首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Similar to the study of the related problems of Earth satellites, in the research of the motion of Mars orbiter especially for low-orbit satellites, it is more appropriate to choose an epoch Mars-centered and Mars-equator reference system, which indeed is called the Mars-centered celestial coordinate system. In this system, the xy-plane and the direction of the x-axis correspond to the mean equator and mean equinox. Similar to the precession and nutation of the Earth, the wiggling of instantaneous Mars equator causes the coordinate additional perturbations in this Mars coordinate system. The paper quotes a method which is similar to the one used in dealing with the coordinate additional perturbations of Earth. According to this method, based on the IAU2000 Mars orientation model and under the precondition of a certain accuracy, we are able to figure out the precession part of the change of Mars gravitation. This lays the foundation for further study of its influence on the Mars orbiter's orbit of precession and the solution of the corresponding coordinate additional perturbations. The obtained analytical solution is easy to use. Compared with the numerical solution with higher accuracy, the result shows that the accuracy of this analytical solution could satisfy the general requirements in use. Therefore, our result verifies that a unified coordinate system, the Mars-centered celestial system in which J2000.0 is chosen as its current initial epoch, could be applied to deal with the relative problems of Mars orbiters, especially for low-orbit satellites. It is different from the method we previously used in dealing with the corresponding problems of Earth satellites, where we adopted the instantaneous equator and epoch (J1950.0) mean equinox as xy-plane and the direction of x -axis. In contrast, the coordinate transformation brings heavy workload and certain inconvenience in relative former works in which the prior system is used. If adopting the unified coordinate system, the transformation could be simply avoided and the computation load could be decreased significantly.  相似文献   

2.
The Moon’s physical libration in latitude generated by gravitational forces caused by the Earth’s oblateness has been examined by a vector analytical method. Libration oscillations are described by a close set of five linear inhomogeneous differential equations, the dispersion equation has five roots, one of which is zero. A complete solution is obtained. It is revealed that the Earth’s oblateness: a) has little effect on the instantaneous axis of Moon’s rotation, but causes an oscillatory rotation of the body of the Moon with an amplitude of 0.072″ and pulsation period of 16.88 Julian years; b) causes small nutations of poles of the orbit and of the ecliptic along tight spirals, which occupy a disk with a cut in a center and with radius of 0.072″. Perturbations caused by the spherical Earth generate: a) physical librations in latitude with an amplitude of 34.275″; b) nutational motion for centers of small spiral nutations of orbit (ecliptic) pole over ellipses with semi-major axes of 113.850″ (85.158″) and the first pole rotates round the second one along a circle with radius of 28.691″; c) nutation of the Moon’s celestial pole over an ellipse with a semi-major axis of 45.04″ and with an axes ratio of about 0.004 with a period of T = 27.212 days. The principal ellipse’s axis is directed tangentially with respect to the precession circumference, along which the celestial pole moves nonuniformly nearly in one dimension. In contrast to the accepted concept, the latitude does not change while the Moon’s poles of rotation move. The dynamical reason for the inclination of the Moon’s mean equator with respect to the ecliptic is oblateness of the body of the Moon.  相似文献   

