首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have used the S wave receiver function (SRF) technique to investigate the crustal thickness beneath two seismic profiles from the CHARGE project in the southern central Andes. A previous study employing the P wave receiver function method has observed the Moho interface beneath much of the profiles. They found, however, that the amplitude of the P to S conversion was diminished in the western part of the profiles and have attributed it to a reduction of the impedance contrast at the Moho due to lower crustal ecologitization. With SRF, we have successfully detected S to P converted waves from the Moho as well as possible conversions from other lithospheric boundaries. The continental South American crust reaches its maximum thickness of ∼70 km (along 30°S between 70°W and 68.5°W) beneath the Principal Cordillera and the Famatina system and becomes thinner towards the Sierras Pampeanas with a thickness of ∼40 km. Negative phases, possibly related to the base of the continental and oceanic lithosphere, can be recognized in the summation traces at different depths. By comparing our results with data obtained from previous investigations, we are able to further constrain the thickness of the crust and lithosphere beneath the central Andes.  相似文献   

2.
Summary. The deep structure of the Faeroe–Shetland Channel has been investigated as part of the North Atlantic Seismic Project. Shot lines were fired along and across the axis of the Channel, with recording stations both at sea and on adjacent land areas. At 61°N, 1.7 km of Tertiary sediments overlies a 3.9–4.5 km s-1 basement interpreted as the top of early Tertiary volcanics. A main 6.0–6.6 km s-1 crustal refractor interpreted as old oceanic crust occurs at about 9 km depth. The Moho (8.0 ° 0.2 km s-1) is at about 15–17 km depth. There is evidence that P n may be anisotropic beneath the Faeroe–Shetland Channel. Arrivals recorded at land stations show characteristics best explained by scattering at an intervening boundary which may be the continent–ocean crustal contact or the edge of the volcanics.
The Moho delay times at the shot points, determined by time-term analysis, show considerable variation along the axis of the Channel. They correlate with the basement topography, and the greatest delays occur over the buried extension of the Faeroe Ridge at about 60° 15'N, where they are nearly 1 s more than the delays at 61°N after correction for the sediments. The large delays are attributed to thickening of the early Tertiary volcanic layer with isostatic downsagging of the underlying crust and uppermost mantle in response to the load, rather than to thickening of the main crustal ayer.
The new evidence is consistent with deeply buried oceanic crust beneath the Faeroe–Shetland Channel, forming a northern extension of Rockall Trough. The seabed morphology has been grossly modified by the thick and laterally variable pile of early Tertiary volcanic rocks which swamped the region, accounting for the anomalous shallow bathymetry, the transverse ridges and the present narrowness of the Channel.  相似文献   

3.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   

4.
Summary. The Azores—Biscay Rise is a roughly linear north-east—south-west trending feature rising 1500–3000m above its surroundings, which extends from about 4°N, 1°30'W towards the Azores. Its south-western termination is near 40°30'N, 21°30'W. About halfway along its length the Rise intersects the WNW-trending King's Trough. In 1978 a set of bathymetric, magnetic, gravity, GLORIA and seismic reflection and refraction data were obtained in the vicinity of the Rise. Together with earlier data these observations suggest that: (1) there has been no substantial post-emplacement tectonic activity, with the possible exception of the construction of some volcanic seamounts at the south-western end of the Rise, and (2) the Rise is underlain by a low-velocity (low-density) lower crust and is in isostatic equilibrium.
The Rise can be convincingly shown to be the eastern half of a pair of ridges formed by abnormal crustal generation at the Mid-Atlantic Ridge crest between the times of anomalies 33 and 24 (76–56 Ma ago). The western counterpart of the Rise includes Gauss and Milne seamounts in the Newfoundland Basin.
Magnetic anomaly 31 passes uninterruptedly across the Rise and therefore hypotheses that the northern part of the Rise was the site of a Cenozoic transform fault or subduction zone are not supported by our data. It is speculated that King's Trough was linked to the North Spanish Trough by an early Cenozoic east—west transform fault across the northern Iberia Abyssal Plain. This plate boundary became inactive about the middle of the Oligocene epoch.  相似文献   

