首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent Skylab and magnetograph observations indicate that strong photospheric electric currents underlie small flare events such as X-ray loops and surges. What is not yet certain, because of the non-local dynamics of a fluid with embedded magnetic field, is whether flare emission derives from the energy of on-site electric currents or from energy which is propagated to the flare site through an intermediary, such as a stream of fast electrons or a group of waves. Nevertheless, occurrences of: (1) strong photospheric electric currents beneath small flares; (2) similar magnetic fine structure inside and outside active regions; (3) eruptive prominences and coronal white light transients in association with big flares; and, (4) active boundaries of large unipolar regions suggest the possibility that all phenomena of solar activity are manifestations of the rapid ejection and/or gradual removal of electric currents of various sizes from the photosphere. The challenge is to trace the precise magnetofluid dynamics of each active phenomenon, particularly the role of electric current build-up and dissipation in the low corona.  相似文献   

2.
Using data from the Transition Region and Coronal Explorer (TRACE), Solar and Heliospheric Observatory (SOHO), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and Hida Observatory (HO), we present a detailed study of an EUV jet and the associated Hα filament eruption in a major flare in the active region NOAA 10044 on 29 July 2002. In the Hα line wings, a small filament was found to erupt out from the magnetic neutral line of the active region during the flare. Two bright EUV loops were observed rising and expanding with the filament eruption, and both hot and cool EUV plasma ejections were observed to form the EUV jet. The two thermal components spatially separated from each other and lasted for about 25 minutes. In the white-light corona data, a narrow coronal mass ejection (CME) was found to respond to this EUV jet. We cannot find obvious emerging flux in the photosphere accounting for the filament eruption and the EUV jet. However, significant sunspot decay and magnetic-flux cancelation owing to collision of opposite flux before the events were noticed. Based on the hard X-ray data from RHESSI, which showed evidence of magnetic reconnection along the main magnetic neutral line, we think that all of the observed dynamical phenomena, including the EUV jet, filament eruption, flare, and CME, should have a close relation to the flux cancelation in the low atmosphere.  相似文献   

3.
Detailed comparisons of Culgoora 160 MHz radioheliograms of solar noise storms and Skylab EUV spectroheliograms of coronal loop structures are presented. It is concluded that: (1) there is a close association between changes in large-scale magnetic fields in the corona and the onset or cessation of noise storms; (2) these coronal changes result from the emergence of new magnetic flux at the photospheric level; (3) although new magnetic flux at the photospheric level is often accompanied by an increase in flare activity the latter is not directly responsible for noise storm activity; rather the new magnetic flux diffuses slowly outwards through the corona at rates 1–2 km s–1 and produces noise storms at 160 MHz 1–2 days later; (4) the coronal density above or in large-scale EUV loop systems is sufficiently dense to account for noise storm emission at the fundamental plasma frequency; (5) the scatter in noise storm positions can be accounted for by the appearance and disappearance of individual loops in a system.  相似文献   

4.
Longcope  D. W. 《Solar physics》1996,169(1):91-121
Magnetic field enters the corona from the interior of the Sun through isolated magnetic features on the solar surface. These features correspond to the tops of submerged magnetic flux tubes, and coronal field lines often connect one flux tube to another, defining a pattern of inter-linkage. Using a model field, in which flux tubes are represented as point magnetic charges, it is possible to quantify this inter-linkage. If the coronal field were current-free then motions of the magnetic features would change the inter-linkage through implicit (vacuum) magnetic reconnection. Without reconnection the conductive corona develops currents to avoid changing the flux linkage. This current forms singular layers (ribbons) flowing along topologically significant field lines called separators. Current ribbons store magnetic energy as internal stress in the field: the amount of energy stored is a function of the flux tube displacement. To explore this process we develop a model called the minimum-current corona (MCC) which approximates the current arising on a separator in response to displacement of photospheric flux. This permits a model of the quasi-static evolution of the corona above a complex active region. We also introduce flaring to rapidly change the flux inter-linkage between magnetic features when the internal stress on a separator becomes too large. This eliminates the separator current and releases the energy stored by it. Implementation of the MCC in two examples reveals repeated flaring during the evolution of simple active regions, releasing anywhere from 1027–1029 ergs, at intervals of hours. Combining the energy and frequency gives a general expression for heat deposition due to flaring (i.e., reconnection).  相似文献   

