首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
 We have studied the plastic deformation of Mg2SiO4 wadsleyite polycrystals. Wadsleyite was synthesized from a forsterite powder in a multianvil apparatus. It was then recovered and placed in a second multianvil assembly designed to induce plastic deformation by compression between two hard alumina pistons. After the deformation experiment, the microstructures are characterized by transmission electron microscopy (TEM) and large-angle convergent beam electron diffraction (LACBED). Deformation experiments have been carried out at 15–19 GPa and at temperatures ranging from room temperature to 1800–2000 °C. Five different dislocation types have been identified by LACBED: [100], 1/2〈111〉, [010], 〈101〉 and [001]. The [001] dislocations result from dislocation reactions and not from activation of a slip system. The [010] dislocations are activated under high stresses at the beginning of the experiments and further relax by decomposition into 1/2〈111〉 dislocations or by dissociation into four 1/4[010] partial dislocations. The following slip systems have been identified: 1/2〈111〉{101}, [100](010), [100](001), [100]{011}, [100]{021}, [010](001), [010]{101} and 〈101〉(010). Received: 15 July 2002 / Accepted: 14 February 2003 Acknowledgements High-pressure experiments were performed at the Bayerisches Geoinstitut under the EU IHP – Access to Research Infrastructures Programme (Contract no. HPRI-1999-CT-00004 to D.C. Rubie). P.C. has benefited from a Congé thématique pour recherche from the University of Lille, and would like to thank warmly all the people in Bayreuth who contributed to this work by daily assistance and discussions: Nathalie Bolfan-Casanova, Daniel Frost, Jed L. Mosenfelder and Brent Poe. The quality of the preparation of the TEM specimens by H. Schultze is greatly appreciated.  相似文献   

2.
Grain boundaries influence many physical and chemical properties of crystalline materials. Here, we perform molecular dynamics simulations to study the structure of a series of [100] symmetric tilt grain boundaries in Mg2SiO4 forsterite. The present results show that grain boundary energies depend significantly on misorientation angle. For small misorientation angles (up to 22°), grain boundary structures consist of an array of partial edge dislocations with Burgers vector $\frac{1}{2}[001]$ associated with stacking faults and their energies can be readily fit with a model which adds the Peach-Koehler equation to the Read-Shockley dislocation model for grain boundaries. The core radius of partial dislocations and the spacing between the partials derived from grain boundary energies show that the transition from low- to high-angle grain boundaries occurs for a misorientation angle between 22° and 32°. For high misorientation angles (32.1° and 60.8°), the cores of dislocations overlap and form repeated structural units. Finally, we use a low energy atomic configuration obtained by molecular dynamics for the misorientation of 12.18° as input to simulate a high-resolution transmission electron microscopy (HRTEM) image. The simulated image is in good agreement with an observed HRTEM image, which indicates the power of the present approach to predict realistic atomic structures of grain boundaries in complex silicates.  相似文献   

3.
The effect of alumina and water solubility on the development of fabric in orthopyroxene in response to simple shear deformation has been investigated at a pressure of 1.5 GPa and a temperature of 1,100 °C using the D-DIA apparatus. The microstructure observations at these conditions indicate that dislocation glide is the dominant deformation mechanism. In MgSiO3 enstatite and hydrous aluminous enstatite, partial dislocations bounding the stacking faults in [001] glide parallel to the (100) (or) the (100) [001] slip system. Electron backscattered diffraction analysis of anhydrous aluminous enstatite, however, indicates operation of the (010) [001] slip system, and microstructure analysis indicates dislocation movement involving [001] on both (100) and {210} planes. The strong covalent bonding induced by the occupation of M1 and T2 sites by Al could have restricted the glide on (100), activating slip on {210}. The resulting seismic anisotropies (~2 %) in orthopyroxene are weaker compared to olivine (~9.5 %), and reduced anisotropy can be expected if orthopyroxene coexists with olivine. Weak anisotropy observed in stable cratonic regions can be explained by the relatively high abundance of orthopyroxene in these rocks.  相似文献   