5.
Summary. Recently acquired COCORP profiles in the southeastern United States show that: 1) Reflections associated with the Appalachian detachment are prominent beneath the Inner Piedmont of western Georgia, but do not extend further southeast beneath the Pine Mountain belt. 2) The Brunswick magnetic low is associated with a broad zone of crustal-penetrating dipping reflections that probably marks the Alleghanian suture in the southeastern U.S. 3) The South Georgia basin is a composite feature consisting of several half-graben, locally containing >5 km of Triassic - E. Jurassic basin fill. These basins occur within the interior of the Alleghanian orogen, but are not specifically associated with Alleghanian suture. 4) Across-strike crustal thickness variation, and distribution and character of lower-crust and Moho reflections in the Southern Appalachians is grossly similar to that observed in other parts of the Appalachian/Hercynian orogenic belt. Global comparisons suggest that these regional variations are a consequence of post-collisional extensional tectonics, rather than a primary (Palaeozoic or older) feature of the orogenic belt.  相似文献   

6.
During May 1990 and January-February 1991, an extensive geophysical data set was collected over the Côte d'Ivoire-Ghana continental margin, located along the equatorial coast of West Africa. The Ghana margin is a transform continental margin running subparallel to the Romanche Fracture Zone and its associated marginal ridge—the Côte d'Ivoire-Ghana Ridge. From this data set, an explosive refraction line running ∼ 150 km, ENE-WSW between 3°55'N, 3°21'W and 4°23'N, 2°4'W, has been modelled together with wide-angle airgun profiles, and seismic reflection and gravity data. This study is centred on the Côte d'Ivoire Basin located just to the north of the Côte d'Ivoire-Ghana Ridge, where bathymetric data suggest that a component of normal rifting occurred, rather than the transform motion observed along the majority of the equatorial West African margin.
Traveltime and amplitude modelling of the ocean-bottom seismometer data shows that the continental Moho beneath the margin rises in an oceanward direction, from ∼ 24 km below sea level to ∼ 17 km. In the centre of the line where the crust thins most rapidly, there exists a region of anomalously high velocity at the base of the crust, reaching some 8 km in thickness. This higher-velocity region is thought to represent an area of localized underplating related to rifting. Modelling of marine gravity data, collected coincident with the seismic line, has been used to test the best-fitting seismic model. This modelling has shown that the observed free-air anomaly is dominated by the effects of crustal thickness, and that a region of higher density is required at the base of the crust to fit the observed data. This higher-density region is consistent in size and location with the high velocities required to fit the seismic data.  相似文献   

7.
Focal mechanisms determined from moment tensor inversion and first motion polarities of the Himalayan Nepal Tibet Seismic Experiment (HIMNT) coupled with previously published solutions show the Himalayan continental collision zone near eastern Nepal is deforming by a variety of styles of deformation. These styles include strike-slip, thrust and normal faulting in the upper and lower crust, but mostly strike-slip faulting near or below the crust–mantle boundary (Moho). One normal faulting earthquake from this experiment accommodates east–west extension beneath the Main Himalayan Thrust of the Lesser Himalaya while three upper crustal normal events on the southern Tibetan Plateau are consistent with east–west extension of the Tibetan crust. Strike-slip earthquakes near the Himalayan Moho at depths >60 km also absorb this continental collision. Shallow plunging P -axes and shallow plunging EW trending T -axes, proxies for the predominant strain orientations, show active shearing at focal depths ∼60–90 km beneath the High Himalaya and southern Tibetan Plateau. Beneath the southern Tibetan Plateau the plunge of the P -axes shift from vertical in the upper crust to mostly horizontal near the crust–mantle boundary, indicating that body forces may play larger role at shallower depths than at deeper depths where plate boundary forces may dominate.  相似文献   

