首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distributions of the partial pressure of carbon dioxide (pCO2) and total alkalinity (TA) were examined for a 6-month period in the Wailuku and Wailoa rivers and coastal waters of Hilo Bay on the west coast of the Island of Hawaii, USA. Main results for the largest and turbulent Wailuku River show in the watershed an oversaturation in CO2 with respect to atmospheric equilibrium and a CO2 undersaturation in the estuary. In the Wailoa river-estuary system, extremely high pCO2 values ranging from 1500 to 10500 ppm were measured with significant shifts in pCO2 from drought to flood period. In the two rivers, water residence time, groundwater inputs and occasional flood events are the predominant drivers of the spatial and temporal patterns in the distribution of pCO2. In Hilo Bay, CO2 oversaturation dominates and the bay was a source of CO2 to the atmosphere during the study period. TA is conservative along the salinity gradient, indicating calcification in the bay is not a significant source of CO2 to the atmosphere.  相似文献   

2.
We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ~23–173 mmol m?2 day?1 CO2 and ~0.11–0.47 mmol m?2 day?1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ~3.6–9.2?×?1010 mol CO2 and 3.7–34?×?107 mol CH4. We estimated emissions from contiguous inshore waters at ~1.5?×?1011 mol CO2?year?1 and 2.6?×?108 mol CH4?year?1, giving total emissions of ~1.9?×?1011 mol CO2?year?1 and ~3.0?×?108 mol CH4?year?1 from a total area of mangrove-influenced water of ~3?×?104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.  相似文献   

3.
The hydrogeochemical and isotope characteristics of the River Idrijca, Slovenia, where the world’s second largest mercury (Hg) mine is located, were investigated. The River Idrijca, a typical steep mountain river, has an HCO3 –Ca2+–Mg2+ chemical composition. Its Ca2+/Mg2+ molar ratio indicates that dolomite weathering prevails in the watershed. The River Idrijca and its tributaries are oversaturated with respect to calcite and dolomite. The pCO2 pressure is up to 13 times over atmospheric pressure and represents a source of CO2 to the atmosphere. δ18O values in river water indicate primary control from precipitation and enrichment of the heavy oxygen isotope of infiltrating water recharging the River Idrijca from its slopes. The δ13CDIC values range from −10.8 to −6.6‰ and are controlled by biogeochemical processes in terrestrial environments and in the stream: (1) exchange with atmospheric CO2, (2) degradation of organic matter, (3) dissolution of carbonates, and (4) tributaries. The contributions of these inputs were calculated according to steady state equations and are estimated to be—11%:19%:30%:61% in the autumn and 0%:26%:39%:35% in the spring sampling seasons.  相似文献   

4.
The variability in partial pressure of carbon dioxide (pCO2) and its control by biological and physical processes in the mixed layer (ML) of the central and eastern Arabian Sea during inter-monsoon, northeast monsoon, and southwest monsoon seasons were studied. The ML varied from 80–120 m during NE monsoon, 60–80 m and 20–30 m during SW- and inter-monsoon seasons, respectively, and the variability resulted from different physical processes. Significant seasonal variability was found in pCO2 levels. During SW monsoon, coastal waters contain two contrasting regimes; (a) pCO2 levels of 520–685 μatm were observed in the SW coast of India, the highest found so far from this region, driven by intense upwelling and (b) low levels of pCO2 (266 μatm) were found associated with monsoonal fresh water influx. It varied in ranges of 416–527 μatm and 375–446 μatm during inter- and NE monsoon, respectively, in coastal waters with higher values occurring in the north. The central Arabian Sea pCO2 levels were 351–433, 379–475 and 385–432 μatm during NE-inter and SW monsoon seasons, respectively. The mixed layer pCO2 relations with temperature, oxygen, chlorophylla and primary production revealed that the former is largely regulated by physical processes during SW- and NE monsoon whereas both physical and biological processes are important in inter-monsoon. Application of Louanchiet al (1996) model revealed that the mixing effect is the dominant during monsoons, however, the biological effect is equally significant during SW monsoon whereas thermodynamics and fluxes influence during inter-monsoons.  相似文献   

