首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
板峪口组大理岩中的变质流体   总被引:1,自引:0,他引:1  
山西五台山区板峪口组大理岩的总体矿物组合为透闪石、金云母、白云石、方解石、微斜长石和石英,岩石变质时受缓冲作用控制。口泉主沟内绿帘石脉体中流体的X_(CO_2)为0.08,而围岩白云岩中X_(CO_2)大于0.4,同一地点脉体和围岩中变质溶液具有不同的X_(CO_2)说明溶液成分受缓冲作用控制。绿帘石脉体内溶液成分保持X_(CO_2)=0.8不变则说明溶液成分受渗滤作用控制。围岩内矿物组合为金云母、透闪石、方解石和白云石也说明溶液成分受渗滤作用控制。总的说来,本地区的变质溶液成分是缓冲作用加渗滤作用的综合结果。 本区变质时所通过的流体数量一般不超过岩石体积的1/4。当岩石内有单矿物脉体时,脉体内所通过的流体数量较高。绿帘石脉内所通过的流体大致相当于岩石体积(99%)。  相似文献   

2.
用电子显微探针和多元线性回归技术研究了蒙大拿西南部 Ruby 地区二个小区各种岩性变质岩中共存石榴石和辉石之间 Fe—Mg 分配的热——成分关系。通过对二个地区的独立变质 P—T 的确定和十三个矿物的分析结果推测共存石榴石——单斜辉石的热——成分关系归纳为下式RT|nKD=(2482±845) (1509±1392)(X_(Fe)-X_(Mg))~(Ga) (2810±954)(X_(Ca)~(Gar)) (2855±792)(X_(Mn)~(Gar))式中 K_D=(X_(Fe)/X_(Mg))~(Gar)/(X_(Fe)/X_(Mg))~(Cpx) X=分子数;对于石榴石——单斜辉石的 Fe—Mg 交换反应。2482=2324 0.029=-△G(卡).其系数代表石榴石混合参数回归值(Wy~(Gar))。Ca 和 m_n的回归参数与 Ganguly(1979)的计算值比较一致;可是,W_(Fe)Mg~(Gar)的回归值则界于 Ganguly(1979)与 O′Neill 和 Wood(1979)的计算值之间.对于九个石榴石——斜方辉石来说最适于使用上述公式,则求得石榴石——斜方辉石的 Fe—Mg 交换反应为-△Grp=1391±288卡。根据 Ganguly(1979)和 Saxena(1979)提供的石榴石——单斜辉石地温计。获得 Ruby 地区的变质温度异常地高。如果这一结果是在其它的高级角闪岩相到低级麻粒岩相中观察到的,那么.按照在此提供的石榴石——单斜辉石公式.可以获得比较符合实际的温度。该石榴石——斜方辉石公式能够做为相对的(但不是绝对的)地质温度计应用。  相似文献   

3.
西南大面积低温成矿域是我国重要的卡林型金矿及锑矿聚集区,方解石作为各类热液矿床中最常见的脉石矿物,在不同矿床中往往具有不同的稀土元素特征,特别是在金锑矿床中具有特殊的中、重稀土元素(M-HREE)富集特征,这一特殊现象对成矿流体演化和矿物学找矿有重要的研究意义,而关于其形成机理仍旧是一个悬而未决的科学问题。本研究利用电感耦合等离子体发射光谱仪(ICP-OES)对木利锑矿床不同时期方解石进行了Fe、Mn元素含量测试,同时利用高分辨场发射扫描电镜(FE-SEM)、电子探针(EPMA)、透射电子显微镜(TEM)、聚焦离子束(FIB)等一系列微区分析手段对方解石内部结构进行研究。结果显示,成矿期方解石相对于非成矿期方解石具有较高的Fe、Mn元素含量,成矿期方解石LREE/HREE值与Fe、Mn含量呈近水平的拟合曲线关系,在方解石内部存在含Fe、Mn的白云石,白云石和方解石交界处存在粒间孔,能谱显示有Fe、Mn信号,暗示孔内也存在Fe、Mn物质。因而推断在复杂的氧化还原条件下,含Fe、Mn的白云石和孔内的铁锰物质吸附大量的M-HREE可能是导致方解石富集M-HREE的原因。  相似文献   

