首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study rates of oxygen, ammonium (NH4 +), nitrate (NO3 ), nitrite (NO2 ), and nitrous oxide (N2O) fluxes, nitrogen (N) fixation, nitrification, and denitrification were compared between two intertidal sites for which there is an abundant global literature, muddy and sandy sediments, and two sites representing the rocky intertidal zone where biogeochemical processes have scarcely been investigated. In almost all sites oxygen production rates greatly exceeded oxygen consumption rates. During daylight, NH4 + and NO3 uptake rates together with ammonification could supply the different N requirements of the primary producer communities at all four sites; N assimilation by benthic or epilithic primary producers was the major process of dissolved inorganic nitrogen (DIN) removal; N fixation, nitrification, and denitrification were minor processes in the overall light DIN cycle. At night, distinct DIN cycling processes took place in the four environments, denitrification rates ranged from 9 ± 2 to 360 ± 30 μmol N2 m−2 h−1, accounting for 10–48% of the water column NO3 uptake; nitrification rates varied from 0 to 1712 ± 666 μmol NH4 + m−2 h−1. A conceptual model of N cycle dynamics showed major differences between intertidal sediment and rocky sites in terms of the mean rates of DIN net fluxes and the processes involved, with rocky biofilm showing generally higher fluxes. Of particular significance, the intertidal rocky biofilms released 10 times the amount of N2O produced in intertidal sediments (up to 17 ± 6 μmol N2O m−2 h−1), representing the highest N2O release rates ever recorded for marine systems. The biogeochemical contributions of intertidal rocky substrata to estuarine and coastal processes warrant future detailed investigation.  相似文献   

2.
Phosphatase activity was measured in sediments from tidal freshwater habitats adjacent to the Cooper River in South Carolina representing different stages of ecological succession. It was found that sediment (0–5 cm) acid phosphatase activity, alkaline phosphatase activity and phosphodiesterase activity increased with increasing successional stage and phytomass. Acid phosphatase activity in creased from 7.5±1.2 (±1 SD) in subtidal sediment from a shallow open water habitat without vegetation to 61.2±4.9 μmol g−1 hr−1 (μmol of p-nitrophenol released per gram of dry sediment per hour) in intertidal sediments colonized by emergent macrophytes, while alkaline phosphatase activity increased from 2.1±0.1 to 19.01±1.5 μmol g−1 hr−1. Phosphodiesterase activity increased from 1.8±0.1 to 20.2±2.0 μmol g−1 hr−1 along the same gradient. Acid phosphatase activity was highly correlated (R2=0.92, P<0.001) with the organic matter content of the sediment. A study of phosphatase kinetics showed that Vmax of all phosphatases also increased along the successional gradient. Trends in phosphatase activity and Vmax correlated positively with plant biomass and negatively with concentrations of soluble reactive phosphorus in porewater, sediment extractable phosphorus, and total phosphourus. The porewater N∶P atom ratio decreased along the succession gradient from 25.3 in an early stage, open water community to 13.0 in a community dominated by emergent vegetation. The data also show that the distribution of the forms of phosphorus changed with successional stage. The change in distribution and the increased biological demand for phosphorus that paralleled succession were mediated by the activity of phosphatase enzymes.  相似文献   

3.
From January 1987 to February 1988 the annual biomass cycle and demography of the seagrass Zostera marina were assessed in San Quintin Bay, a shallow coastal lagoon on the Pacific coast of Baja California, Mexico. Shoot density and aboveground biomass were sampled monthly along two intertidal transects parallel to the shore. Belowground biomass was sampled every 2 mo. Shoot density differed between transects, ranging from 929±71 (SE) in July to 279 ±80 shoots m−2 in December, at the deeper transect (I). At the shallow transect (II) there was not a significant difference through time, and a mean of 737 shoots m−2 was calculated. Lateral shoots were present year round and represented between 1% and 30% of total density at transect I and between 3% and 25% at transect II. Reproductive shoots were present from March to September at both transects, with a density range of 77±28 shoots m−2 (March) to 9±3 shoots m−2 (September), and represented 5% of total shoot density. Neither aboveground biomass nor LAI (Leaf Area Index) differed between transects, with values ranging between 77±14.5 g dry wt m−2 (October 1987) and 13±2.4 g dry wt m−2 (February 1988) for aboveground biomass, and between 0.6±0.2 m2 leves m−2 substrate (January) and 2.7±0.3 m2 leaves m−2 substrate (September) for LAI. Neither root biomass nor rhizome biomass differed between transects, or as a function of time; the mean value for roots was 17 g dry wt m−2 and for rhizomes 29 g dry wt m−2. Belowground biomass represented 54% of total biomass. We found a significant correlation between aboveground biomass and LAI (r=0.949 for transect I, and 0.926 for transect II) as well as between total biomass (aboveground and belowground) and LAI (r=0.814), which allows us to consider using LAI as a predictor of these variables. Biomass changes were related to changes in shoot weight (r=0.676 at transect I; 0.582 at transect II), more than to changes in shoot number. Water temperature was found to be the driver of biomass changes in the aboveground compartment.  相似文献   