5.
The Service d’Observation de la Rade de Villefranche-sur-Mer is designed to study the temporal variability of hydrological conditions as well as the abundance and composition of holo- and meroplankton at a fixed station in this bay of the northwest Mediterranean. The weekly data collected at this site, designated as “Point B” since 1957, represent a long-term time series of hydrological conditions in a coastal environment. Since 2007, the historical measurements of hydrological and biological conditions have been complemented by measurements of the CO2–carbonic acid system parameters. In this contribution, CO2–carbonic acid system parameters and ancillary data are presented for the period 2007–2011. The data are evaluated in the context of the physical and biogeochemical processes that contribute to variations in CO2 in the water column and exchange of this gas between the ocean and atmosphere. Seasonal cycles of the partial pressure of CO2 in seawater (pCO2) are controlled principally by variations in temperature, showing maxima in the summer and minima during the winter. Normalization of pCO2 to the mean seawater temperature (18.5 °C), however, reveals an apparent reversal of the seasonal cycle with maxima observed in the winter and minima in the summer, consistent with a biogeochemical control of pCO2 by primary production. Calculations of fluxes of CO2 show this area to be a weak source of CO2 to the atmosphere during the summer and a weak sink during the winter but near neutral overall (range ?0.3 to +0.3 mmol CO2 m?2 h?1, average 0.02 mmol CO2 m?2 h?1). We also provide an assessment of errors incurred from the estimation of annual fluxes of CO2 as a function of sampling frequency (3-hourly, daily, weekly), using data obtained at the Hawaii Kilo Nalu coastal time-series station, which shows similar behavior to the Point B location despite significant differences in climate and hydrological conditions and the proximity of a coral reef ecosystem.  相似文献   

6.
Streams and rivers are major exporters of C and other dissolved materials from watersheds to coastal waters. In streams and rivers, substantial amounts of terrigenous organic C is metabolized and degassed as CO2 to the atmosphere. A long-term evaluation of CO2 dynamics in streams is essential for understanding factors controlling CO2 dynamics in streams in response to changes in climate and land-use. Long-term changes in the partial pressure of CO2 (pCO2) were computed in the Anacostia River and the lower Potomac River in the Chesapeake Bay watershed. Long-term estimates were made using routine monitoring data of pH, total alkalinity, and dissolved nutrients from 1985 to 2006 at 14 stations. Longitudinal variability in pCO2 dynamics was also investigated along these rivers downstream of the urban Washington D.C. metropolitan area. Both rivers were supersaturated with CO2 with respect to atmospheric CO2 levels (392 μatm) and the highly urbanized Anacostia waters (202–9694 μatm) were more supersaturated than the Potomac waters (557–3800 μatm). Long-term variability in pCO2 values may be due to changes in river metabolism and organic matter and nutrient loadings. Both rivers exchange significant amounts of CO2 with the atmosphere (i.e., Anacostia at 0.2–72 mmol m−2 d−1 and Potomac at 0.12–24 mmol m−2 d−1), implying that waterways receiving organic matter and nutrient subsidies from urbanized landscapes have the potential to increase river metabolism and atmospheric CO2 fluxes along the freshwater–estuarine continuum.  相似文献   