4.
Kosice矿床是斯洛伐克第二大的菱镁矿床(150Mt),位于Gemeric的东部。其镁质碳酸盐矿体赋存于石炭纪石灰石和含白云石的石灰石中,同时下盘黑色片岩中也含有被铁质碳酸盐交代的薄层碳酸盐透镜体。在华力西期造山运动(M1)中,古生代岩石受到了低级变质作用(绿泥石带)。镁交代作用始于白云岩1的结晶作用,其后形成菱镁矿,最终沿裂隙形成铁菱镁矿。铁质碳酸盐包括早期铁白云石-白云石,铁白云石和后期含方解石和石英的菱铁矿。根据碳酸盐矿物对地质温度计,白云石1结晶作用发生在300~340℃。这一结果与M1的变质矿物组合(绿泥石,白云母-伊利石)吻合。铁白云石的结晶作用发生在320~370℃.少量细脉中可见白云石2,绿泥石和伊利石-多硅白云母,它们是由于阿尔卑斯期造山运动M2变质作用形成的更晚的矿物组合。 菱镁矿的流体包裹体(FI)研究,显示存在不同成分的热卤水,卤水成分变化相当于NaCl含量21~42wt%,但其它成分的盐含量高于NaCl,溶解的CO2含量也有变化。两相包裹体均一温度(Th)的范围为164~217℃,含石盐子晶包裹体均一温度的范围为217~344℃。富CO2包裹体(盐度相当于NaCl含量1-22wt%,CO2的密度为0.28~0.77 g·cm-3,均一温度为289~344℃)在菱镁矿中是次要的,但这种包裹体在与矿石伴生的石英中是主要的,并且与含石盐  相似文献   

5.
大别山北部超高压变质大理岩及其地质意义   总被引:3,自引:2,他引:3  
岩石学研究表明 ,大别山北部镁铁 超镁铁质岩带中白云质大理岩至少经历过三期变质阶段 :(1)榴辉岩相峰期变质阶段 ,矿物组合主要为方解石 +白云石 +金红石 +镁橄榄石 +钛 斜硅镁石 +富镁的钛铁矿±文石±石榴子石 ;(2 )麻粒岩相退变质阶段 ,矿物组合主要为方解石 +白云石 +金云母 +镁橄榄石 +透辉石 +钛铁矿 +尖晶石±斜方辉石等 ;(3)角闪岩相退变质阶段 ,主要矿物组合为方解石 +白云石 +磷灰石 +磁铁矿+榍石等。它的峰期变质矿物组合 ,类似于苏 鲁超高压大理岩 ,形成压力至少大于 2 .5GPa。这进一步证明 ,大别山北部大多数高级变质岩 (包括大理岩等 )都曾经过超高压变质作用 ,应属于印支期扬子俯冲陆壳的一部分。  相似文献   

6.
四川盆地西南部P1井在中二叠统栖霞组钻遇厚层优质白云岩储层。在显微岩石学分析、阴极发光研究基础上,基于LA-ICP-MS手段对不同类型碳酸盐矿物进行原位微量元素分析。结果表明灰岩中方解石Sr含量高达254×10^(-3)~823×10^(-3)、Mn/Sr比值低至0.02~0.07,较低的总稀土含量(0.067×10^(-3)~2.100×10^(-3))与较低的LREE/HREE比值(1.43~4.56)。各类白云石具有较低的Sr含量(16×10^(-3)~48×10^(-3))与较高的Mn/Sr比值(0.54~3.70),随着白云石晶体增大Mn/Sr比值总体增大。粉晶白云石具有最高的总稀土含量(2.364×10^(-3)~3.950×10^(-3))与较高的LREE/HREE比值(7.11~9.55),而细晶白云石与中晶白云石的总稀土含量与LREE/HREE比值相对偏低。鞍形白云石Fe含量高达708×10^(-3)~1217×10^(-3)、最大的LREE/HREE比值(6.61~15.00)与明显的正Eu异常。白云岩至少经历了两期白云石化过程,白云石化流体均具有强烈的轻重稀土分异特点。早期白云石化过程导致Sr的流失与Mn/Sr比值的增加,随着重结晶等成岩作用的加强进一步导致Mn/Sr增加、稀土元素的流失等。晚期白云石作用形成了标志性热液矿物—粗晶鞍形白云石胶结物。  相似文献   