4.
The stability of a mangrove ecosystem in Cananeia, Brazil, is assessed based on investigations of the site-specific temporal rise in relative sea level during the past 50 years, 100-year sediment accumulation rates (SAR) and sources of organic matter (OM). Addressing this, three sediment cores were collected in a transect, intertidal mud flat, mangrove margin and well into the forest. The net SAR, as estimated by the age–depth relationships of 210Pb and 137Cs, is between 2.5 and 3.9 mm year−1. These rates are comparable to the estimates based on the Pb and Zn contaminant markers corresponding to mining initiation in the region in 1918. Further, the SARs are lower than the rate of regional relative sea level rise (4 mm year−1) as indicated by the past 50-year tide gauge record, but the rate is higher than the eustatic sea level rise (1.7 ± 0.3 mm year−1). The stratigraphies of TOC/TN, δ13C(OC), OP and δ15N indicate site-specific mangal vegetal litter, which is the predominant source of OM at all core sites, during the past century and reflects a stable mangal system over that time span.  相似文献   

5.
Summary The El Dorado Au-Cu deposit is located in an extensive intra-caldera zone of hydrothermal alteration affecting Upper Cretaceous andesites of the Los Elquinos Formation at La Serena (≈ 29°47′S Lat., 70°43′W Long., Chile). Quartz-sulfide veins of economic potential are hosted by N25W and N20E fault structures associated with quartz-illite alteration (+supergene kaolinite). The main ore minerals in the deposit are pyrite, chalcopyrite ± fahlore (As/(As + Sb): 0.06−0.98), with electrum, sphalerite, galena, bournonite-seligmanite (As/(As + Sb): 0.21−0.31), marcasite, pyrrhotite being accessory phases. Electrum, with an Ag content between 32 and 37 at.%, occurs interstitial to pyrite aggregates or along pyrite fractures. Pyrite commonly exhibits chemical zonation with some zones up to 1.96 at.% As. Electron probe microanalyses of pyrite indicate that As-rich zones do not exhibit detectable Au values. Fluid inclusion microthermometry shows homogenization temperatures between 130 and 352 °C and salinities between 1.6 and 6.9 wt.% NaCl eq. Isotope data for quartz, ankerite and phyllosilicates and estimated temperatures show that δ18O and δD for the hydrothermal fluids were between 3 and 10‰ and between −95 and −75‰, respectively. These results suggest the mineralizing fluids were a mixture of meteoric and magmatic waters. An epithermal intermediate-sulfidation model is proposed for the formation of the El Dorado deposit. Author’s present address: J. Carrillo-Rosúa, Dpto. de Didáctica de las Ciencias Experimentales, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain  相似文献   