7.
The marine shelf areas in subtropical and tropical regions represent only 35% of the total shelf areas globally, but receive a disproportionately large amount of water (65%) and sediment (58%) discharges that enter such environments. Small rivers and/or streams that drain the mountainous areas in these climatic zones deliver the majority of the sediment and nutrient inputs to these narrow shelf environments; such inputs often occur as discrete, episodic introductions associated with storm events. To gain insight into the linked biogeochemical behavior of subtropical/tropical mountainous watershed-coastal ocean ecosystems, this work describes the use of a buoy system to monitor autonomously water quality responses to land-derived nutrient inputs and physical forcing associated with local storm events in the coastal ocean of southern Kaneohe Bay, Oahu, Hawaii, USA. The data represent 2.5 years of near-real time observations at a fixed station, collected concurrently with spatially distributed synoptic sampling over larger sections of Kaneohe Bay. Storm events cause most of the fluvial nutrient, particulate, and dissolved organic carbon inputs to Kaneohe Bay. Nutrient loadings from direct rainfall and/or terrestrial runoff produce an immediate increase in the N:P ratio of bay waters up to values of 48 and drive phytoplankton biomass growth. Rapid uptake of such nutrient subsidies by phytoplankton causes rapid declines of N levels, return to N-limited conditions, and subsequent decline of phytoplankton biomass over timescales ranging from a few days to several weeks, depending on conditions and proximity to the sources of runoff. The enhanced productivity may promote the drawing down of pCO2 and lowering of surface water column carbonate saturation states, and in some events, a temporary shift from N to P limitation. The productivity-driven CO2 drawdown may temporarily lead to air-to-sea transfer of atmospheric CO2 in a system that is on an annual basis a source of CO2 to the atmosphere due to calcification and perhaps heterotrophy. Storms may also strongly affect proximal coastal zone pCO2 and hence carbonate saturation state due to river runoff flushing out high pCO2 soil and ground waters. Mixing of the CO2-charged water with seawater causes a salting out effect that releases CO2 to the atmosphere. Many subtropical and tropical systems throughout the Pacific region are similar to Kaneohe Bay, and our work provides an important indication of the variability and range of CO2 dynamics that are likely to exist elsewhere. Such variability must be taken into account in any analysis of the direction and magnitude of the air?Csea CO2 exchange for the integrated coastal ocean, proximal and distal. It cannot be overemphasized that this research illustrates several examples of how high frequency sampling by a moored autonomous system can provide details about ecosystem responses to stochastic atmospheric forcing that are commonly missed by traditional synoptic observational approaches. Finally, the work exemplifies the utility of combining synoptic sampling and real-time autonomous observations to elucidate the biogeochemical and physical responses of coastal subtropical/tropical coral reef ecosystems to climatic perturbations.  相似文献   

8.
In this paper, we present the results of the first automated continuous multi-year high temporal frequency study of CO2 dynamics in a coastal coral reef ecosystem. The data cover 2.5?years of nearly continuous operation of the CRIMP-CO2 buoy spanning particularly wet and dry seasons in southern Kaneohe Bay, a semi-enclosed tropical coral reef ecosystem in Hawaii. We interpret our observational results in the context of how rapidly changing physical and biogeochemical conditions affect the pCO2 of surface waters and the magnitude and direction of air–sea exchange of CO2. Local climatic forcing strongly affects the biogeochemistry, water column properties, and gas exchange between the ocean and atmosphere in Kaneohe Bay. Rainfall driven by trade winds and other localized storms generates pulses of nutrient-rich water, which exert a strong control on primary productivity and impact carbon cycling in the water column of the bay. The “La Ni?a” winter of 2005–2006 was one of the wettest winters in Hawaii in 30?years and contrasted sharply with preceding and subsequent drier winter seasons. In addition, short-term variability in physical forcing adds complexity and helps drive the response of the CO2–carbonic acid system of the bay. Freshwater pulses to Kaneohe Bay provide nutrient subsidies to bay waters, relieving the normal nitrogen limitation of this system and driving phytoplankton productivity. Seawater pCO2 responds to the blooms as well as to physical forcing mechanisms, leading to a relatively wide range of pCO2 in seawater from about 250 to 650?μatm, depending on conditions. Large drawdowns in pCO2 following storms occasionally cause bay waters to switch from being a source of CO2 to the atmosphere to being a sink. Yet, during our study period, the southern sector of Kaneohe Bay remained a net source of CO2 to the atmosphere on an annualized basis. The integrated net annual flux of CO2 from the bay to the atmosphere varied between years by a factor of more than two and was lower during the wet “La Ni?a” year, than during the following year. Over the study period, the net annualized flux was 1.80?mol?C?m?2?year?1. Our CO2 flux estimates are consistent with prior synoptic work in Kaneohe Bay and with estimates in other tropical coral reef ecosystems studied to date. The high degree of climatological, physical, and biogeochemical variability observed in this study suggests that automated high-frequency observations are needed to capture the short-, intermediate-, and long-term variability of CO2 and other properties of these highly dynamic coastal coral reef ecosystems.  相似文献   