7.
以青藏高原南羌塘坳陷扎仁地区中侏罗统布曲组晶粒白云岩为对象对其进行成因的研究。通过显微镜观察、流体包裹体数据以及碳氧同位素分析,认为研究区白云岩可分为细粉晶白云岩、中晶白云岩以及粗晶白云岩,在裂隙附近还广泛发育晶粒较粗大的鞍形白云石。白云石中流体包裹体均一温度在150.2~216.0℃,盐度均值达到了24.5%NaCl,远高于方解石包裹体均一温度与盐度,表明白云石的形成经历了高温高盐度的过程。白云石碳氧同位素分析显示其δ~(13)C_(PDB)值为-0.01‰~3.43‰,δ~(18)O_(PDB)值为-11.17‰~-7.68‰,通过白云石-水氧同位素分馏方程得到白云化流体的δ~(18)O_(SMOW)值为4.82‰~12.85‰,δ~(13)C_(PDB)对比认为白云石受寄主灰岩环境的影响。通过碳氧同位素数据对比以及前人的研究结果,认为研究区白云岩为相对封闭环境下受岩浆活动加热的高盐度流体对寄主灰岩交代的产物,高盐度流体由于镁离子的消耗导致流体对方解石过饱和,继而沉淀了高温的方解石。因此,热液活动对研究区中侏罗统布曲组白云岩的发育具有重要意义,值得加强对这一方向的探索研究。  相似文献   

8.
白云鄂博碳酸岩的方解石-白云石地质温度计   总被引:6,自引:2,他引:4  
利用方解石-白云石地质温度计对白云鄂博地区碳酸岩的平衡温度进行了测定。出露于东矿下盘的白云岩质火山岩和出露于尖山的方解石-白云石型火山岩获得了较高的温度,分别为681℃和648℃。这些样品中的方解石呈二十微米左右晶形较完整的小片,被稍大粒度的白云石颗粒包裹,未受交代作用影响,推测这种碳酸岩在快速冷却的情况下保存下了其岩浆侵位时的成分特点,从而指示出接近碳酸岩浆侵位时的温度。但本区多数碳酸岩的平衡温度在400~500℃之间,有下列三种情况:(1)具有自形-半自形中粗粒粒状变晶结构的碳酸岩最后的平衡温度为415~496℃;(2)产自东矿的其余样品(火山岩),所测最后平衡温度为431~485℃,在测温的微区范围内可见极细粒白云石方解石与稀土等矿物共生的现象;(3)为交代重结晶结构的碳酸岩明显受到后期热液流体的交代,在流体的作用下共生方解石和白云石在成分上达到新的平衡,平衡温度为432~507℃。本文所分析的样品多数结果(371~507℃)与用白云石(方解石)和磁铁矿氧同位素温度计对白云鄂博碳酸岩的计算结果(360~546℃)十分一致。虽然有研究者对方解石-白云石温度计用于火成碳酸岩表示过质疑,但本文资料表明火成碳酸岩最后的平衡温度是可以运用方解石-白云石温度计法来计算的。  相似文献   

9.
塔里木盆地顺南地区多口钻井揭示在白云岩储层中天然气富集成藏,但白云岩储层的成因存在争议。顺南501井鹰山组取芯段发育白云岩储层,为研究该地区白云岩储层成因提供了条件。通过岩芯观察与描述、显微岩石学、成岩作用与序列研究、基于铸体薄片的孔隙图像分析、计算机断层扫描、电子探针背散射成像与微量元素Fe、Mn定量、流体包裹体等技术手段,研究了白云岩储层特征与成因。结果表明,白云岩储层类型为裂缝-孔隙型,主要储集空间为裂缝-扩溶缝、晶间孔-晶间溶孔,孔隙发育与裂缝具有明显相关关系。热液矿物萤石与方解石呈共生关系充填于裂缝与孔隙空间。裂缝与孔隙附近的白云石、白云石环边以及与萤石共生的方解石均具有较高的FeO、MnO含量。萤石发育成群无色透明盐水包裹体,均一温度为165℃~175℃、盐度为15.5~17.5 wt.% NaCl equiv.。热液流体活动对围岩的改造导致局部方解石、白云石富Fe2+、Mn2+,同时提供了萤石结晶所需要的F-。一方面热液流体改造白云岩形成储集空间,另一方面以萤石与方解石为代表的热液矿物则充填裂缝与孔隙。因此,构造-热液流体活动在一定程度上影响了白云岩储集空间的形成。  相似文献   