4.
 We have studied the dislocation microstructures that develop in (Mg0.9Fe0.1)2SiO4 wadsleyite deformed by simple shear at high pressure. The experiments were performed in a multianvil apparatus with the shear assembly designed by Karato and Rubie (1997). The samples were synthesized in a separate experiment from high-purity oxides. The deformation experiments were carried out at 14 GPa and 1300 °C with time durations ranging from 1 to 8 h leading to plastic shear strains of 60 and 73%, respectively. The microstructures investigated by transmission electron microscopy (TEM) show that dislocation glide is activated under these conditions over the whole experimental time. The easy slip systems at 1300 °C involve 1/2<111> dislocations gliding in {101} as well as [100] dislocations gliding in (010) and {011}. Received: 15 July 2002 / Accepted: 14 February 2003 Acknowledgements High-pressure experiments were performed at the Bayerisches Geoinstitut under the EU IHP — Access to Research Infrastructures Programme (Contract no. HPRI-1999-CT-00004 to D.C. Rubie). The quality of the preparation of the TEM specimens by H. Schultze is greatly appreciated.  相似文献   

5.
The microstructure and texture in cordierites of a moldanubian gneiss from the Bohemian Massif has been analysed by transmission electron microscopy (TEM) and universal stage in order to get information on the deformation mechanisms and textural development of this rock-forming mineral. Deformation may have taken place at temperatures between about 500° C and 630° C and pressures smaller than about 3 kb. The elongated cordierite xenoblasts show a typical dislocation creep microstructure consisting of subgrain boundaries and free dislocations. The dislocations have [001], [010] and 1/2<110> Burgers vectors. [001] dislocations often have pure screw and edge character the latter type being climb-dissociated on (001). Among the dislocations reactions are common. The main subgrain boundaries observed are (010)[001], {110}[001] and (001)[010] tilt boundaries. Burgers vectors and dislocation line directions reveal (100)[001], (010)[001], (100)[010], {110} 1/2<110> and (001)1/2<110> as activated slip systems. The crystallographic preferred orientation (here referred to as texture) consists of a [001] maximum in the foliation parallel to the mineral lineation. [100] and [010] maxima are perpendicular to it within and normal to the foliation, respectively, with a girdle tendency normal to the lineation. The texture may be explained by simple shear deformation on the {hkO}[001] slip systems with preference of (010)[001].  相似文献   

6.
The dislocation substructures in olivine from coarse-grained peridotite xenoliths in kimberlites from the Lesotho region have been determined. The [100] dislocations may be located in simple (100) tilt boundaries while the density of free or individual [100] dislocations is 106/cm2 or less. The [001] dislocations form (010) twist arrays or more complex (100) subboundaries with the [100] dislocations; the density of free [001] dislocations increases to 8 × 108/cm2 in those grains in which tangles are observed. The simple (100) subboundaries are considered to result from a high temperature, slow strain-rate deformation (creep-like process) while the more complex subboundaries composed of [100] and [001] dislocations, as well as the high density of [001] dislocations, indicate faster strain rates and/or lower deformation temperatures than the creep deformation. These two broad phases of deformation have been interpreted as an early stage of mantle-type flow followed by deformation during or subsequent to the emplacement of the kimberlite.  相似文献   

7.
A San Carlos olivine polycrystal has been deformed under uppermost mantle conditions, by compression at 900 °C, at a strain rate of 1.1 × 10?5 s?1, under a confining pressure of 300 MPa, using the Paterson press. Transmission electron tomography of dislocations has been performed by scanning transmission electron microscopy, by conventional transmission electron microscopy using the weak-beam dark-field technique, associated with precession or not, in order to determine the glide planes of [001] screw dislocations. This recent technique is the most suitable one since most [001] dislocations exhibit straight screw segments due to the high lattice friction on this character at low temperature. We find that [001] dislocations glide in (100), (010) and {110} as already reported, but also more unexpectedly in {120} and {130}. We show that at 900 °C, [001] {110} glide is dominant in polycrystals. We have, however, noted and characterized numerous cross-slip events in the specimen.  相似文献   