9.
There are very few process studies that demonstrate the annual variation in cave environments depositing speleothems. Accordingly, we initiated a monitoring program at the Obir Caves, an Austrian dripstone cave system characterized by a seasonally changing air flow that results in a predictable pattern of high pCO2 during summer and low pCO2 in winter. Although similar seasonal changes in soil pCO2 occur, they are not directly connected with the changes in the subsurface since the dripwaters are fed from a well-mixed source showing little seasonal variation. Cold season flushing by relatively CO2-poor air enhances degassing of CO2 in the cave and leads to a high degree of supersaturation of dripwater with regard to calcite. Forced calcite deposition during the cold season also gives rise to a pronounced pattern of synchronous seasonal variations in electrical conductivity, alkalinity, pH, Ca and δ13CDIC which parallel variations recorded in δ13Ccave air. Chemical components unaffected by calcite precipitation (e.g., δD, δ18O, SiO2, SO4) lack a seasonal signal attesting to a long residence in the karst aquifer. Modeling shows that degassing of CO2 from seepage waters results in kinetically-enhanced C isotopic fractionation, which contrasts with the equilibrium degassing shown from the Soreq cave in Israel. The Obir Caves may serve as a case example of a dripstone cave whose seepage waters (and speleothems) show intra-annual geochemical variability that is primarily due to chemical modification of the groundwater by a dynamic, bidirectional subsurface air circulation.  相似文献   

10.
An array of MAPCO2 buoys, CRIMP-2, Ala Wai, and Kilo Nalu, deployed in the coastal waters of Hawaii, have produced multi-year high temporal resolution CO2 records in three different coral reef environments off the island of Oahu, Hawaii. This study, which includes data from June 2008 to December 2011, is part of an integrated effort to understand the factors that influence the dynamics of CO2–carbonic acid system parameters in waters surrounding Pacific high-island coral reef ecosystems and subject to differing natural and anthropogenic stresses. The MAPCO2 buoys are located on the Kaneohe Bay backreef, and fringing reef sites on the south shore of Oahu, Hawaii. The buoys measure CO2 and O2 in seawater and in the atmosphere at 3-h intervals, as well as other physical and biogeochemical parameters (conductivity, temperature, depth, chlorophyll-a, and turbidity). The buoy records, combined with data from synoptic spatial sampling, have allowed us to examine the interplay between biological cycles of productivity/respiration and calcification/dissolution and biogeochemical and physical forcings on hourly to inter-annual time scales. Air–sea CO2 gas exchange was also calculated to determine whether the locations were sources or sinks of CO2 over seasonal, annual, and interannual time periods. Net annualized fluxes for CRIMP-2, Ala Wai, and Kilo Nalu over the entire study period were 1.15, 0.045, and ?0.0056 mol C m?2 year?1, respectively, where positive values indicate a source or a CO2 flux from the water to the atmosphere, and negative values indicate a sink or flux of CO2 from the atmosphere into the water. These values are of similar magnitude to previous estimates in Kaneohe Bay as well as those reported from other tropical reef environments. Total alkalinity (AT) was measured in conjunction with pCO2, and the carbonic acid system was calculated to compare with other reef systems and open ocean values around Hawaii. These findings emphasize the need for high-resolution data of multiple parameters when attempting to characterize the carbonic acid system in locations of highly variable physical, chemical, and biological parameters (e.g., coastal systems and reefs).  相似文献   