10.
在意大利阿尔卑斯Valtournanche地区Cignana产出的大洋Zermatt-Saas带中的榴辉岩被厚度约50m的褶皱岩系所覆盖,该岩系主要由深海变质沉积岩(石榴云母片岩、石榴石英岩、含方解石-白云石多硅白云母石英片岩及少量大理岩、红帘石多硅白云母石英岩和霓石硬玉红帘石/绿帘石石英岩)组成。变质蛇绿岩及共生的变质沉积岩被认为是Piemonte-Ligurian大洋壳的残余物,该大洋是在中晚白垩世通过向Austro-Alpine边缘之下的俯冲而闭合的。  相似文献   

11.
A new phase equilibria geobarometer determines magmatic storage and crystallization conditions, including pressure, temperature, oxygen fugacity (\({f_{{{\text{o}}_2}}}\)), and the presence of a fluid phase for glass-bearing rocks containing the assemblage plagioclase?+?pyroxene(s). This newly developed geobarometer can better constrain crystallization conditions of shallow (<?500 MPa; <~?20 km), glass-bearing andesites to dacites. The geobarometer utilizes rhyolite-MELTS to determine crystallization conditions in natural pumice and scoria samples. The validity of the geobarometer is tested by comparing it to results from experiments. Uncertainties are assessed using Monte Carlo simulations. We apply the geobarometer to the plag?+?opx?+?cpx-bearing system of Mt. Ruapehu, in the southern Taupo Volcanic Zone, New Zealand. The samples from Mt. Ruapehu are tested from ~?5 to ~?400 MPa and from super-liquidus to 90% crystalline (~ 1200 to ~ 700 °C). Mt. Ruapehu serves as a methodological testing ground for the geobarometer, and results from our geobarometer agree with recent Mt. Ruapehu studies. Results show a distribution of crystallization pressures ranging from 50 to 150 MPa (~?2.0 to 5.9 km) for different eruptions, with modes of 110 MPa (~ 4.3 km) and 130 MPa (~ 5.1 km). These are consistent with field interpretations of different eruptive styles based on juvenile clast textures and previous knowledge of the magma plumbing system. Mt. Ruapehu magmas are fluid saturated, with \({f_{{{\text{o}}_2}}}\) of ΔQFM ~ + 1 (NNO).  相似文献   

12.
The non-ideal regular Mg-Fe binary in cordierite has been derived through multivariate linear regression of the expressionRT InKD +(P- 1)ΔVK 1 0 , 298 along with updated subfegular mixing parameter of almandine-pyrope solution (Hackler and Wood 1989; Berman 1990). The data base used for multivariate analyses consists of published experimental data (n = 177) on Mg-Fe partitioning between garnet and cordierite in theP-T range 650–1050°C and 4–12 K bar. The non-ideality can be approximated by temperature-dependent Margules parameters. The retrieved values of ΔH<T> o and ΔH<T> o of exchange reaction between garnet and cordierite and enthalpy and entropy of mixing of Mg-Fe cordierite were combined with recent quaternary (Fe-Mg-Ca-Mn) mixing data in garnet to obtain the geothermometric expressions to determine temperature (T Kelvin): $$\begin{gathered} T(WH) = 6832 + 0.031(P - 1) - \{ 166(X_{Mg}^{Gt} )^2 - 506(X_{Fe}^{Gt} )^2 + 680X_{Fe}^{Gt} X_{Mg}^{Gt} + 336(X_{Ca} + X_{Mn} ) \hfill \\ (X_{Mg} - X_{Fe} )^{Gt} - 3300X_{Ca}^{Gt} - 358X_{Mn}^{Gt} \} + 954(X_{Fe} - X_{Mg} )^{Crd} /1.987\ln K_D + 3.41 + 1.5X_{Ca}^{Gt} \hfill \\ + 1.23(X_{Fe} - X_{Mg} )^{Crd} \hfill \\ \end{gathered} $$ $$\begin{gathered} T(Br) = 6920 + 0.031(p - 1) - \{ 18(X_{Mg}^{Gt} )^2 - 296(X_{Fe}^{Gt} )^2 + 556X_{Fe}^{Gt} X_{Mg}^{Gt} - 6339X_{Ca}^{Gt} X_{Mg}^{Gt} \hfill \\ - 99(X_{Ca}^{Gt} )^2 + 4687X_{Ca}^{Gt} (X_{Mg} - X_{Fe}^{Gt} ) - 4269X_{Ca}^{Gt} X_{Fe}^{Gt} - 358X_{Mn}^{Gt} \} + 640(X_{Fe} - X_{Mg} )^{Crd} \hfill \\ + 1.90X_{Ca}^{Gt} (X_{Mg} - X_{Ca} )^{Gt} . \hfill \\ \end{gathered} $$   相似文献   