8.
9.
As uniaxial compression tests of α spodumene LiAlSi2O6 at various temperatures and strain rates systematically led to brittle fracture, room-temperature microindentations have been performed with a view to characterizing the glide systems. Transmission electron microscopy (TEM) investigations show that only the [010] (100) glide system is activated. The resulting dislocations are widely dissociated (up to 3,000 Å) following the reaction [010]→[0 1/2 1/6]+[0 1/2 \(\bar 1\) /6]. In contrast, in naturally deformed spodumene the activated glide systems found in TEM studies are [001] {110} and 1/2〈110〉{1 \(\bar 1\) 0} and the corresponding dislocations are not dissociated. Such a difference in mechanical behaviour is interpreted in considering the necessary impingement of the oxygen atoms during dislocation glide. It is shown that only the dissociated b dislocations can glide with a moderate lattice friction at room temperature. The proposed model is supported by the first exploratory deformation runs performed under confining pressure.  相似文献   

10.
Cordierite — (Mg,Fe)2Al4Si5O18 — occurs as porphyroclasts within metapelitic and metavolcanic rocks from the Kemiö-Orijärvi belt, SW Finland. After crystallisation the cordierites have been deformed at temperatures between 550–825° C and pressures of 3–5 kbar. Optical microscopy reveals the following deformation-induced microstructures: a bimodal size distribution between host, 0.3 to 4.0 mm, and recrystallised (new) grains, 0.1 to 0.5 mm; the intracrystalline defect-structures of host grains yield undulatory extinction, subgrains and some twinning. Recrystallised grains are optically strain free. Grain and subgrain boundaries are generally straight and parallel to crystallographic low-index planes. Orientation distribution diagrams for host and recrystallised grains yield similar fabric diagrams, i.e. [010] perpendicular to foliation -S-, [001] and [100] parallel to S and [001] parallel to lineation -L-. The fabric diagrams indicate that [001] (010) is the dominant slip system. Transmission electron microscopy reveals straight free dislocations, glide and climb loops, minor {130} and {110} microtwins, isolated nodal points and dislocation walls. Contrast analyses yield Burgers vector b = [001] being dominant and b = [100] subordinate. Climb loops consist of 〈c〉-dislocations that are dissociated in (001) planes, glide loops are defined by [100] [010] and [001] (100). The cordierite microstructures have been interpreted to be generated by dislocation creep. The dominant recrystallisation mechanism is thought to be subgrain rotation subsequently followed by minor grain or twin-band boundary migration.  相似文献   

11.
Cleaved and mechanically polished surfaces of olivine from peridotite xenoliths from San Carlos, Arizona, were chemically etched using the techniques of Wegner and Christie (1974). Dislocation etch pits are produced on all surface orientations and they tend to be preferentially aligned along the traces of subgrain boundaries, which are approximately parallel to (100), (010), and (001). Shallow channels were also produced on (010) surfaces and represent dislocations near the surface that are etched out along their lengths. The dislocation etch channel loops are often concentric, and emanate from (100) subgrain boundaries, which suggests that dislocation sources are in the boundaries. Data on subgrain misorientation and dislocation line orientation and arguments based on subgrain boundary energy minimization are used to characterize the dislocation structures of the subgrain boundaries. (010) subgrain boundaries are of the twist type, composed of networks of [100] and [001] screw dislocations. Both (100) and (001) subgrain boundaries are tilt walls composed of arrays of edge dislocation with Burgers vectors b=[100] and [001], respectively. The inferred slip systems are {001} 〈100〉, {100} 〈001〉, and {010} 〈100〉 in order of diminishing importance. Exploratory transmission electron microscopy is in accord with these identifications. The flow stresses associated with the development of the subgrain structure are estimated from the densities of free dislocations and from the subgrain dimensions. Inferred stresses range from 35 to 75 bars using the free dislocation densities and 20 to 100 bars using the subgrain sizes.  相似文献   