11.
Carbon dioxide capture and storage (CCS) in sub-seabed geological formations is currently being studied as a potential option to mitigate the accumulation of anthropogenic CO2 in the atmosphere. To investigate the validity of CO2 storage in the sub-seafloor, development of techniques to detect and monitor CO2 leaked from the seafloor is vital. Seafloor-based acoustic tomography is a technique that can be used to observe emissions of liquid CO2 or CO2 gas bubbles from the seafloor. By deploying a number of acoustic tomography units in a seabed area used for CCS, CO2 leakage from the seafloor can be monitored. In addition, an in situ pH/pCO2 sensor can take rapid and high-precision measurements in seawater, and is, therefore, able to detect pH and pCO2 changes due to the leaked CO2. The pH sensor uses a solid-state pH electrode and reference electrode instead of a glass electrode, and is sealed within a gas permeable membrane filled with an inner solution. Thus, by installing a pH/pCO2 sensor onto an autonomous underwater vehicle (AUV), an automated observation technology is realized that can detect and monitor CO2 leakage from the seafloor. Furthermore, by towing a multi-layer monitoring system (a number of pH/pCO2 sensors and transponders) behind the AUV, the dispersion of leaked CO2 in a CCS area can also be observed. Finally, an automatic elevator can observe the time-series dispersion of leaked CO2. The seafloor-mounted automatic elevator consists of a buoy equipped with pH/pCO2 and depth sensors, and uses an Eulerian method to collect spatially continuous data as it ascends and descends.Hence, CO2 leakage from the seafloor is detected and monitored as follows. Step 1: monitor CO2 leakage by seafloor-based acoustic tomography. Step 2: conduct mapping survey of the leakage point by using the pH/pCO2 sensor installed in the AUV. Step 3: observe the impacted area by using a remotely operated underwater vehicle or the automatic elevator, or by towing the multi-layer monitoring system.  相似文献   

12.
Lakes worldwide are commonly oversaturated with CO2, however the source of this CO2 oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O2 and C were measured in 23 Québec lakes. All of the lakes sampled were oversaturated with CO2 over the sampling period, on average 221 ± 25%. However, little evidence was found to conclude that this CO2 oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and à l’Ours, where CO2 flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO2 flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 34 mg C m−2 d−1. In Lac à l’Ours average annual NPP was −9.1 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 55 mg C m−2 d−1. In all of the lakes sampled, O2 saturation averaged 104.0 ± 1.7% during the ice-free season and the isotopic composition of dissolved O218ODO) was 22.9 ± 0.3‰, lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO2 in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO2 oversaturation. The isotopic composition of dissolved inorganic C (δ13CDIC) indicates that the CO2 oversaturation cannot be attributed to in situ aerobic respiration. δ13CDIC reveals a source of excess C enriched in 13C, which may be accounted for by anaerobic sediment respiration or groundwater inputs followed by kinetic isotope fractionation during degassing under open system conditions.  相似文献   

