domain.The inner domain is the area beneath the ship and the flow is described by the simplified Euler equations.The other area is the outer domain and the flow is defined by the higher-order Boussinesq equations in order to consider the nonlinearity of the wave motions.Along the interface boundaries between the inner domain and the outer domain,the volume flux is assumed to be continuous and the wave pressures are equal.Relevant physical experiment is conducted to validate the present model.It is shown that the numerical results agree with the experimental data.Compared with the coupled model with the flow in the inner domain governed by the Laplace equation,the present coupled model is more efficient and its solution procedure is more simple,which is particularly useful for the study on the effect of the nonlinear wave forces on a fixed box-shaped ship in a large harbor.  相似文献   

6.
赵明  滕斌  谭丽 《中国海洋工程》2004,18(3):335-346
In this paper, a numerical model is established for estimating the wave forces on a submerged horizontal circular cylinder. For predicting the wave motion, a set of two-dimensional Navier-Stokes equations is solved numerically with a finite element method. In order to track the moving non-linear wave surface boundary, the Navier-Stokes equations are discretized in a moving mesh system. After each computational time step, the mesh is modified according to the changed wave surface boundary. In order to stabilize the numerical procedure, a three-step finite element method is applied in the time integration. The water sloshing in a tank and wave propagation over a submerged bar are simulated for the first time to validate the present model. The computational results agree well with the analytical solution and the experimental data.Finally, the model is applied to the simulation of interaction between waves and a submerged horizontal circular cylinder.The effects of the KC number and the cylinder depth on the wave forces are studied.  相似文献   

7.
吕彪 《中国海洋工程》2013,27(4):509-522
A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k-ε equations in this model. The eddy viscosity is calculated from the k-ε turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field,and then applied to simulate the tidal flow in the Bohai Sea.  相似文献   

8.
A Computational Model for Velocity Separation in Shallow Sea   总被引:1,自引:0,他引:1  
SONG  Zhiyao 《中国海洋工程》2002,16(3):407-413
Based on the hydrodynamical feature and the theoretical velocity profiles of tidal flow and vvind-induced flow in shal-low sea, a computational model is established for the first time, which can separate observed velocity into tidal velocity and wind-induced velocity by use of the least square method. With the model, not only the surface velocities of tidal flow and vvind-induced flow are obtained, but also the bed roughness height is determined and the wind velocity above the wa-ter surface is estimated. For verification of the model, the observed velocity in the Yellow River Estuary and the laborato-ry test is separated, then it is applied to the Yangtze River Estuary. All the results are satisfactory. The research results show that the model is simple in method, feasible in process and reasonable in result. The model is a valid approach to analysis and computation of field dala, and can be applied to separate the observed velocity in shallow sea; at the same time, reasonable boundary conditions of th  相似文献   

9.
In this paper, a numerical model is established. A modified N-S equation is used as a control equation for the wave field and porous flow area. The control equations are discreted and solved by the finite difference method. The free surface is tracked by the VOF method. The pressure field and velocity field of the whole flow area are solved by the reiterative iteration method. Finally, compared with the physical model test results of wave flume, the numerical model established in the present study is validated.  相似文献   

10.
Based on the high order nonlinear and dispersive wave equation with a dissipalive term, a numerical model for nonlinear waves is developed. It is suitable to calculate wave propagation in water areas with an arbitrarily varying bottom slope and a relative depth h/ L0≤ 1. By the application of the completely implicit slagger grid and central difference algorithm, discrete governing equations are obtained. Although the central difference algorithm of second-order accuracy both in time and space domains is used to yield the difference equations, the order of truncation error in the difference equation is the same as that of the third-order derivatives of the Boussinesq equation. In this paper, the correction to the first-order derivative is made, and the accuracy of the difference equation is improved. The verifications of accuracy show that the results of the numerical model are in good agreement with those of analytical solutions and physical models.  相似文献   

11.
A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C -unstructured non-orthogonal grid in the horizontal direction and z -level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohai Sea. The results are in good agreement both with the analytical solutions and measurement results.  相似文献   

12.
Evaluation of abandonment and recovery operation of steel lazy-wave riser in deepwater is presented in this paper.The calculation procedure includes two single continuous SLWR and cable segments, which are coupled together to form the overall mathematical model. Then the equilibrium equations of SLWR and cable are established based on minimum total potential energy principle. The coupled equations are discretized by the finite difference method and solved by Newton-Raphson technique in an iterat...  相似文献   

13.
A composite numerical model is presented for computing the wave field in a harbor. The mild slope equation is discretized by a finite element method in the domain concerned. Out of the computational domain, the water depth is assumed to be constant. The boundary element method is applied to the outer boundary for dealing with the infinite boundary condition. Because the model satisfies strictly the infinite boundary condition, more accurate results can be obtained. The model is firstly applied to compute the wave diffraction in a narrow rectangular bay and the wave diffraction from a porous cylinder. The numerical results are compared with the analytical solution, experimental data and other numerical results. Good agreements are obtained. Then the model is applied to computing the wave diffraction in a square harbor with varying water depth. The effects of the water depth in the harbor and the incoming wave direction on the wave height distribution are discussed.  相似文献   