8.
Around 4370 km of new seismic reflection data, collected along the East Greenland margin between 71°30'N and 77°N in 2003, provide a first detailed view of the sediment distribution and tectonic features along the East Greenland margin. After processing and converting the data to depth, we correlated ODP-Site 913 stratigraphy into the new seismic network. Unit GB-2 shows the greatest glacial sediment deposits beneath the East Greenland continental shelf. This unit is characterized by the beginning of prograding sequences and has, according to our stratigraphic correlation, a Middle Miocene age. It might have been caused by rapid changes in sea level and/or glacial erosion by an early ice sheet or glaciers along the coast. A basement high, presumably a 360 km long basement structure at 77°N–74°54'N, prevents continuous sediment transport from the shelf into the deep sea area in times before 15 Myr. The origin of this prominent structure remains speculative since no rock sample from this structure is available. Seaward dipping reflectors at the eastern flank of this structure strongly support that it is a volcanic construction and is most likely emplaced on continental or transitional crust. The compilation of sediment thickness provide an insight into the regional sediment distribution in the Greenland Basin. An average sediment thickness of 1 km is observed. The north bordering Boreas Basin has a sediment thickness of 1.8 km close to the Greenland fracture zone (GFZ).  相似文献   

9.
Teleseismic data have been collected with temporary seismograph stations on two profiles in southern Norway. Including the permanent arrays NORSAR and Hagfors the profiles are 400 and 500 km long and extend from the Atlantic coast across regions of high topography and the Oslo Rift. A total of 1071 teleseismic waveforms recorded by 24 temporary and 8 permanent stations are analysed. The depth-migrated receiver functions show a well-resolved Moho for both profiles with Moho depths that are generally accurate within ±2 km.
For the northern profile across Jotunheimen we obtain Moho depths between 32 and 43 km (below sea level). On the southern profile across Hardangervidda, the Moho depths range from 29 km at the Atlantic coast to 41 km below the highland plateau. Generally the depth of Moho is close to or above 40 km beneath areas of high mean topography (>1 km), whereas in the Oslo Rift the crust locally thins down to 32 km. At the east end of the profiles we observe a deepening Moho beneath low topography. Beneath the highlands the obtained Moho depths are 4–5 km deeper than previous estimates. Our results are supported by the fact that west of the Oslo Rift a deep Moho correlates very well with low Bouguer gravity which also correlates well with high mean topography.
The presented results reveal a ca . 10–12 km thick Airy-type crustal root beneath the highlands of southern Norway, which leaves little room for additional buoyancy-effects below Moho. These observations do not seem consistent with the mechanisms of substantial buoyancy presently suggested to explain a significant Cenozoic uplift widely believed to be the cause of the high topography in present-day southern Norway.  相似文献   

10.
A 3-D P -velocity map of the crust and upper mantle beneath the southeastern part of India has been reconstructed through the inversion of teleseismic traveltimes. Salient geological features in the study region include the Archean Dharwar Craton and Eastern Ghat metamorphic belt (EGMB), and the Proterozoic Cuddapah and Godavari basins. The Krishna–Godavari basin, on the eastern coastal margin, evolved in response to the Indo–Antarctica breakup. A 24-station temporary network provided 1161 traveltimes, which were used to model 3-D P -velocity variation. The velocity model accounts of 80 per cent of the observed data variance. The velocity picture to a depth of 120 km shows two patterns: a high velocity beneath the interior domain (Dharwar craton and Cuddapah basin), and a lower velocity beneath the eastern margin region (EGMB and coastal basin). Across the array velocity variations of 7–10 per cent in the crust (0–40 km) and 3–5 per cent in the uppermost mantle (40–120 km) are observed. At deeper levels (120–210 km) the upper-mantle velocity differences are insignificant among different geological units. The presence of such a low velocity along the eastern margin suggests significantly thin lithosphere (<100 km) beneath it compared to a thick lithosphere (>200 km) beneath the eastern Dharwar craton. Such lithospheric thinning could be a consequence of Indo–Antarctica break-up.  相似文献   