6.
Daily and annual integrated rates of primary productivity and community respiration were calculated using physiological parameters measured in oxygen-based photosynthesis-irradiance (P-I) incubations at 8 stations throughout central and western Long Island Sound (cwLIS) during the summer and autumn of 2002 and 2003 and the late spring of 2003. Each calculation takes into account actual variations in incident irradiance over the day and underwater irradiance and standing stock with depth. Annual peak rates, ±95% confidence interval of propagated uncertainty in each measurement, of gross primary production (GPP, 1,730±610 mmol O2 m−2 d−1), community respiration (Rc, 1,660±270 mmol O2 m−2 d−1), and net community production (NCP, 1,160±1,100 mmol O2 m−2 d−1) occurred during summer at the western end of the Sound. Lowest rates of GPP (4±11 mmol O2 m−2 d−1), Rc (−50±300 mmol O2 m−2 d−1), and NCP (−1,250±270 mmol O2 m−2 d−1) occurred during late autumn-early winter at the outer sampled stations. These large ranges in rates of GPP, Rc, and NCP throughout the photic zone of cwLIS are attributed to seasonal and spatial variability. Algal respiration (Ra) was estimated to consume an average of 5% to 52% of GPP, using a literature-based ratio of Ra:Rc. From this range, we established that the estimated Ra accounts for approximately half of GPP, and was used to estimate daily net primary production (NPP), which ranged from 2 to 870 mmol O2 m−2 d−1 throughout cwLIS during the study. Annual NPP averaged 40±8 mol O2 m−2 yr−1 for all sampled stations, which more than doubled along the main axis of the Sound, from 32±14 mol O2 m−2 yr−1 at an eastern station to 82±25 mol O2 m−2 yr−1 at the western-most station. These spatial gradients in productivity parallel nitrogen loads along the main axis of the Sound. Daily integrals of productivity were used to test and formulate a simple, robust biomass-light model for the prediction of phytoplankton production in Long Island Sound, and the slope of the relationship was consistent with reports for other systems.  相似文献   

7.
With the aim of evaluating temporal changes in sedimentation and organic carbon (Corg) supplied over the last ~100 years, a sediment core was collected at Soledad Lagoon, a costal ecosystem surrounded by mangroves, located in the Cispatá Estuary (Caribbean coast of Colombia). The core sediments were characterized by low concentrations of calcium carbonate (0.2–2.9%), organic matter (3–8%), total nitrogen (0.11–0.38%), and total phosphorus (0.19–0.65 mg g−1). Fe and Al concentrations ranged from 4% to 5%, and Mn from 356 to 1,047 μg g−1. The 210Pb-derived sediment and mass accumulation rates were 1.54 ± 0.18 mm year−1 and 0.08 ± 0.01 g cm−2 year−1, respectively. The sediment core did not provide evidence of human impact, such as enhancement of primary production or nutrient enrichment, which may result from recent land uses changes or climate change. The Corg fluxes estimated for Soledad Lagoon core lay in the higher side of carbon fluxes to coastal ecosystems (314–409 g m−2 year−1) and the relatively high Corg preservation observed (~45%) indicate that these lagoon sediments has been a net and efficient sink of Corg during the last century, which corroborate the importance of mangrove areas as important sites for carbon burial and therefore, long-term sequestration of Corg.  相似文献   

8.
Sulfide Inhibition of Nitrate Removal in Coastal Sediments   总被引:1,自引:0,他引:1  
Microbial nitrate (NO3) removal via denitrification (DNF) at high sulfide (H2S) concentrations was compared in sediment from a coastal freshwater pond in a developed area that receives salt-water influx during storm events, and a saline pond proximal to an undeveloped estuary. Sediments were incubated with added SO42− (1,000 μg per gram dry weight basis (gdw)) to determine whether acid volatile sulfides (AVS) were formed. DNF in the sediments was measured with NO3–N (300 μg gdw−1) alone, and with NO3–N and H2S (1,000 μg S2− gdw−1). SO42− addition to the freshwater sediments resulted in AVS formation (970 ± 307 μg S gdw−1) similar to the wetland with no added SO42− (986 ± 156 μg S gdw−1). DNF rates measured with no added H2S were greater in the freshwater than the wetland site (10.6 ± 0.6 vs. 6.4 ± 0.1 μg N2O–N gdw−1 h−1, respectively). High H2S concentrations retained NH4–N in the undeveloped wetland and retained NO3–N in the developed freshwater site, suggesting that potential salt-water influx may reduce the ability of the freshwater sediments to remove NO3–N.  相似文献   