3.
The celestial pole coordinates   总被引:2,自引:0,他引:2  
The coordinates of the Celestial Ephemeris Pole in the Celestial Reference System (CRS) can advantageously replace the classical precession and nutation parameters in the matrix transformation of vector components from the CRS to the Terrestrial Reference System (TRS). This paper shows that the new matrix transformation using these coordinates in place of the preceding parameters would be conceptually more simple, especially when associated with the use of the non-rotating origin on the instantaneous equator (Guinot 1979, Capitaine et al. 1986) and of a celestial reference frame as realized by positions of extragalactic sources. In such a representation, the artificial separation between precession and nutation is avoided and the practical computation of the matrix transformation only requires the knowledge of the two celestial direction cosines of the pole, instead of the large number of the quantities generally considered. The development of these coordinates is given as function of time so that their use is equivalent (when using the CRS defined by the mean pole and mean equinox of epoch J2000.0, the 1976 IAU System of Astronomical Constants and the 1980 IAU theory of nutation) to the one of the conventional series for the precession (Lieske et al. 1977) and nutation (Seidelmann 1982) parameters. Such a theoretical development should also be used in order to derive more directly the numerical coefficients of the celestial motion of the instantaneous equator from very precise observations such as VLBI.
Résumé Les coordonnées du Pôle Céleste des Ephémerides dans le Systeme de Référence Céleste (CRS) pourraient remplacer avantageusement les paramètres classiques de precession et de nutation dans la matrice de transformation entre le CRS et le Système de Référence Terrestre (TRS). Cet article montre que la nouvelle matrice de transformation utilisant ces coordonnées à la place des paramètres classiques serait ainsi conceptuellement plus simple, en particulier lorsque l'on utilise l'origine non-tournante sur l'équa-teur instantané (Guinot 1979, Capitaine et al. 1986), ainsi que le repère de référence céleste réalisé par les positions des radiosources extragalactiques. Une telle representation évite la séparation artificielle entre précession et nutation et le calcul de la matrice de transformation correspondante ne nécessite que la connaissance des deux cosinus directeurs du pole dans le repère céleste, au lieu du grand nombre de paramètres considérés généralement. Le dèveloppement de ces coordonnées en fonction du temps est donné de façon à ce que leur usage soit équivalent (lorsque l'on se rapporte au CRS défine par le pôle et l'équinoxe moyens de l'époque J2000.0, au Système de Constantes Astronomiques IAU-1976, ainsi qu'au modèle UAI-1980 de la nutation) à celui des séries conventionnelles de la precession (Lieske et al. 1977) et de la nutation (Seidelmann 1982). Un tel développement théorique devrait également être utilise pour déterminer plus directement les coefficients numériques du déplacement céleste de l'équateur instantané, à partir des observations très précises, comme par exemple, les observations VLBI.
  相似文献   

4.
A relation between the Celestial Reference System (CRS) and the Terrestrial Reference System is established theoretically by solving the equations of motion of a rigid Earth under the influence of the Sun and the Moon up to the second order perturbation. The solutions include not only nutation including Oppolzer terms but also the right ascension of the dynamical departure point (DP), as well as the wobble matrix.We have found that the kinematical definition of the Non-Rotating Origin NRO (for which our term is DP) given by Capitaine, Guinot and Souchay (1987) is not entirely equivalent to that included in the solutions of the equations of motion but shows perturbation, in particular when this is taken on the instantaneous equator. Besides this serious fault, we feel little merit in taking the DP as reference: (1) Unnecessary spurious mixed secular terms appear which come from the geometrical configuration that the DP leaves far and far from the ecliptic. (2) the DP moves secularly as well as oscillating with respect to space; this literally contradicts the term NRO, or is at least misleading. (3) It does not free us from the precession uncertainty to adopt DP as reference, since we cannot avoid virtual proper motions in terms of the current CRS. (4) No terms ignored hitherto are introduced, even if we take the DP properly chosen, i.e., on the equator of the celestial ephemeris pole. The transformation is only mathematical. There is no sufficient reason to take it instead of the equinox, which is observable in principle, as reference at the cost of the labor of changing all the textbooks, ephemerides, data and computer software now existing.  相似文献   