5.
Skylab observations of the Sun in soft X-rays gave us the first possibility to study the development of a complex of activity in the solar corona during its whole lifetime of seven solar rotations. The basic components of the activity complex were permanently interconnected (including across the equator) through sets of magnetic field lines, which suggests similar connections also below the photosphere. However, the visibility of individual loops in these connections was greatly variable and typically shorter than one day. Each brightening of a coronal loop in X-rays seems to be related to a variation in the photospheric magnetic field near its footpoint. Only loops (rarely visible) connecting active regions with remnants of old fields can be seen in about the same shape for many days. The interconnecting X-ray loops do not connect sunspots.We point out several examples of possible reconnections of magnetic field lines, giving rise to the onset of the visibility or, more likely, to sudden enhancements of the loop emission. In one case a new system of loops brightened in X-rays, while the field lines definitely could not have reconnected. Some striking brightenings show association with flares, but the flare occurrence and the loop brightening seem to be two independent consequences of a common triggering action: emergence of new magnetic flux. In old active regions, growing and/or brightened X-ray loops can be seen quite often without any associated flare; thus, the absence of any flaring in the chromosphere does not necessarily mean that the overlying coronal active region is quiet and inactive.We further discuss the birth of the interconnecting loops, their lifetime, altitude, variability in shape in relation to the photospheric magnetic field, the similarity of interconnecting and internal loops in the late stages of active regions, phases of development of an active region as manifested in the corona, the remarkably linear boundary of the X-ray emission after the major flare of 29 July 1973, and a striking sudden change in the large-scale pattern of unipolar fields to the north of the activity complex.The final decay of the complex of activity was accompanied by the penetration of a coronal hole into the region where the complex existed before.  相似文献   

6.
The evolution of coronal and chromospheric structures is examined together with magnetograms for the 1B flare of January 19, 1972. Soft X-ray and EUV studies are based on the OSO-7 data. The H filtergrams and magnetograms came from the Sacramento Peak Observatory. Theoretical force-free magnetic field configurations are compared with structures seen in the soft X-ray, EUV and H images. Until the flare, two prominent spots were connected by a continuous dark filament and their overlying coronal structure underwent an expansion at the sunspot separation rate of 0.1 km s–1. On January 19, the flare occurred as new magnetic fields emerged at 1019 Mx h–1 beneath the filament, which untwisted and erupted as the flare began. The pre-flare coronal emissions remained unchanged during the flare except for the temporary addition of a localized enhancement that started 5 min after flare onset. EUV lines normally emitted in the upper transition region displayed a sudden enhancement coinciding in time and location with a bright H point, which is believed to be near the flare trigger or onset point. The EUV flash and the initial H brightening, both of which occurred near the center of the activated filament, were followed by a second EUV enhancement at the end of the filament. The complete disruption of the filament was accompanied by a third EUV enhancement and a rapid rise in the soft X-ray emission spatially coincident with the disappearing filament. From the change of magnetic field inferred from H filtergrams and from force-free field calculations, the energy available for the flare is estimated at approximately 1031 erg. Apparently, changes in the overlying coronal magnetic field were not required to provide the flare energy. Rather, it is suggested that the flare actually started in the twisted filament where it was compressed by emerging fields. Clearly, the flare started below the corona, and it appears that it derived its energy from the magnetic fields in or near the filament.NCAR is sponsored by NSF.  相似文献   

7.
A topological model with magnetic reconnection at two separators in the corona is used to account for the recently discovered changes of the photospheric magnetic field in the active region NOAA 9077 during the July 14, 2000 flare. The model self-consistently explains the following observed effects: (1) the magnetic field strength decreases on the periphery of the active region but increases in its inner part near the neutral line of the photospheric magnetic field; (2) the center-of-mass positions of the fields of opposite (northern and southern) polarities converge; and (3) the magnetic flux of the active region decreases after the flare. The topological model gives not only a qualitative interpretation of the flare phenomena (the structure of the interacting magnetic fluxes in the corona, the location of the energy sources, the shape of the flare ribbons and kernels in the chromosphere and photosphere), but also correct quantitative estimates of the large-scale processes that form the basis for solar flares. The electric field emerging in the flare during large-scale reconnection is calculated. The electric field strength correlates with the observed intensity of the hard X-ray bremsstrahlung, suggesting an electron acceleration as a result of reconnection.  相似文献   

8.
We have used the S-056 X-ray data from Skylab to determine quantitative values for the coronal conditions characterizing a new bipolar magnetic region (BMR). In particular, we include: (a) the time variation of the total soft X-ray flux from the BMR as a function of time; (b) the temporal and spatial variation of the temperature and emission measure; (c) the variation with time of thermal energy density; (d) the (calculated) magnetic field configuration and magnetic flux density in the corona; and (e) the temporal variation of the magnetic field energy in the corona. Detailed comparisons are made between the configuration of X-ray features and the magnetic field topology.  相似文献   