12.
Bridgmanite (Mg,Fe)SiO3 and ferropericlase (Mg,Fe)O are the most abundant phases in the lower mantle and localized regions of the D″ layer just above the core mantle boundary. Seismic anisotropy is observed near subduction zones at the top of the lower mantle and in the D″ region. One source of anisotropy is dislocation glide and associated texture (crystallographic preferred orientation) development. Thus, in order to interpret seismic anisotropy, it is important to understand texture development and slip system activities in bridgmanite and bridgmanite + ferropericlase aggregates. Here we report on in situ texture development in bridgmanite and bridgmanite + ferropericlase aggregates deformed in the diamond anvil cell up to 61 GPa. When bridgmanite is synthesized from enstatite, it exhibits a strong (4.2 m.r.d.) 001 transformation texture due to a structural relationship with the precursor enstatite phase. When bridgmanite + ferropericlase are synthesized from olivine or ringwoodite, bridgmanite exhibits a relatively weak 100 transformation texture (1.2 and 1.6 m.r.d., respectively). This is likely due to minimization of elastic strain energy as a result of Young’s modulus anisotropy. In bridgmanite, 001 deformation textures are observed at pressures <55 GPa. The 001 texture is likely due to slip on (001) planes in the [100], [010] and \(\left\langle {110} \right\rangle\) directions. Stress relaxation by laser annealing to 1500–1600 K does not result in a change in this texture type. However, at pressures >55 GPa a change in texture to a 100 maximum is observed, consistent with slip on the (100) plane. Ferropericlase, when deformed with bridgmanite, does not develop a coherent texture. This is likely due to strain heterogeneity within the softer ferropericlase grains. Thus, it is plausible that ferropericlase is not a significant source of anisotropy in the lower mantle.  相似文献   

13.
We present here a numerical modelling study of dislocations in perovskite CaTiO3. The dislocation core structures and properties are calculated through the Peierls–Nabarro model using the generalized stacking fault (GSF) results as a starting model. The GSF are determined from first-principles calculations using the VASP code. The dislocation properties such as collinear, planar core spreading and Peierls stresses are determined for the following slip systems: [100](010), [100](001), [010](100), [010](001), [001](100), [001](010), and All dislocations exhibit lattice friction, but glide appears to be easier for [100](010) and [010](100). [001](010) and [001](100) exhibit collinear dissociation. Comparing Peierls stresses among tausonite (SrTiO3), perovskite (CaTiO3) and MgSiO3 perovskite demonstrates the strong influence of orthorhombic distortions on lattice friction. However, and despite some quantitative differences, CaTiO3 appears to be a satisfactory analogue material for MgSiO3 perovskite as far as dislocation glide is concerned.  相似文献   

14.
The core structures of dislocations in diopside have been calculated within the Peierls model, which assumes a planar core. 1/2<110> dislocations can dissociate into two collinear partial dislocations. We show that [001] glide is very difficult in (010) and that a non-collinear dissociation of [001](100) (modelled within a Peierls–Nabarro–Galerkin approach) makes glide equally easy in (100) and {110}. A widely spread core structure corresponding to a low lattice friction has been found for [100](010) and [010](100) dislocations which is not supported by mechanical data and, together with TEM observations, suggests that another, probably non-planar core structure is possible for these dislocations.  相似文献   