9.
Field experiments on the CO2 flux of alpine meadow soil in the Qilian Mountain were conducted along the elevation gradient during the growing season of 2004 and 2005. The soil CO2 flux was measured using the Li-6400-09 soil respiration chamber attached to the Li-6400 portable photosynthesis system. The effects of water and heat and roots on the soil CO2 flux were statistically analyzed. The results show that soil CO2 flux along the elevation gradient gradually decreases. The soil CO2 flux was low at night, with lowest value occurring between 0200 and 0600 hours, started to rise rapidly during 0700–0830 hours, and then descend during 1600–1830 hours. The peak CO2 efflux appears during 1100–1600 hours. The diurnal average of soil CO2 efflux was between 0.56 ± 0.32 and 2.53 ± 0.76 μmol m−2 s−1. Seasonally, soil CO2 fluxes are relatively high in summer and autumn and low in spring and winter. The soil CO2 efflux, from the highest to the lowest in the ranking order, occurred in July and August (4.736 μmol m−2 s−1), June and September, and May and October, respectively. The soil CO2 efflux during the growing season is positively correlated with soil temperature, root biomass and soil water content.  相似文献   

10.
Surface water optical characteristics, nutrients, and planktonic chlorophyll a concentrations were analyzed in the Cape Fear River (CFR) plume over a 2-year period. CFR discharge during the dry year (109 ± 105 m3s−1) was only 25% of the wet year discharge (429 ± 337 m3s−1). Partitioning the contributions of phytoplankton pigments, non-pigmented particles, and colored dissolved organic matter (CDOM) to the absorption of photosynthetically active radiation (PAR) indicated that CDOM was the dominant contributor to PAR absorption. Particulate absorption was relatively greater during the dry year. Pigment absorption was minor and varied little among stations or between years. Chlorophyll a concentrations were reduced at the most plume-influenced stations during the wet year, despite lower turbidity and higher nitrate concentrations. Ammonium and orthophosphate concentrations were not different between years. CDOM absorption [a CDOM (412)] ranged from 0.05 to 8.25 m−1 with highest values occurring near the CFR mouth. Our results suggest that for coastal ecosystems with significant blackwater river inputs, CDOM may exert a major limiting influence over near-shore primary production.  相似文献   

11.
The distribution of mangrove biomass and forest structure along Shark River estuary in the Florida Coastal Everglades (FCE) has been correlated with elevated total phosphorus concentration in soils thought to be associated with storm events. The passage of Hurricane Wilma across Shark River estuary in 2005 allowed us to quantify sediment deposition and nutrient inputs in FCE mangrove forests associated with this storm event and to evaluate whether these pulsing events are sufficient to regulate nutrient biogeochemistry in mangrove forests of south Florida. We sampled the spatial pattern of sediment deposits and their chemical properties in mangrove forests along FCE sites in December 2005 and October 2006. The thickness (0.5 to 4.5 cm) of hurricane sediment deposits decreased with distance inland at each site. Bulk density, organic matter content, total nitrogen (N) and phosphorus (P) concentrations, and inorganic and organic P pools of hurricane sediment deposits differed from surface (0–10 cm) mangrove soils at each site. Vertical accretion resulting from this hurricane event was eight to 17 times greater than the annual accretion rate (0.30 ± 0.03 cm year−1) averaged over the last 50 years. Total P inputs from storm-derived sediments were equivalent to twice the average surface soil nutrient P density (0.19 mg cm−3). In contrast, total N inputs contributed 0.8 times the average soil nutrient N density (2.8 mg cm−3). Allochthonous mineral inputs from Hurricane Wilma represent a significant source of sediment to soil vertical accretion rates and nutrient resources in mangroves of southwestern Everglades. The gradient in total P deposition to mangrove soils from west to east direction across the FCE associated with this storm event is particularly significant to forest development due to the P-limited condition of this carbonate ecosystem. This source of P may be an important adaptation of mangrove forests in the Caribbean region to projected impacts of sea-level rise.  相似文献   