11.
Summary. In 1984, the Australian Bureau of Mineral Resources and the Geological Survey of Queensland recorded a regional seismic reflection profile of over 800 km length from the eastern part of the Eromanga Basin to the Beenleigh Block east of the Clarence Moreton Basin. A relatively transparent upper crustal basement with an underlying, more reflective lower crust is characteristic of much of the region. Prominent westerly dipping reflectors occur well below the sediments of the eastern margin of the Clarence Moreton Basin and the adjacent Beenleigh Block, and provide some of the most interesting features of the entire survey. A wide angle reflection/refraction survey of 192 km length and an expanding reflection spread of 25 km length were recorded across the Nebine Ridge. The only clear deep reflectors are interpreted as P-to-SV or SV-to-P converted reflections from a mid-crustal boundary at a depth of about 17 km. The combined Nebine Ridge data provide well-constrained P and S wave velocity models of the upper crust, and suggest a crustal structure quite different from that beneath the adjacent Mesozoic basins.  相似文献   

12.
Summary Peake and Freen Deeps are elongate structures some 30 nautical miles long by 7 miles wide situated near 43° N 20° W on the lower flanks of the Mid-Atlantic Ridge. Seismic reflection records show that underneath about 400 fm of layered sediment the bedrock lies at a depth greater than 3600 fm in Peake Deep and 3300 fm in Freen Deep; the surrounding seafloor is at about 2100 fm. Freen Deep is the eastern end of King's Trough, a flat floored feature some 400 fms deeper than the adjacent seafloor. The Trough extends 220 miles west-north-westwards towards the crest of the Mid-Atlantic Ridge. The area is aseismic and heat flow is normal; there is no displacement of the crest of the mid-ocean ridge on the projected line of King's Trough. Gravity and magnetic surveys have been made. With minor exceptions, magnetic anomalies are not due to bodies elongated parallel with the structure, which, therefore, cannot be a volcanic collapse caldera. Seismic refraction results in the Peake-Freen area show that the crust is not thinned under the deeps although the Moho may be depressed by 2 km. Bouguer anomalies also suggest that the Moho is flat and does not rise to compensate the deeps. Models consistent with gravity and seismic information suggest there is a dense block in the upper mantle under the area. Since no reason to ascribe the origin of the structure to tear faulting has yet been acquired, it is interpreted in terms of over thrusting perpendicular to the deeps, followed by inversion of the lower part of the thickened basaltic crust to eclogite, and its subsequent sinking into the mantle.  相似文献   

13.
The results of deep reflection profiling studies carried out across the palaeo-meso-Proterozoic Delhi Fold Belt (DFB) and the Archaean Bhilwara Gneissic Complex (BGC) in the northwest Indian platform are discussed in this paper. This region is a zone of Proterozoic collision. The collision appears to be responsible for listric faults in the upper crust, which represent the boundaries of the Delhi exposures. In these blocks the lower crust appears to lie NW of the respective surface exposures and the reflectivity pattern does not correspond to the exposed blocks. A fairly reflective lower crust northwest of the DFB exposures appears to be the downward continuation of the DFB upper crust. The poorly reflective lower crust under the exposed DFB may be the westward extension of the BGC upper crust at depth. Thus, the lower crust in this region can be divided into the fairly reflective Marwar Basin (MB)-DFB crust and a poorly reflective BGC crust. Vertically oriented igneous intrusions may have disturbed the lamellar lower-crustal structure of the BGC, resulting in a dome-shaped poorly reflective lower crust whose base, not traceable in the reflection data, may have a maximum depth of about 50 km, as indicated by the gravity modelling.
The DFB appears to be a zone of thick (45-50 km) crust where the lower crust has doubled in width. This has resulted in three Moho reflection bands, two of which are dipping SE from 12.5 to 15.0 s two-way time (TWT) and from 14.5 to 16.0 s TWT. Another band of subhorizontal Moho reflections, at ≈ 12.5 s TWT, may have developed during the crustal perturbations related to a post-Delhi tectonic orogeny. The signatures of the Proterozoic collision, in the form of strong SE-dipping reflections in the lower crust and Moho, have been preserved in the DFB, indicating that the crust here has not undergone any significant ductile deformation since at least after the Delhi rifting event.  相似文献   