13.
A garnet-clinopyroxene geothermometer based on the available experimental data on compositions of coexisting phases in the system MgO-FeO-MnO-Al2O3-Na2O-SiO2 is as follows: $$T({\text{}}K) = \frac{{8288 + 0.0276 P {\text{(bar)}} + Q1 - Q2}}{{1.987 \ln K_{\text{D}} + 2.4083}}$$ where P is pressure, and Q1, Q2, and K D are given by the following equations $$Q1 = 2,710{\text{(}}X_{{\text{Fe}}} - X_{{\text{Mg}}} {\text{)}} + 3,150{\text{ }}X_{{\text{Ca}}} + 2,600{\text{ }}X_{{\text{Mn}}} $$ (mole fractions in garnet) $$\begin{gathered}Q2 = - 6,594[X_{{\text{Fe}}} {\text{(}}X_{{\text{Fe}}} - 2X_{{\text{Mg}}} {\text{)]}} \hfill \\{\text{ }} - 12762{\text{ [}}X_{{\text{Fe}}} - X_{{\text{Mg}}} (1 - X_{{\text{Fe}}} {\text{)]}} \hfill \\{\text{ }} - 11,281[X_{{\text{Ca}}} (1 - X_{{\text{Al}}} ) - 2X_{{\text{Mg}}} 2X_{{\text{Ca}}} ] \hfill \\{\text{ + 6137[}}X_{{\text{Ca}}} (2X_{{\text{Mg}}} + X_{{\text{Al}}} )] \hfill \\{\text{ + 35,791[}}X_{{\text{Al}}} (1 - 2X_{{\text{Mg}}} )] \hfill \\{\text{ + 25,409[(}}X_{{\text{Ca}}} )^2 ] - 55,137[X_{{\text{Ca}}} (X_{{\text{Mg}}} - X_{{\text{Fe}}} )] \hfill \\{\text{ }} - 11,338[X_{{\text{Al}}} (X_{{\text{Fe}}} - X_{{\text{Mg}}} )] \hfill \\\end{gathered} $$ [mole fractions in clinopyroxene Mg = MgSiO3, Fe = FeSiO3, Ca = CaSiO3, Al = (Al2O3-Na2O)] K D = (Fe/Mg) in garnet/(Fe/Mg) in clinopyroxene. Mn and Cr in clinopyroxene, when present in small concentrations are added to Fe and Al respectively. Fe is total Fe2++Fe3+.  相似文献   