12.
In this study, two sediment cores (~70 cm) were collected from separate mangrove forests straddling the Ba Lat Estuary, Red River of northern Vietnam, to examine the origins of sedimentary organic carbon (SOC) and reconstruct the paleoenvironment. In addition, mangrove leaves and particulate organic matter were collected and measured for δ13C to trace the origins of SOC. The cores were analyzed by high-resolution sections for δ13C, TOC, C/N ratios, sediment grain size, water content, and porosity, with values of δ13C, TOC, and C/N ratios ranging from −28.19 to −22.5‰, 2.14–30.94 mg/g, and 10.29–18.32, respectively. The δ13C and TOC relationship indicated that there were some small residual effects of diagenetic processes on TOC and δ13C values in mangrove sediments. However, the shifts of δ13C and C/N ratios from the bottom to the surface sediment of the cores explained the change in organic matter sources, with values of C/N > 12 and δ13C < −25‰, and C/N < 12 and δ13C > −25‰ indicated terrestrial (e.g., mangrove litter) and marine phytoplankton sources, respectively. The covarying δ13C, C/N ratios, and sediment grain sizes during the past 100 years in sediment cores showed that the paleoenvironment may be reconstructed into three environments (subtidal, tidal flat, and intertidal mangrove). General trends in δ13C and C/N followed a gradual increase in the C/N ratio and a concomitant decrease in δ13C from the subtidal, through to tidal flat, and to the intertidal mangrove. δ13C and C/N ratios are therefore effective in measuring the continuum of environmental change in mangrove ecosystem.  相似文献   

13.
Community structure and intertidal zonation of the macrobenthos on a macrotidal, ultra-dissipative beach were studied. On the beach of De Panne, Belgium, six transects perpendicular to the waterline (each with five stations) were sampled in September 1995 (summer) and March 1996 (winter). The 30 stations were distributed across the continuum from mean high water spring to mean low water spring in order to sample the macrobenthos at different levels of elevation. The 39 species found had total densities up to 5,500 ind m−2 in summer and 1,400 ind m−2 in winter. The highest densities were found in the spionid polychaetesScolelepis squamata andSpio filicornis, the nephtyid polychaeteNephtys cirrosa, the cirolanid isopodEurydice pulchra, and the haustorid amphipodsBathyporeia spp. Based on species composition, specific densities, and biomass, two species associations were defined: a relatively species-poor, high intertidal species association, dominated byS. squamata and with an average density of 1,413 ind m−2 and biomass of 808 mg AFDW m−2 (summer); and a relatively species-rich, low intertidal species association, dominated byN. cirrosa, and with an average density of 104 ind m−2 and biomass of 162 mg AFDW m−2 in summer. For both seasons, the high intertidal species association was restricted in its intertidal distribution between the mean tidal and the mean high-water spring level, whereas the low intertidal species association was found from the mean tidal level to the subtidal. The latter showed good affinities with the subtidalN. cirrosa species association occurring just offshore of De Panne beach, confirming the existence of a relationship between the low intertidal and subtidal macrobenthic species associations. Summer-winter comparison revealed a strong decrease in densities and biomass in the high intertidal zone during winter. Habitat continuity of the low intertidal zone with the subtidal allows subtidal organisms to repopulate the low intertidal zone.  相似文献   

14.
A methodology to estimate a methane emission in a waste landfill site was developed. The methane flux at a waste landfill site in summer, autumn, and winter was within the following ranges: from −1.3×10−2 to 16, from −6.4×10−2 to 7.5, and from −1.6×10−3 to 1.5×10−2 g-CH4 m−2 h−1, respectively. In those seasons, the mean methane emission rate and coefficient of variation were 1.1 g-CH4 m−2 h−1 ±290%, 0.57 g-CH4 m−2 h−1 ±347%, and 5.4×10−2 g-CH4 m−2 h−1 ±370%, respectively. These results simultaneously showed that fluctuations of methane emission from the landfill surface were both of spatial and temporal variability. In each season, an exponential relationship was observed between the methane flux density and the ground temperature. Total methane emissions were estimated to be 5.7×10−2, 7.1×10−3, and 1.7×10−3 g-CH4 m−2 h−1 in the summer, autumn, and winter surveys, respectively, using a temperature surrogated-kriging method. The results of this study would improve upon the labor-intensive closed-chamber method, and could be a more practical way to estimate methane emissions from waste landfills.  相似文献   