14.
Reflection seismic data show that the late Cenozoic Safford Basin in the Basin and Range of south-eastern Arizona, is a 4.5-km-deep, NW-trending, SW-dipping half graben composed of middle Miocene to upper Pliocene sediments, separated by a late Miocene sequence boundary into lower and upper basin-fill sequences. Extension during lower basin-fill deposition was accommodated along an E-dipping range-bounding fault comprising a secondary breakaway zone along the north-east flank of the Pinaleño Mountains core complex. This fault was a listric detachment fault, active throughout the mid-Tertiary and late Cenozoic, or a younger fault splay that cut or merged with the detachment fault. Most extension in the basin was accommodated by slip on the range-bounding fault, although episodic movement along antithetic faults temporarily created a symmetric graben. Upper-plate movement over bends in the range-bounding fault created rollover structures in the basin fill and affected deposition within the half graben. Rapid periods of subsidence relative to sedimentation during lower basin-fill deposition created thick, laterally extensive lacustrine or alluvial plain deposits, and restricted proximal alluvian-fan deposits to the basin margins. A period of rapid extension and subsidence relative to sediment influx, or steepening of the upper segment of the range-bounding fault at the start of upper basin-fill deposition resulted in a large downwarp over a major fault bend. Sedimentation was restricted to this downwarp until filled. Episodic subsidence during upper basin-fill deposition caused widespread interbedding of lacustrine and fluvial deposits. Northeastward tilting along the south-western flank of the basin and north-eastward migration of the depocentre during later periods of upper basin-fill deposition suggest decreased extension rates relative to late-stage core complex uplift.  相似文献   

15.
The oldest rocks outcropping in northwest Iceland are ∼16 Myr old and in east Iceland ∼13 Myr. The full plate spreading rate in this region during the Cenozoic has been ∼2 cm a−1, and thus these rocks are expected to be separated by ∼290 km. They are, however, ∼500 km apart. The conclusion is inescapable that an expanse of older crust ∼210 km wide underlies Iceland, submerged beneath younger lavas. This conclusion is independent of any considerations regarding spreading ridge migrations, jumps, the simultaneous existence of multiple active ridges, three-dimensionality, or subsidence of the lava pile. Such complexities bear on the distribution and age of the older crust, but not on its existence or its width. If it is entirely oceanic its maximum age is most likely 26–37 Ma. It is at least 150 km in north–south extent, but may taper and extend beneath south Iceland. Part of it might be continental—a southerly extension of the Jan Mayen microcontinent. This older crust contributes significantly to crustal thickness beneath Iceland and the ∼40 km local thickness measured seismically is thus probably an overestimate of present-day steady-state crustal production at Iceland.  相似文献   