13.
Accurate measurements of soil CO2 concentrations (pCO2) are important for understanding carbonic acid reaction pathways for continental weathering and the global carbon (C) cycle. While there have been many studies of soil pCO2, most sample or model only one, or at most a few, landscape positions and therefore do not account for complex topography. Here, we test the hypothesis that soil pCO2 distribution can predictably vary with topographic position. We measured soil pCO2 at the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO), Pennsylvania, where controls on soil pCO2 (e.g., depth, texture, porosity, and moisture) vary from ridge tops down to the valley floor, between planar slopes and slopes with convergent flow (i.e., swales), and between north and south-facing aspects. We quantified pCO2 generally at 0.1–0.2 m depth intervals down to bedrock from 2008 to 2010 and in 2013. Of the variables tested, topographic position along catenas was the best predictor of soil pCO2 because it controls soil depth, texture, porosity, and moisture, which govern soil CO2 diffusive fluxes. The highest pCO2 values were observed in the valley floor and swales where soils are deep (≥0.7 m) and wet, resulting in low CO2 diffusion through soil profiles. In contrast, the ridge top and planar slope soils have lower pCO2 because they are shallower (≤0.6 m) and drier, resulting in high CO2 diffusion through soil profiles. Aspect was a minor predictor of soil pCO2: the north (i.e., south-facing) swale generally had lower soil moisture content and pCO2 than its south (i.e., north-facing) counterpart. Seasonally, we observed that while the timing of peak soil pCO2 was similar across the watershed, the amplitude of the pCO2 peak was higher in the deep soils due to more variable moisture content. The high pCO2 observed in the deeper, wetter topographic positions could lower soil porewater pH by up to 1 pH unit compared to porewaters equilibrated with atmospheric CO2 alone. CO2 is generally the dominant acid driving weathering in soils: based on our observations, models of chemical weathering and CO2 dynamics would be improved by including landscape controls on soil pCO2.  相似文献   

14.
The partial pressure of CO2 (pCO2) and concentration of dissolved CH4 in surface waters have been studied in three coastal systems connected to Cadiz Bay (southwestern coast of Spain) over different time scales. The concentration of CH4 varied from 1 to 4200 nmol kg?1 (192.1 ± 463.6 nmol kg?1) and the saturation percent from 19 to 159,577% (6645 ± 16,921%), and pCO2 from 315 to 3240 μatm (841.9 ± 466.3 μatm), with saturation percent values varying between 72 and 981% (220 ± 133%). The seasonal variation of pCO2 mainly depends on the temperature. On the contrary, the annual distribution of dissolved CH4 is associated with the precipitation regime. In addition, pCO2 and dissolved CH4 showed spatial variation. pCO2 increased toward the inner part of the systems, with the proximity to the discharge points from human activities. Dissolved CH4 is influenced by both anthropogenic inputs and natural processes such as benthic supply and exchange with the adjacent salt marshes. pCO2 and dissolved CH4 also varied with the tides: The highest concentrations were measured during the ebb, which suggests that the systems export CO2 and CH4 to the Bay and adjacent Atlantic Ocean.  相似文献   

15.
Repeated surveys of the Kennebec estuary, a macrotidal river estuary in Maine, USA, between 2004 and 2008 found spatial and temporal variability both in sources of carbon dioxide (CO2) to the estuary and the air–sea flux of estuary CO2. On an annual basis, the surveyed area of the Kennebec estuary had an area-weighted average partial pressure of CO2 (pCO2) of 559 μatm. The area-weighted average CO2 flux to the atmosphere was 3.54 mol C m?2 year?1. Overall, the Kennebec estuary was an annual source of 7.2?×?107 mol CO2 to the atmosphere. Distinct seasonality in estuarine pCO2 was observed, with shifts in the seasonal pattern evident between lower and higher salinities. Fluxes of CO2 from the estuary were elevated following two summertime storms, and inputs of riverine CO2 outweighed internal estuarine CO2 inputs in nearly all months. River and estuarine inputs of CO2 represented 68 and 32 % of the total CO2 contributions to the estuary, respectively. This study examines the variability of CO2 in a large New England estuary, and highlights the comparatively high contribution of CO2 from riverine sources.  相似文献   