15.
Cation diffusion rates at 690 ± 30 °C have been calculated by inverse modelling of observed manganese (Mn) zonation profiles in 40 garnets from two kyanite-bearing metapelite samples from the High Himalayan Crystalline Series, Zanskar, northwest India. Knowledge of the initial growth profile of Mn in garnet is a pre-requisite for this technique. Following previous workers we model Mn partitioning into growing garnet in terms of a Rayleigh fractionation process, and demonstrate that the Mngarnet:whole rock partition coefficient is 60–100. Three-dimensional zonation profiles were obtained by successively grinding and polishing ∼1 cm slabs of each sample at 0.1–0.2 mm intervals and analysing the garnets at each stage, thus ensuring that core sections were measured. The diffusion model assumes that garnet has a spherical geometry and behaves as a closed system, and simulates diffusive modification of the hypothetical Mn Rayleigh growth profile for each garnet. The derived measure of the time-integrated diffusion history for each garnet is then combined with radiometric and field-relation constraints for the duration of the Himalayan metamorphic event to calculate cation diffusion rates. The average cation interdiffusion rate calculated for garnets in the two samples examined is (6 ± 3.2) × 10−23 m2s−1. This interdiffusion rate pertains to a temperature of 690 ± 30 °C, which is 0.97 × T PEAK, the peak temperature conditions experienced by the samples estimated using standard thermobarometric techniques. Garnet compositions are Py2–17Alm65–77Gro6–16Sp1–17. These new diffusion data are consistent with, and more precise than, existing high-temperature (>1000 °C) experimentally determined diffusion data, although some uncertainties remain difficult to constrain. Qualitative comparison between diffusively modified Mn growth profiles in garnets from the Scottish Dalradian and the Himalayan garnets suggests that the duration of metamorphism affecting the Dalradian garnets was 10–20 times longer than that endured by the Himalayan garnets. Received: 5 June 1996 / Accepted: 29 January 1997  相似文献   

16.
Gamma activity from the naturally occurring radionuclides namely, 226Ra, 232Th, the primordial radionuclide 40K was measured in the soil of Cuihua Mountain National Geological Park, China using γ-ray spectrometry technique. The mean activity of 226Ra, 232Th and 40K were found to be 27.2 ± 6.5, 43.9 ± 6.2 and 653.1 ± 127.6 Bq kg−1, respectively. The concentrations of these radionuclides were compared with the typical world values and the average activities of Chinese soil. The radium equivalent activity, the air absorbed dose rate, the annual effective dose rate, and the external hazard index were evaluated and compared with the internationally approved values. All the soil samples have Raeq lower than the limit of 370 Bq kg−1 and H ex less than unity. The overall mean outdoor terrestrial gamma dose rate is 66.3 nGy h−1 and the corresponding outdoor annual effective dose is 0.081 mSv.  相似文献   

17.
Gold ore-forming fluids of the Tanami region, Northern Australia   总被引:1,自引:0,他引:1  
Fluid inclusion studies have been carried out on major gold deposits and prospects in the Tanami region to determine the compositions of the associated fluids and the processes responsible for gold mineralization. Pre-ore, milky quartz veins contain only two-phase aqueous inclusions with salinities ≤19 wt% NaCl eq. and homogenization temperatures that range from 110 to 410°C. In contrast, the ore-bearing veins typically contain low to moderate salinity (<14 wt% NaCl eq.), H2O + CO2 ± CH4 ± N2-bearing fluids. The CO2-bearing inclusions coexist with two-phase aqueous inclusions that exhibit a wider range of salinities (≤21 wt% NaCl eq.). Post-ore quartz and carbonate veins contain mainly two-phase aqueous inclusions, with a last generation of aqueous inclusions being very CaCl2-rich. Salinities range from 7 to 33 wt% NaCl eq. and homogenization temperatures vary from 62 to 312°C. Gold deposits in the Tanami region are hosted by carbonaceous or iron-rich sedimentary rocks and/or mafic rocks. They formed over a range of depths at temperatures from 200 to 430°C. The Groundrush deposit formed at the greatest temperatures and depths (260–430°C and ≤11 km), whereas deposits in the Tanami goldfield formed at the lowest temperatures (≥200°C) and at the shallowest depths (1.5–5.6 km). There is also evidence in the Tanami goldfield for late-stage isothermal mixing with higher salinity (≤21 wt% NaCl eq.) fluids at temperatures between 100 and 200°C. Other deposits (e.g., The Granites, Callie, and Coyote) formed at intermediate depths and at temperatures ranging from 240 to 360°C. All ore fluids contained CO2 ± N2 ± CH4, with the more deeply formed deposits being enriched in CH4 and higher level deposits being enriched in CO2. Fluids from deposits hosted mainly by sedimentary rocks generally contained appreciable quantities of N2. The one exception is the Tanami goldfield, where the quartz veins were dominated by aqueous inclusions with rare CO2-bearing inclusions. Calculated δ 18O values for the ore fluids range from 3.8 to 8.5‰ and the corresponding δD values range from −89 to −37‰. Measured δ 13C values from CO2 extracted from fluid inclusions ranged from −5.1 to −8.4‰. These data indicate a magmatic or mixed magmatic/metamorphic source for the ore fluids in the Tanami region. Interpretation of the fluid inclusion, alteration, and structural data suggests that mineralization may have occurred via a number of processes. Gold occurs in veins associated with brittle fracturing and other dilational structures, but in the larger deposits, there is also an association with iron-rich rocks or carbonaceous sediments, suggesting that both structural and chemical controls are important. The major mineralization process appears to be boiling/effervescence of a gas-rich fluid, which leads to partitioning of H2S into the vapor phase resulting in gold precipitation. However, some deposits also show evidence of desulfidation by fluid–rock interaction and/or reduction of the ore-fluid by fluid mixing. These latter processes are generally more prevalent in the higher crustal-level deposits.  相似文献   