16.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

17.
Summary. The crustal structure beneath the Vema fracture zone and its flanking transverse ridge was determined from seismic refraction profiles along the fracture zone valley and across the ridge. Relatively normal oceanic crust, but with an upwarped seismic Moho, was found under the transverse ridge. We suggest that the transverse ridge represents a portion of tectonically uplifted crust without a major root or zone of serpentinite diapirism beneath it. A region of anomalous crust associated with the fracture zone itself extends about 20 km to either side of the central fault, gradually decreasing in thickness as the fracture zone is approached. There is evidence to suggest that the thinnest crust is found beneath the edges of the 20 km wide fracture zone valley. Under the fracture zone valley the crust is generally thinner than normal oceanic crust and is also highly anomalous in its velocity structure. Seismic layer 3 is absent, and the seismic velocities are lower than normal. The absence of layer 3 indicates that normal magmatic accretionary processes are considerably modified in the vicinity of the transform fault. The low velocities are probably caused by the accumulation of rubble and talus and by the extensive faulting and fracturing associated with the transform fault. This same fracturing allows water to penetrate through the crust, and the apparently somewhat thicker crust beneath the central part of the fracture zone valley may be explained by the resultant serpentinization having depressed the seismic Moho below its original depth.  相似文献   

18.
Receiver functions (RFs) from teleseismic events recorded by the NARS-Baja array were used to map crustal thickness in the continental margins of the Gulf of California, a newly forming ocean basin. Although the upper crust is known to have split apart simultaneously along the entire length of the Gulf, little is known about the behaviour of the lower crust in this region. The RFs show clear P -to- S wave conversions from the Moho beneath the stations. The delay times between the direct P and P -to- S waves indicate thinner crust closer to the Gulf along the entire Baja California peninsula. The thinner crust is associated with the eastern Peninsular Ranges batholith (PRB). Crustal thickness is uncorrelated with topography in the PRB and the Moho is not flat, suggesting mantle compensation by a weaker than normal mantle based on seismological evidence. The approximately W–E shallowing in Moho depths is significant with extremes in crustal thickness of ∼21 and 37 km. Similar results have been obtained at the northern end of the Gulf by Lewis et al., who proposed a mechanism of lower crustal flow associated with rifting in the Gulf Extensional Province for thinning of the crust. Based on the amount of pre-Pliocene extension possible in the continental margins, if the lower crust did thin in concert with the upper crust, it is possible that the crust was thinned during the early stages of rifting before the opening of the ocean basin. In this case, we suggest that when breakup occurred, the lower crust in the margins of the Gulf was still behaving ductilely. Alternatively, the lower crust may have thinned after the Gulf opened. The implications of these mechanisms are discussed.  相似文献   

19.
Deep seismic reflection profiles across the western Barents Sea   总被引:1,自引:0,他引:1  
Summary. The continental crust beneath the western Barents Sea has been acoustically imaged down to Moho depths in a large scale deep seismic reflection experiment. A first-order pattern of crustal reflectivity has been established and the thickness of the crust determined. A number of features with important implications for the tectonics of the area have been discovered. The results are presented in the form of two transects.  相似文献   

20.
Fission track thermogeochronology using detrital apatite and zircon from a synorogenic foreland basin on the northern margin of the Betic Cordillera Internal Zone is used to reconstruct the cooling and unroofing history of the sediment source areas in the Oligo-Miocene mountain belt. Previously, a heavy mineral study on the same sedimentary rocks showed that progressively deeper tectonometamorphic units were being unroofed during the latest Oligocene to middle Miocene at a minimum rate of 3  km Myr−1. The fission track data have further constrained the exhumation history showing that the structurally highest (i.e. shallowest) parts of the mountain belt (Malaguide Complex) cooled relatively slowly during the latest Oligocene–Aquitanian, while the deeper metamorphic units (Alpujarride Complex) cooled at much higher rates (up to 300 °C Myr−1) during the Burdigalian–Langhian. These fast cooling rates from synorogenic detritus are consistent with cooling rates calculated previously for the deeper parts of the early Miocene orogenic belt, using 39Ar–40Ar dating of muscovite, biotite and amphibole from basement metamorphic rocks. Rapid cooling in the early Miocene, which commenced at ≈21  Ma, is attributed to the change in process from erosional to tectonic denudation by orogen-scale extension within the eastern Betic Cordillera.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号