9.
Fletcher  L.  Hudson  H. 《Solar physics》2001,204(1-2):69-89
The `ribbons' of two-ribbon flares show complicated patterns reflecting the linkages of coronal magnetic field lines through the lower solar atmosphere. We describe the morphology of the EUV ribbons of the July 14, 2000 flare, as seen in SOHO, TRACE, and Yohkoh data, from this point of view. A successful co-alignment of the TRACE, SOHO/MDI and Yohkoh/HXT data has allowed us to locate the EUV ribbon positions on the underlying field to within ∼ 2′′, and thus to investigate the relationship between the ribbons and the field, and also the sites of electron precipitation. We have also made a determination of the longitudinal magnetic flux involved in the flare reconnection event, an important parameter in flare energetic considerations. There are several respects in which the observations differ from what would be expected in the commonly-adopted models for flares. Firstly, the flare ribbons differ in fine structure from the (line-of-sight) magnetic field patterns underlying them, apparently propagating through regions of very weak and probably mixed polarity. Secondly, the ribbons split or bifurcate. Thirdly, the amount of line-of-sight flux passed over by the ribbons in the negative and positive fields is not equal. Fourthly, the strongest hard X-ray sources are observed to originate in stronger field regions. Based on a comparison between HXT and EUV time-profiles we suggest that emission in the EUV ribbons is caused by electron bombardment of the lower atmosphere, supporting the hypothesis that flare ribbons map out the chromospheric footpoints of magnetic field lines newly linked by reconnection. We describe the interpretation of our observations within the standard model, and the implications for the distribution of magnetic fields in this active region.  相似文献   

10.
叙述和介绍了太阳爆发的磁通量绳灾变理论和模型的发展过程,强调了建立这样的模型所需要的观测基础。讨论了由模型所预言的爆发磁结构的几个重要特征以及观测结果对这种预言的证实。在此模型的基础上,讨论了一个典型的爆发过程中所出现的不同现象及它们之间的相互关系。最后,介绍了作者的一项最新尝试:将太阳爆发的灾变理论和模型应用到对黑洞吸积盘间歇性喷流的理论研究当中,以及研究所取得的初步结果。  相似文献   

11.
Observations of a small flare are presented using data from the Harvard spectroheliometer on Skylab. The event is discussed in terms of the magnetic structure of the active region as deduced from the EUV observations and from field line extrapolations. The role of emerging flux in the initial flare brightenings is emphasized. A detailed model of one loop is deduced using the EUV data. This self-consistent model indicates initial heating of the loop modelled near its top, and mass flow into the cool core of the loop, with matter preferentially concentrating in a few distinct knots along the loop. Implications for theories of the flare process are discussed.  相似文献   

12.
EUV images show the solar corona in a typical temperature range of T >rsim 1 MK, which encompasses the most common coronal structures: loops, filaments, and other magnetic structures in active regions, the quiet Sun, and coronal holes. Quantitative analysis increasingly demands automated 2D feature recognition and 3D reconstruction, in order to localize, track, and monitor the evolution of such coronal structures. We discuss numerical tools that “fingerprint” curvi-linear 1D features (e.g., loops and filaments). We discuss existing finger-printing algorithms, such as the brightness-gradient method, the oriented-connectivity method, stereoscopic methods, time-differencing, and space–time feature recognition. We discuss improved 2D feature recognition and 3D reconstruction techniques that make use of additional a priori constraints, using guidance from magnetic field extrapolations, curvature radii constraints, and acceleration and velocity constraints in time-dependent image sequences. Applications of these algorithms aid the analysis of SOHO/EIT, TRACE, and STEREO/SECCHI data, such as disentangling, 3D reconstruction, and hydrodynamic modeling of coronal loops, postflare loops, filaments, prominences, and 3D reconstruction of the coronal magnetic field in general.  相似文献   