14.
The behavior of nickel in the Earth’s mantle is controlled by sulfide melt–olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe–Ni composition of molten sulfide in the Earth’s upper mantle via sulfide melt–olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt \(X_{{{\text{Ni}}}}^{{{\text{Sulfide}}}}=\frac{{{\text{Ni}}}}{{{\text{Ni}}+{\text{Fe}}}}\) (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of \({f_{{{\text{O}}_{\text{2}}}}}\) on Fe–Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31–46, 1995), “zero time” experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0?±?1.0 log units more reduced than the fayalite–magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ ??1 or more oxidized (suite 4). For the reduced (suites 1–3) experiments, Fe–Ni distribution coefficients \(K_{{\text{D}}}^{{}}=\frac{{(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}/X_{{{\text{Fe}}}}^{{{\text{sulfide}}}})}}{{(X_{{{\text{Ni}}}}^{{{\text{olivine}}}}/X_{{{\text{Fe}}}}^{{{\text{olivine}}}})}}\) are small, averaging 10.0?±?5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of KD (21.1–25.2). Compared to previous determinations at 100 kPa, values of KD from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.4–0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6–0.7) at depths near 80–120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.28)?>?140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation.  相似文献   

15.
Constraining the pressure of crystallisation of large silicic magma bodies gives important insight into the depth and vertical extent of magmatic plumbing systems; however, it is notably difficult to constrain pressure at the level of detail necessary to understand shallow magmatic systems. In this study, we use the recently developed rhyolite-MELTS geobarometer to constrain the crystallisation pressures of rhyolites from the Taupo Volcanic Zone (TVZ). As sanidine is absent from the studied deposits, we calculate the pressures at which quartz and feldspar are found to be in equilibrium with melt now preserved as glass (the quartz +1 feldspar constraint of Gualda and Ghiorso, Contrib Mineral Petrol 168:1033. doi: 10.1007/s00410-014-1033-3. 2014). We use glass compositions (matrix glass and melt inclusions) from seven eruptive deposits dated between ~320 and 0.7 ka from four distinct calderas in the central TVZ, and we discuss advantages and limitations of the rhyolite-MELTS geobarometer in comparison with other geobarometers applied to the same eruptive deposits. Overall, there is good agreement with other pressure estimates from the literature (amphibole geobarometry and H2O–CO2 solubility models). One of the main advantages of this new geobarometer is that it can be applied to both matrix glass and melt inclusions—regardless of volatile saturation. The examples presented also emphasise the utility of this method to filter out spurious glass compositions. Pressure estimates obtained with the new rhyolite-MELTS geobarometer range between ~250 to ~50 MPa, with a large majority at ~100 MPa. These results confirm that the TVZ hosts some of the shallowest rhyolitic magma bodies on the planet, resulting from the extensional tectonic regime and thinning of the crust. Distinct populations with different equilibration pressures are also recognised, which is consistent with the idea that multiple batches of eruptible magma can be present in the crust at the same time and can be tapped simultaneously by large eruptive events.  相似文献   

16.
The LORandite EXperiment (acronym LOREX) is the only geochemical solar neutrino experiment still actively persued. The Tl-mineral lorandite, TlAsS2, occurs in the ore deposit Allchar, Macedonia, close to the border of Greece. The polychronous and polygenetic Sb-As-Tl-Au Allchar deposit was formed by complex physico-chemical processes occurring in a heterogeneous geological environment and by interaction of polyphase hydrothermal fluids with the surrounding magmatic, sedimentary and metamorphic rocks. The genesis of ore mineralization is related to the products of polyphase magmatic activity of Pliocene age (~6.5 to ~1.8?Ma) and its spatial location was controlled by magmatic, structural and lithological factors. The Allchar deposit comprises several orebodies of various shapes, textural-structural characteristics and element associations. Thallium mineralization, which is of significance for the LOREX project, has been proved in two locations: (i) ore body Crven Dol in the northern part and (ii) ore body Centralni Deo in the central part of the Allchar deposit. The age of Tl-mineralization is 4.22?Ma at the Crven Dol locality and 4.31?Ma at Rudina near to the Centralni Deo locality. The present depth of ore mineralization from the present soil surface is about 30?m to 140?m, whereas the paleodepth of its formation is considerably bigger. Using the method of quantitative geomorphological analysis, and AMS- and MS-measurements of cosmogenic radionuclides 26Al, 21Ne, and 3He, the erosion rate has been established to be ~70?m/Ma in the broader area of the Crven Dol locality and ~130?m/Ma in the Centrani Deo of the Allchar deposit. On the basis of these erosion rates and ages of Tl-mineralization, we have calculated the paleo-depth of Lorandite to be ca 180?m?±?35?m to 420?m?±?80?m. Geochemical and mineralogical investigations on lorandite in particular its trace elements (Pb, U, and Th), the quantity of lorandite in the two ore bodies, the geological age and the paleo depth of Tl-mineralization have provided encouraging results and indicate the feasibility of the LOREX project.  相似文献   