5.
The Earth’s rotation is accompanied by free circadian oscillations of its liquid core in the inner cavity of the lower mantle, which perturb the angular momentum of the entire Earth and produce an additional free nutation of the celestial pole called free core nutation (FCN). Since this nutation causes resonances in the diurnal tides and in the expansions of luni—solar nutation, its study, especially an improvement of the FCN period, is of fundamental importance for the theory of the Earth’s rotation. We have determined the FCN parameters from a joint analysis of equidistant series of coordinates of the celestial pole obtained from the combined processing of VLBI observations on global networks of stations for the interval 1984.0–2008.4 by IERS (International Earth Rotation and Reference System Service, Paris, France) and NEOS (National Earth Orientation Service, Washington, USA). Applying a moving least-squares filter (MLSF) to these data has shown that the FCN period averaged over this time interval differs significantly from the theoretical one and its phase varies over a wide range. Using the mean quadratic collocation (MQC) method, we have obtained a new, more accurate stochastic FCN model. Its analysis by the envelope method has revealed long-term linear phase trends, calling into question not only the adopted FCN period but also its stability and, hence, the stability of the resonant effects in the Earth’s luni—solar nutation.  相似文献   

6.
The reference system defined by Veis and currently used for computing satellite orbits is not sufficiently accurate for some scientific applications, considering the new accuracy of laser data. We have therefore defined another orbital reference system with associated apparent forces. The reference system chosen is the mean celestial system 1970.0. The motion of a satellite is numerically integrated in the instantaneous celestial system (sideral system), taking into account all the complementary forces due to precession and nutation. The complete set of formulas is given here and has been introduced in a differential orbital improvement program.  相似文献   

7.
The use of new techniques for measuring the Earth's orientation in space and the intrinsic qualities of their attached terrestrial and celestial reference frames have now raised the accuracy of the computed polar coordinates and the angle of sidereal rotation to a level usually better than 0.001. The conceptual and conventional definitions of the Earth's pole of rotation and of the Universal Time UT1 must accordingly be given with the same order of precision. This paper gives a review of the past and present definitions of the celestial pole and UT1 as well as an evaluation of their deficiencies. Some necessary improvements in these definitions are proposed.  相似文献   

8.
火星是类地行星,火星动力学的研究不仅具有科学意义,而且还具有实际应用价值。火星的空间探测获得了许多有关火星极运动的重要资料,它与理论值的比较是检验火星内部结构的重要手段,也是为改进火星岁差章动理论提供依据的有效途径。介绍了当前国际上有关火星的岁差和章动研究的进展,分别对刚体火星的章动序列、火星内部结构参数化模型的建立和火星自转的简正模作了描述,并进行了简单的讨论。  相似文献   

9.
The article analyzes the precession–nutation variations in right ascension of stars after the introduction Celestial Intermediate Origin (CIO) as a new origin of the right ascensions. It points out that changes in right ascension depend not only on the motion of the origin, but also on the changes of the pole and hour circles, depending on the position of stars. This explains the apparent paradox that, for certain groups of stars, despite the almost complete elimination of the precession and nutation motion of the CIO on the equator, the magnitude of the variations in right ascension related to the CIO can exceed the magnitude of the classic variations referred to the equinox.  相似文献   

10.
刚体地球章动序列和非刚体地球章动的转换函数都和地球动力学扁率有关。IAU1980章动理论中采用了一个不一致的地球动力学扁率值,从而影响了章动振幅的计算。本文介绍了章动序列计算中地球动力学扁率的取值。由地球模型1066A或PREM得到的地球动力学扁率值比由岁差观测得到的约小1%,并且不可靠。当考虑体静力学平衡被破坏时新的地球物理模型,可得到与岁差常数相一致的地球动力学扁率值。地球动力学扁率值H=0.  相似文献   

11.
关于天球参考报   总被引:2,自引:0,他引:2  
章动序列计算和地球定向参数测定需要一个中间的天球参考极作参照,1984年,采用IAU1980章动理论,选取天球历书极作为参考极,利用改善岁差章动模型和由天文测地新技术确定地球定向参数实现的天球历书极,其精度可达0.1mas,随着理论和观测精度的提高,在微角秒量级下,章动和极移模型中周日和半周日成分分应被考虑,地球定向参数的高频成分已被测定,因此天球历书极的原先定义不再适用,需要更改,叙述了不同天球参考极的概念,天球历书极的定义,评述了天球历书极目前实现及其缺陷,介绍了新的天球参考极-天球中间极的定义及其实现。  相似文献   