13.
Predictions of Energy and Helicity in Four Major Eruptive Solar Flares   总被引:1,自引:0,他引:1  
In order to better understand the solar genesis of interplanetary magnetic clouds (MCs), we model the magnetic and topological properties of four large eruptive solar flares and relate them to observations. We use the three-dimensional Minimum Current Corona model (Longcope, 1996, Solar Phys. 169, 91) and observations of pre-flare photospheric magnetic field and flare ribbons to derive values of reconnected magnetic flux, flare energy, flux rope helicity, and orientation of the flux-rope poloidal field. We compare model predictions of those quantities to flare and MC observations, and within the estimated uncertainties of the methods used find the following: The predicted model reconnection fluxes are equal to or lower than the reconnection fluxes inferred from the observed ribbon motions. Both observed and model reconnection fluxes match the MC poloidal fluxes. The predicted flux-rope helicities match the MC helicities. The predicted free energies lie between the observed energies and the estimated total flare luminosities. The direction of the leading edge of the MC’s poloidal field is aligned with the poloidal field of the flux rope in the AR rather than the global dipole field. These findings compel us to believe that magnetic clouds associated with these four solar flares are formed by low-corona magnetic reconnection during the eruption, rather than eruption of pre-existing structures in the corona or formation in the upper corona with participation of the global magnetic field. We also note that since all four flares occurred in active regions without significant pre-flare flux emergence and cancelation, the energy and helicity that we find are stored by shearing and rotating motions, which are sufficient to account for the observed radiative flare energy and MC helicity.  相似文献   

14.
Using magnetograms, EUV and Hα images, Owens Valley Solar Array microwave observations, and 212-GHz flux density derived from the Solar Submillimeter Telescope data, we determine the spatial characteristics of the 1B/M6.9 flare that occurred on November 28, 2001, starting at 16:26 UT in active region (AR) NOAA 9715. This flare is associated with a chromospheric mass ejection or surge observed at 16:42 UT in the Hα images. We compute the coronal magnetic field under the linear force-free field assumption, constrained by the photospheric data of the Michelson Doppler Imager and loops observed by the Extreme Ultraviolet Imaging Telescope. The analysis of the magnetic field connectivity allows us to conclude that magnetic field reconnection between two different coronal/chromospheric sets of arches was at the origin of the flare and surge, respectively. The optically thick microwave spectrum at peak time shows a shape compatible with the emission from two different sites. Fitting gyrosynchrotron emission to the observed spectrum, we derive parameters for each source. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

15.
The total radiative output in the EUV continuum (1400–1960 Å) from the 5 September 1973 flare has been obtained from the EUV spectra of the flare observed with the NRL slit spectrograph (SO82B) on Skylab. The radiative energy in the EUV continuum is of the order of 1029 ergs, which is more than a factor of 2 greater than those radiated in soft X-rays (8–20 Å) and in H for the flare. Thus, the EUV continuum emission is an important radiative energy loss, and should be included in the consideration of the energy balance of the flare.Ball Corporation.Now at the Institute of Theoretical Astrophysics, University of Oslo, Oslo, Norway.  相似文献   

16.
We carried out a multi-wavelength study of a Coronal Mass Ejection (CME) and an associated flare, occurring on 12 May 1997. We present a detailed investigation of magnetic-field variations in NOAA Active Region 8038 which was observed on the Sun during 7??C?16 May 1997. This region was quiet and decaying and produced only a very small flare activity during its disk passage. However, on 12 May 1997 it produced a CME and associated medium-size 1B/C1.3 flare. Detailed analyses of H?? filtergrams and SOHO/MDI magnetograms revealed continual but discrete surge activity, and emergence and cancellation of flux in this active region. The movie of these magnetograms revealed the two important results that the major opposite polarities of pre-existing region as well as in the emerging-flux region were approaching towards each other and moving magnetic features (MMF) were ejected from the major north polarity at a quasi-periodicity of about ten hours during 10??C?13 May 1997. These activities were probably caused by magnetic reconnection in the lower atmosphere driven by photospheric convergence motions, which were evident in magnetograms. The quantitative measurements of magnetic-field variations such as magnetic flux, gradient, and sunspot rotation revealed that in this active region, free energy was slowly being stored in the corona. Slow low-layer magnetic reconnection may be responsible for the storage of magnetic free energy in the corona and the formation of a sigmoidal core field or a flux rope leading to the eventual eruption. The occurrence of EUV brightenings in the sigmoidal core field prior to the rise of a flux rope suggests that the eruption was triggered by the inner tether-cutting reconnection, but not the external breakout reconnection. An impulsive acceleration, revealed from fast separation of the H?? ribbons of the first 150 seconds, suggests that the CME accelerated in the inner corona, which is also consistent with the temporal profile of the reconnection electric field. Based on observations and analysis we propose a qualitative model, and we conclude that the mass ejections, filament eruption, CME, and subsequent flare were connected with one another and should be regarded within the framework of a solar eruption.  相似文献   