14.
Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations.For time discretization,a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage,a cubic spline function is adopted at correcting stage,which made the time discretization accuracy up to fourth order;For spatial discretization,a three-point explicit compact difference scheme with arbitrary order accuracy is employed.The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme.The numerical results agree well with the experimental data.At the same time,the comparisons of the two numerical results between the present scheme and low accuracy difference method are made,which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations.As a valid sample,the wave propagation on the rectangular step is formulated by the present scheme,the modelled results are in better agreement with the experimental data than those of Kittitanasuan.  相似文献   

15.
The integration equation and time stepping method have been applied in this paper to discuss the nonlinear wave forces and moments acting on a square cylinder subjected to nonlinear waves based on the stream function theory. It is shown that the present results are in good agreement with the experimental ones. Some numerical results and an empirical formula are presented.  相似文献   

16.
Quasi-3D Numerical Simulation of Tidal Hydrodynamic Field   总被引:2,自引:0,他引:2  
Based on the 2D horizontal plane numerical model,a quasi-3D numerical model is establishedfor coastal regions of shallow water.The characteristics of this model are that the velocity profiles can be ob-tained at the same time when the equations of the value of difference between the horizontal current velocityand its depth-averaged velocity in the vertical direction are solved and the results obtained are consistent withthe results of the 2D model.The circulating flow in the rectangular area induced by wind is simulated and ap-plied to the tidal flow field of the radial sandbanks in the South Yellow Sea.The computational results fromthis quasi-3D model are in good agreement with analytical results and observed data.The solution of the finitedifference equations has been found to be stable,and the model is simple,effective and practical.  相似文献   

17.
2-D Composite Model for Numerical Simulations of Nonlinear Waves   总被引:8,自引:3,他引:5  
QI Peng 《中国海洋工程》2000,14(1):113-120
—A composite model,which is the combination of Boussinesq equations and Volume of Fluid(VOF)method,has been developed for 2-D time-domain computations of nonlinear waves in a large re-gion.The whole computational region Ω is divided into two subregions.In the near-field around a struc-ture,Ω_2,the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulenceclosure model of k-εequations and numerically solved by the improved VOF method;whereas in thesubregion Ω_1(Ω_1=Ω-Ω_2) the flow is governed by one-D Boussinesq equations and numerically solvedwith the predictor-corrector algorithm.The velocity and the wave surface elevation are matched on thecommon boundary of the two subregions.Numerical tests have been conducted for the case of wave propa-gation and interaction with a wave barrier.It is shown that the composite model can help perform efficientcomputation of nonlinear waves in a large region with the complicated flow fields near structures taken in-to account.  相似文献   

18.
In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti' s wake oscillator model. Then Galerkin' s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and file corresponding numerical programs are compiled which solve the coupled equations directly in the time domain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7 is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers. The effect of internal flow on the dynamic characteristics and dynmnic response of the riser is analyzed and several valuable conelusions are drawn.  相似文献   

19.
An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations   总被引:1,自引:0,他引:1  
The present study develops a numerical model of the two-dimensional fully nonlinear shallow water equations (NSWE) for the wave run-up on a beach. The finite volume method (FVM) is used to solve the equations, and a second-order explicit scheme is developed to improve the computation efficiency. The numerical fluxes are obtained by the two dimensional Roe' s flux function to overcome the errors caused by the use of one dimensional fluxes in dimension splitting methods. The high-resolution Godunov-type TVD upwind scheme is employed and a second-order accuracy is achieved based on monotonic upstream schemes for conservation laws (MUSCL) variable extrapolation; a nonlinear limiter is applied to prevent unwanted spurious oscillation. A simple but efficient technique is adopted to deal with the moving shoreline boundary. The verification of the solution technique is carried out by comparing the model output with documented results and it shows that the solution technique is robust.  相似文献   

20.
A vertical two-dimensional numerical model has been applied to solving the Reynolds Averaged Navier- Stokes (RANS} equations in the simulation of current and wave propagation through vegetated and non- vegetated waters. The k-e model is used for turbulence closure of RANS equations. The effect of vegeta- tion is simulated by adding the drag force of vegetation in the flow momentum equations and turbulence model. To solve the modified N-S equations, the finite difference method is used with the staggered grid system to solver equations. The Youngs' fractional volume of fluid (VOF) is applied tracking the free sur- face with second-order accuracy. The model has been tested by simulating dam break wave, pure current with vegetation, solitary wave runup on vegetated and non-vegetated channel, regular and random waves over a vegetated field. The model reasonably well reproduces these experimental observations, the model- ing approach presented herein should be useful in simulating nearshore processes in coastal domains with vegetation effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号