12.
天球和地球历书原点   总被引:5,自引:0,他引:5  
国际天球参考系的使用、观测精度的提高和方法的改善要求采用与地球轨道运动无关的运动赤道上的起算点,Guinot提出的非旋转原点可作为这样一种选择。非旋转原点依赖于天球参考极。IAU决定从2003年起采用天球中间极作为天球参考极。非旋转原点在天球参考系的使用,可给出在天球中间极赤道上的天球历书原点,非旋转原点在地球参考系的使用,可给出在天球中间极赤道上的地球历书原点。回顾了非旋转原点的概念、以历书原点为参考的天球参考系和地球参考系的坐标变换,经出了在微角秒精度下天球参考极的坐标和历书原点的位置,讨论了采用历书原点对测定UT1的影响,指出当岁差章动模型、天极补偿、分点改正得到改善时,基于历书原点的UT1定义不需要更改,从而保证了UT1的连续。  相似文献   

13.
地球动力学扁率及其与岁差章动的关系   总被引:5,自引:0,他引:5  
夏一飞 《天文学进展》2000,18(4):283-292
由岁差常数求得的日月岁差是天文学的重要参数之一,它和地球动力学扁率相联系。地球动力学扁率在章动理论的计算中也是一个重要的物理量。介绍了由不同的观测方法和模型给出的地球动力扁率值,并讨论了它也岁差的关系和对章动计算的影响。在刚体地球章动振幅的计算中,地球动力学扁率值起着尺度因子的作用,要改善刚体地球章动振幅的计算,需要修改目前的黄经总岁差值。非刚体地球章动的转换函数中所采用的简正模和常数都直接或间接地依赖地球动力学扁率值。在IAU1980章动理论中,计算刚体地球章动振幅所使用的地球动力学扁率值计算转换函数中简正模频率和常数所使用的地球动力学扁率值并不一致。随着观测和计算精度的提高,地球动力学扁率值的不一致将影响章动振幅的计算。在建立刚体地球章地动理论中,如何解释地球动力学扁率值的差异,如何选取地球动力学扁率值,还有待进一步的研究。  相似文献   

14.
Under perturbations from outer bodies, the Earth experiences changes of its angular momentum axis, figure axis and rotational axis. In the theory of the rigid Earth, in addition to the precession and nutation of the angular momentum axis given by the Poisson terms, both the figure axis and the rotational axis suffer forced deviation from the angular momentum axis. This deviation is expressed by the so-called Oppolzer terms describing separation of the averaged figure axis, called CIP (Celestial Intermediate Pole) or CEP (Celestial Ephemeris Pole), and the mathematically defined rotational axis, from the angular momentum axis. The CIP is the rotational axis in a frame subject to both precession and nutation, while the mathematical rotational axis is that in the inertial (non-rotating) frame. We investigate, kinematically, the origin of the separation between these two axes—both for the rigid Earth and an elastic Earth. In the case of an elastic Earth perturbed by the same outer bodies, there appear further deviations of the figure and rotational axes from the angular momentum axis. These deviations, though similar to the Oppolzer terms in the rigid Earth, are produced by quite a different physical mechanism. Analysing this mechanism, we derive an expression for the Oppolzer-like terms in an elastic Earth. From this expression we demonstrate that, under a certain approximation (in neglect of the motion of the perturbing outer bodies), the sum of the direct and convective perturbations of the spin axis coincides with the direct perturbation of the figure axis. This equality, which is approximate, gets violated when the motion of the outer bodies is taken into account.  相似文献   