16.
The coastal zone, consisting of the continental shelves to a depth of 200 meters, including bays, lagoons, estuaries, and near-shore banks, is an environment that is strongly affected by its biogeochemical and physical interactions with reservoirs in the adjacent domains of land, atmosphere, open ocean, and marine sediments. Because the coastal zone is smaller in volume and areal coverage relative to the open ocean, it traditionally has been studied as an integral part of the global oceans. In this paper, we show by numerical modeling that it is important to consider the coastal zone as an entity separate from the open ocean in any assessment of future Earth-system response under human perturbation. Model analyses for the early part of the 21st century suggest that the coastal zone plays a significant modifying role in the biogeochemical dynamics of the carbon cycle and the nutrient cycles coupled to it. This role is manifested in changes in primary production, storage, and/or export of organic matter, its remineralization, and calcium carbonate precipitation- all of which determine the state of the coastal zone with respect to exchange of CO2 with the atmosphere. Under a scenario of future reduced or complete cessation of the thermohaline circulation (THC) of the global oceans, coastal waters become an important sink for atmospheric CO2, as opposed to the conditions in the past and present, when coastal waters are believed to be a source of CO2, to the atmosphere. Profound changes in coastal-zone primary productivity underscore the important role of phosphorus as a limiting nutrient. In addition, our calculations indicate that the saturation state of coastal waters with respect to carbonate minerals will decline by ~15% by the year 2030. Any future slowdown in the THC of the oceans will increase slightly the rate of decline in saturation state.  相似文献   

17.
Homogeneous Mn(II) solutions that are not oversaturated with respect to MnCO3 or Mn(OH)2, in the absence of catalysts, remain in the presence of dissolved oxygen unoxidized for periods in excess of seven years. Measurable oxygenation rates are observed in solutions that are oversaturated with respect to MnCO3 or in waters containing “Mn-bacteria” or other surface catalysts.  相似文献   

18.
The carbon cycle of global inland waters is quantitatively comparable to other components in the global carbon budget. Among inland waters, a significant part is man-made lakes formed by damming rivers. Man-made lakes are undergoing a rapid increase in number and size. Human impacts and frequent algae blooms lead to it necessary to make a better constraint on their carbon cycles. Here, we make a primary estimation on the air–water CO2 transfer flux through an algae bloom year for a subtropical man-made lake—Hongfeng Lake, Southwest China. To do this a new type of glass bottles was designed for content and isotopic analysis of DIC and other environmental parameters. At the early stage of algae bloom, CO2 was transferred from the atmosphere to the lake with a net flux of 1.770 g·C·m?2. Later, the partial pressure (pCO2) of the aqueous CO2 increased rapidly and the lake outgassed to the atmosphere with a net flux of 95.727 g·C·m?2. In the remaining days, the lake again took up CO2 from the atmosphere with a net flux of 14.804 g·C·m?2. As a whole, Lake Hongfeng released 4527 t C to the atmosphere, accounting for one-third of the atmosphere/soil CO2 sequestered by chemical weathering in the whole drainage. With an empirical mode decomposition method, we found air temperature plays a major role in controlling water temperature, aqueous pCO2 and hence CO2 flux. This work indicates a necessity to make detailed and comprehensive carbon budgets in man-made lakes.  相似文献   

19.
Groundwater surveys were performed by detailed(around 300 sites) grid-analysis of water temperature, pH, redox potential, electrical conductivity, 222Rn, alkalinity and by calculating the pCO2, throughout the Ciampino and Marino towns in the Alban Hills quiescent volcano (Central Italy). Following several episodes of dangerous CO2 exhalation from soils during the last 20 years and earlier ashistorically recorded, the work aimed at assessing the Natural Gas Hazard (NGH) including the indoor-Rn hazard. The NGH was defined as the probability of an area to become a site of poisonous peri-volcanic gas exhalations from soils to the lower atmosphere (comprising buildings). CO2 was found to be a ``carrier' for the other poisonous minor and in trace components (HsS, CH4, 222Rn, etc.). This assessment was performed by extrapolating in the aquifer CO2 and 222Rn conditions, and discriminating sectors where future CO2 flux in soils as well as indoor-Rn measurements have to be noted. A preliminary indoor-Rn survey was performed at about 200 sites. The highest values were found in the highest pCO2 and high 222Rn values in groundwater. This indicates convection and enhanced permeability in certain sectors of the main aquifer, i.e., along the bordering faults and inside the gas-trap of the Ciampino Horst., where ``continuous gas-phase micro-macro seepage mechanism' is invoked to explain the high peri-volcanic gases flux.  相似文献   

20.
A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Eocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号