17.
The limb event of 13/14 August, 1973, imaged by Skylab in soft X-rays, proved to be a giant arch, quite similar to those observed in 1980–1986 on SMM. High spatial resolution (by a factor of 4–5 better than in SMM data) made it possible to see the internal structure of the arch. Its brightest part consisted of loops very similar to, but higher than, post-flare loops, surrounded by a rich system of weak loop structures extending up to altitudes of 260 000 km. While the main brightest structure of the arch was newly formed, the weak very large loops had existed above the active region before and were only enhanced during the event.Skylab data support the model proposed by Kopp and Poletto that the giant arch is formed by reconnections high in the corona, different from the reconnection process in the underlying flare. However, contrary to Kopp and Poletto's suggestion, the data strongly indicate that the field lines that reconnect in the arch did not open before, as in the Kopp and Pneuman model: more likely, we encounter here an interaction of large-scale loops high in the corona. (The interaction of two of them is clearly seen.) Thus, while post-flare loops are formed by the Kopp and Pneuman mechanism, giant arches above eruptive flares may originate through interactive reconnections of large-scale magnetic field lines which form loops high in the corona. These loops are brought close to each other in consequence of changes in the coronal structure caused by the eruptive flare phenomenon. The arch-associated enhancement of the pre-existing large-scale active-region loops may be caused by electrons accelerated during the reconnection process and diffusing across field lines, as suggested by Achterberg and Kuipers (1984).  相似文献   

18.
We present a detailed analysis of the magnetic topology of AR 2776 together with Hα UV, X-rays, and radio observations of the November 5, 1980 flares in order to understand the role of the active region large-scale topology on the flare process. As at present the coronal magnetic field is modeled by an ensemble of sub-photospheric sources whose positions and intensities are deduced from a least-square fit between the computed and observed longitudinal magnetic fields. Charges and dipole representations are shown to lead to similar modeling of the magnetic topology provided that the number of sources is great enough. However, for AR 2776, departure from a potential field has to be taken into account, therefore a linear force-free field extrapolation is used. The locations of the four bright off-band Hα kernels in quadrupolar active regions have been studied previously. In this new study the active region is bipolar and shows a two-ribbon structure. We show that these two ribbons are a consequence of the bipolar photospheric field (the four kernels of quadrupolar regions merge into two bipolar regions). The two ribbons are found to be located at the intersection of the separatrices with the chromosphere when the shear, deduced from the fibril direction, is taken into account. This study supports the hypothesis that magnetic energy is stored in field-aligned currents and released by magnetic reconnection at the location of the separator, before being transported along field lines to the chromospheric level. It is also possible that part of the magnetic energy could be stored and released on the separatrices. Our study shows that meeting just one of two conditions- the presence of intense coronal currents or of a separator in a magnetic field configuration - is not sufficient for flaring. In order to release the stored energy, the coronal currents need either to be formed along the separatrices or to be transported towards the separator or separatrices. The location of the observed photospheric current concentrations on the computed separatrices supports this view. Member of the Carrera del Investigador Científico, CONICET.  相似文献   

19.
The sizes and shapes of X-ray emitting loops brightened by flares and other coronal transients have been derived from the Skylab S-054 photographs. This information has been combined with estimates of temperature and emission measure derived from the photographs and from Solrad data to compute brightness decay times attributable to various coronal energy loss mechanisms. The computed decay times are compared to those actually observed. Examples are presented of the brightness decay of soft X-ray flare kernels, post-flare loops, and the coronal X-ray enhancement asssociated with an H filament disappearance.The computed decay time due to conductive losses is always found to be much more rapid than that due to radiative losses in the corona. However, the observed soft X-ray brightness decay times are always much longer than those computed from conductive cooling.The role of geometrical inhibition of conduction as discussed by Antiochos and Sturrock (1976a) is examined for these events. It is shown that this mechanism might be adequate to account for the observed results in two of the five cases examined, but it is inadequate in the other three. The possible breakdown of classical collisional thermal conductivity (Forslund, 1970) is examined and it is shown that this mechanism is not applicable to the cases presented here. Confirmation of the existence of the very high conductive fluxes predicted by the coronal flare conductive cooling models is sought from EUV and H observations. No evidence is found which unequivocally demonstrates the presence, at lower levels in the atmosphere, of very high conductive fluxes. The soft X-ray results are consistent with the continuation of evaporation driven by thermal conduction (Antiochos and Sturrock, 1976b) late into the decay phase of the event. In this case, no source of continued magnetic energy dissipation after the initial stages of the flare is required to explain the lifetime of the X-ray emitting loops.  相似文献   

20.
Coronal events such as flares or coronal mass ejections derive their energy from the energy stored locally in the magnetic field. This leads to the conjecture that a magnetic implosion must occur simultaneously with the energy release. The site of the implosion would show the location of preflare energy storage, and its detection should have a high priority. The Transition Region and Coronal Explorer EUV observations, for example, have sufficient resolution to show the geometry of a flare implosion by following the motions of tracers in the images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号