17.
The chemical potential of oxygen (µO2) in equilibrium with magnesiowüstite solid solution (Mg, Fe)O and metallic Fe has been determined by gas-mixing experiments at 1,473 K supplemented by solid-cell EMF experiments at lower temperatures. The results give:
where IW refers to the Fe-"FeO" equilibrium. The previous work of Srecec et al. (1987) and Wiser and Wood (1991) agree well with this equation, as does that of Hahn and Muan (1962) when their reported compositions are corrected to a new calibration curve for lattice parameter vs. composition. The amount of Fe3+ in the magnesiowüstite solid solution in equilibrium with Fe metal was determined by Mössbauer spectroscopy on selected samples. These data were combined with literature data from gravimetric studies and fitted to a semi-empirical equation:
These results were then used to reassess the activity-composition relations in (Mg, Fe)2SiO4 olivine solid solutions at 1,400 K, from the partitioning of Mg and Fe2+ between olivine and magnesiowüstite in equilibrium with metallic Fe experimentally determined by Wiser and Wood (1991). The olivine solid solution is constrained to be nearly symmetric with , with a probable uncertainty of less than ±0.5 kJ/mol (one standard deviation). The results also provide a useful constraint on the free energy of formation of Mg2SiO4.Editorial responsibility: B. Collins  相似文献   

18.
The iron-magnesium distribution coefficient, $$K'_D = (X_{\Sigma {\text{FeO}}} /X_{{\text{MgO}}} )^{{\text{olivine}}} (X_{{\text{MgO}}} /X_{\Sigma {\text{FeO}}} )^{{\text{liquid}}} ,$$ has frequently been used as a means of testing whether experimental and natural silicate liquids could have been in equilibrium with olivine of mantle composition. It is shown here that this K′ D decreases with increasing oxygen fugacity (xxx) for a hydrous partial melt in equilibrium with a natural spinel peridotite assemblage under pressure and temperature conditions corresponding to those of the upper mantle (from 0.52 at the xxx of the iron-wüstite buffer to 0.04 at the xxx of the magnetite-hematite buffer). K′ D also increases with increasing pressure, with decreasing temperature, and probably with increasing Mg/(Mg+∑ Fe) of the parental peridotite, suggesting that $$K_D = (X_{{\text{FeO}}} /X_{{\text{MgO}}} )^{{\text{olivine}}} (X_{{\text{MgO}}} /X_{{\text{FeO}}} )^{{\text{liquid}}}$$ also increases with increasing pressure and decreasing temperature. Thus, unless these four variables (P, T, xxx, silicate composition) are known for a natural magma, K′ D and probably K D are variables, and the Mg/(Mg+∑ Fe) of such a magma cannot be correlated to that of the parent. The K D determined at 1 atm pressure by Roeder and Emslie has frequently been used to test whether the Mg/(Mg+∑ Fe) ratios of experimentally formed liquids at high pressure in equilibrium with olivine of known Fo content represent the equilibrium Mg/(Mg+Fe2+) of this liquid, assuming that ∑Fe=Fe2+ and that K′ D does not vary with P, T, and composition of the system. Published data demonstrate that the oxygen fugacities of the experimental designs employed by different laboratories vary between those of the magnetite-hematite and magnetite-wüstite buffers (6 orders of magnitude), resulting in K′ D between 0.04 and 0.31 at 1050° C and 15 kbar, for example. Thus, published arguments as to whether the quenched liquids represent equilibrium compositions based on iron-magnesium partitioning are inadequate. The effects of P, T, xxx, and the composition of the starting material must also be considered.  相似文献   