18.
In an annual cycle from March 2005 to February 2006, benthic nutrient fluxes were measured monthly in the Dongtan intertidal flat within the Changjiang (Yangtze River) Estuary. Except for NH4^+, there always showed high fluxes from overlying water into sediment for other four nutrients. Sediments in the high and middle marshes, covered with halophyte and consisting of macrofauna, demonstrated more capabilities of assimilating nutrients from overlying water than the low marsh. Sampling seasons and nutrient concentrations in the overlying water could both exert significant effects on these fluxes. Additionally, according to the model provided by previous study, denitrification rates, that utilizing NO3- transported from overlying water (Dw) in Dongtan sediments, were estimated to be from -16 to 193 μmol·h^-1·m^-2 with an average value of 63 μmol·h^-1·m^-2 (n=18). These estimated values are still underestimates of the in-situ rates owing to the lack of consideration of DN, i.e., denitrification supported by the local NO3^- production via nitrification.  相似文献   

19.
The heat capacity of gadolinium orthophosphate (GdPO4) measured in the temperature range 11.15–344.11 K by adiabatic calorimetry and available literature data were used to calculate its thermodynamic functions at 0–1600 K. At 298.15 K, these functions are as follows: C p 0(298.15 K) = 101.85 ± 0.05 J K−1 mol−1, S 0(298.15 K) = 123.82 ± 0.18 J K−1 mol−1, H 0(298.15 K)–H 0(0) = 17.250 ± 0.012 kJ mol−1, and Φ 0(298.15 K) = 65.97 ± 0.18 J K−1 mol−1 The calculated Gibbs free energy of formation from the elements of GdPO4 is Δ f G 0 (298.15 K) = −1844.3 ± 4.7 kJ mol−1.  相似文献   

20.
We report integrated measurements of sediment oxygen consumption (SOC) and bottom water plankton community respiration rates (WR) during eight cruises from 2003 to 2007 on the Louisiana continental shelf (LCS) where hypoxia develops annually. Averaged by cruise, SOC ranged from 3.9 to 25.8 mmol O2 m−2 day−1, whereas WR ranged from 4.1 to 10.8 mmol O2 m−3 day−1. Total below-pycnocline respiration rates ranged from 46.4 to 104.5 mmol O2 m−2 day−1. In general, below-pycnocline respiration showed low variability over a large geographic and temporal range, and exhibited no clear spatial or inter-annual patterns. SOC was strongly limited by dissolved oxygen (DO) in the overlying water; whereas, WR was insensitive to low DO, a relationship that may be useful for parameterizing future models. The component measures, WR and SOC, were similar to most prior measurements, both from the LCS and from other shallow estuarine and coastal environments. The contribution of SOC to total below-pycnocline respiration averaged 20 ± 4%, a finding that differs from several prior LCS studies, but one that was well supported from the broader estuarine and oceanic literature. The data reported here add substantially to those available for the LCS, thus helping to better understand oxygen dynamics on the LCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号