15.
夏一飞  萧耐园 《天文学报》2000,41(3):300-305
讨论了非刚体地球受迫章动奥波策项与简正模表达式中倾斜模的关系。结果表明天球历书极章动中倾斜振项对应于角动量极的章动,在球历书极章动与角动量极的章动奥波策项之和。同时还给出了岁差速率与自转极的章动奥波策项间的数学关系。  相似文献   

16.
The luni-solar precession, derived by theoretical considerations from the precession of the equator, is one of the most important parameters for computing not only precession but also nutations, due to its relation to the dynamical flattening. In this paper, we review the numerical values of this parameter, from the geodynamical point of view as well as the astronomical point of view, from the observational point of view as well as from the theoretical point of view. In particular, we point out a difference of about 1 percent between the global Earth dynamical flattening derived from the astronomical observations and the values derived from the different geophysical computations. The nutation amplitudes depend on the Earth dynamical flattening and this dependence is amplified by a resonance at an important normal mode, the Tilt-Over-Mode (TOM). Since the astronomical point of view as well as the geophysical one are confronted, we also take the opportunity to make the link between the TOM and the expressions of the nutations of the different axes which, in turn, are related with one another by the Oppolzer terms. Both, the Oppolzer terms and the TOM originate from a reference frame tilt effect. In writing the link between the nutational motions of the different axes, and so, in writing the Oppolzer terms, we also make the link with the precessional motion.  相似文献   

17.
In this paper we present a theory of the Earth rotation for a model composed of an inelastic mantle and a liquid core, including the dissipation in the core–mantle boundary (CMB). The main features of the theory are: (i) to be Hamiltonian, therefore the computation of some complex inner torques can be avoided; (ii) to be self-consistent and non-dependent on a previous rigid Earth theory, so there is no need to use transfer functions; (iii) to be analytical, the solution being derived by perturbation methods. Numerical nutation series deduced from the theory are compared with the IERS 96 empirical series, an accuracy better than 0.8 mas in providing celestial ephemeris pole (CEP) offsets .  相似文献   

18.
Satellite orbital perturbations due to many rotations of the planet-fixed reference frame are calculated by a general analytical method. For the International Terrestrial Reference Frame (ITRF) the effects of the Earth irregular rotation, precession, nutation, and polar motion are considered. Gravity coefficients of the Earth potential expansion are expressed in an inertial Celestial Reference Frame (CRF) as functions of the set of standard constant coefficients derived in the ITRF and of the rotation angles between the CRF and ITRF. The analytical motion theory uses time dependent gravity coefficients, and the Lagrange motion equations are integrated in the CRF, as it is done by numerical methods. Comparison of the proposed analytical method with a numerical one is presented. Motion of the ETALON-1 geodetic satellite perturbed by the geopotential (36*36) and by the full effects of the Earth irregular rotation, precession, nutation and polar motion is predicted. The r.m.s. difference between the satellite's coordinates calculated by both methods over a year interval is 2 cm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We show that the non-rotating origin introduced by Guinot is nothing but a departure point on the movable equatorial plane, and discuss that, even if this is introduced, the uncertainty of determining the equinox correction cannot be avoided. A difficulty still remains, furthermore, when we take into account nutational effect, since the (true) departure point is not fixed but moves in RA direction on the equator secularly and periodically with respect to space. We discuss thoroughly the interrelation between old and new concepts, and propose an exact treatment sufficient enough for the precise requirements.  相似文献   

20.
基于经典的弹性地球自转动力学理论,建立了极移和章动的联合动力学方程。由此给出了弹性地球各种几何轴和物理轴(Tisserand轴、自转轴、瞬时形状轴、角动量轴、CEP和CIP轴)的极移、岁差章动的动力学方程,明确了各种轴的定义及其之间的理论关系。理论研究表明,联合动力学方程要比经典动力学方程综合性强易于理解,可同时求解极移和章动,特别是在文[1]理论中出现的倾斜模(TOM),在此只是作为了一个特解而存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号