19.
The available experimental data on garnet-bearing-assemblages for synthetic chemical systems (MAS, FMAS, CMAS) have been used to calibrate consistent models for the Al-solubility in orthopyroxene coexisting with garnet, on the basis of equilibrium reaction Py(opx) ? Py(gt). The alternative reaction En(opx)+MgTs(opx) ? Py(gt) is discarded as it yields larger a-posteriori uncertainties. To provide a reliable equation, directly applicable to natural garnet lherzolites, each successive synthetic-system calibration is tested against Mori and Green's (1978) natural-system reequilibration data. For the MAS system, an ideal solution model with constant ΔH°, ΔV° and ΔS° based on 12-oxygen structural formulae for aluminous pyroxenes yields the best fit (GPa, K), $${\text{25,134 + 9,941 }}P - 23.177{\text{ }}T{\text{ + }}RT{\text{ ln (}}X_{{\text{Al}}}^{TB'} {\text{) = 0}}$$ . The MAS synthetic-system calibration can be directly applied to the FMAS system by adding an empirical correction term (20,835 [X Fe gt ]2) independent of either pressure and temperature. However, this correction term is not important because of the limited Fe content of mantle peridotites. When calcium is added to the MAS system, the equilibrium constant is calculated as: $$K_{{\text{CMAS}}} = {{[(1 - X_{{\text{Ca}}}^{M2} )^2 (X_{{\text{Al}}}^{TB'} )]} \mathord{\left/ {\vphantom {{[(1 - X_{{\text{Ca}}}^{M2} )^2 (X_{{\text{Al}}}^{TB'} )]} {[(1 - X_{{\text{Ca}}}^X )^3 (X_{{\text{Al}}}^Y )^2 ]}}} \right. \kern-\nulldelimiterspace} {[(1 - X_{{\text{Ca}}}^X )^3 (X_{{\text{Al}}}^Y )^2 ]}}$$ where M2 and TB′ are pyroxene sites and X and Y are garnet sites. Up to 5 GPa, X Ca X ~ and the CMAS experimental data agree well with the MAS model, but for Yamada and Takahashi's (1983) higher pressure experiments (up to 10 GPa), this no longer holds. Indeed, the garnet solid solution does not behave ideally and an asymmetric regular solution model is needed for application to the deepest natural samples available (>7GPa). Calibration based on new high pressure data yields, $$\begin{gathered} \Delta G_{{\text{CMAS}}}^{XS} = (X_{{\text{Ca}}}^X )(1 - X_{{\text{Ca}}}^X )(0.147 - X_{{\text{Ca}}}^X ) \hfill \\ {\text{ }} \cdot {\text{(6,440,535 - 1,490,654 }}P{\text{)}} \hfill \\ \end{gathered}$$ . According to tests of the inferred solution model, the CFMAS system is a good analogue of natural systems in the pressure, temperature and composition ranges covered by the natural-system reequilibration data (up to 1,500° C and 4 GPa). Simultaneous application of this thermobarometer and of the two-pyroxene mutual solubility thermometer (Bertrand and Mercier 1985) to the phases of the garnet-peridotite xenoliths from Thaba Putsoa, Lesotho, yields a refined paleogeotherm for southern Africa strongly contrasting with previous results. The “granular” nodules yield a thermal gradient of about 8 K/km characteristic of a lithospheric-type environment, whereas the “sheared” ones show a lower gradient of about 1 K/km. This is a typical geotherm expected for a steady thermal state with an inflexion point at the depth of about 160 km corresponding to the lithosphere/asthenosphere boundary.  相似文献   

20.
Experimental data on amphibole crystallization in water-saturated high-Mg andesite from Shiveluch volcano, Kamchatka, at 2, 3, and 5 kbar were used to calibrate a new geobarometer. The main parameters chosen to indicate the crystallization pressure of equilibrium amphibole is the ratio of tetrahedrally coordinated Al to the sum (Ti4+ + Fe3+), which is calculated by the 13eCNK technique with regard for crystal chemical considerations. The newly derived geobarometer is designed to evaluate pressure in the range of 2–12 kbar using amphibole from high-Mg andesite and basalt. The accuracy and reliability of the pressure estimates by the new geobarometer were tested by applying this geobarometer in studying amphibolized ultramafic xenoliths from the Dish Hill dike, California; magmatic amphibole hosted in cortlandite from the Shanuch intrusion, Kamchatka; and magmatic amphibole in the Pekul’ney Bay area, Chukotka. All estimates made with the newly developed geobarometer were reasonably close to values obtained by independent techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号