15.
Microhardness experiments have been performed on faces of olivine single crystals oriented at 45° to the [100] and [001] axis. Experiments have been performed between 20°C and 900°C in order to follow the evolution of the slip systems and the evolution of the nature of dislocations with temperature. Slip systems were identified using interferential contrast, decoration and transmission electron microscopy (TEM). Although the two possible Burgers vectors [001] and [100] are acted upon symmetrically, the only activated slip systems are (100) [001] and {110} [001]. The latter system is less developed and appears only at 600°C and above. Dislocations are mainly [001] screws, which are always very straight. Microcracks are observed together with dislocations. Above 600°C there is a clear relationship between both as a narrow plastic zone is developed around the cracks.  相似文献   

16.
Bulk and slab geometry optimizations and calculations of the electrostatic potential at the surface of both pyrophyllite [Al2Si4O10(OH)2] and talc [Mg3Si4O10(OH)2] were performed at Hartree–Fock and DFT level. In both pyrophyllite and talc cases, a modest (001) surface relaxation was observed, and the surface preserves the structural features of the crystal: in the case of pyrophyllite the tetrahedral and octahedral sheets are strongly distorted with respect to the ideal hexagonal symmetry (and basal oxygen are located at different heights along the direction normal to the basal plane), whereas the structure of talc deviates slightly from the ideal hexagonal symmetry (almost co-planar basal oxygen). The calculated distortions are fully consistent with those experimentally observed. Although the potentials at the surface of pyrophyllite and talc are of the same order of magnitude, large topological differences were observed, which could possibly be ascribed to the differences between the surface structures of the two minerals. Negative values of the potential are located above the basal oxygen and at the center of the tetrahedral ring; above silicon the potential is always positive. The value of the potential minimum above the center of the tetrahedral ring of pyrophyllite is ?0.05 V (at 2 Å from the surface), whereas in the case of talc the minimum is ?0.01 V, at 2.7 Å. In the case of pyrophyllite the minimum of potential above the higher basal oxygen is located at 1.1 Å and it has a value of ?1.25 V, whereas above the lower oxygen the value of the potential at the minimum is ?0.2 V, at 1.25 Å; the talc exhibits a minimum of ?0.75 V at 1.2 Å, above the basal oxygen.  相似文献   

17.
Mineralogical analysis, electrical conductivity and thermopower are reported for monocrystalline heterosite (Fe3+, Mn3+)PO4 with the orthorhombic olivine-type structure. The 57Fe Mössbauer spectrum could be adequately described using two Fe3+ doublets. By impedance spectroscopy (20 Hz–1 MHz) the electrical DC conductivity σDC and AC conductivity σAC were determined parallel (∥) and perpendicular to the [001] direction (space group Pnma) in the range ~160–440 K. The graph log σDC?1/T shows a slightly bent curve in both directions with activation energies of E A ~0.30 and ~0.15 eV in the high and low temperature ranges, respectively. The reduced E A is associated with electronic conduction; σDC ∥ [001] follows Mott’s T 1/4 variable range hopping law at lower temperatures with hopping between localized levels. The values of σAC are increased relative to σDC at high frequencies and low temperatures, obeying Jonscher’s universal dynamic response law; for σAC ∥ [001], the variation with temperature of the frequency exponent is in fair agreement with the model of small polaron hopping. The absolute thermopower Θ is negative and low between ~295 and ~440 K, Θ does hardly vary with temperatures in both directions; the temperature independency of Θ ∥ [001] is consistent with the small polaron hopping model.  相似文献   

18.
The deformation-related microstructure of an Indian Ocean zircon hosted in a gabbro deformed at amphibolite grade has been quantified by electron backscatter diffraction. Orientation mapping reveals progressive variations in intragrain crystallographic orientations that accommodate 20° of misorientation in the zircon crystal. These variations are manifested by discrete low-angle (<4°) boundaries that separate domains recording no resolvable orientation variation. The progressive nature of orientation change is documented by crystallographic pole figures which show systematic small circle distributions, and disorientation axes associated with 0.5–4° disorientation angles, which lie parallel to rational low index crystallographic axes. In the most distorted part of the grain (area A), this is the [100] crystal direction. A quaternion analysis of orientation correlations confirms the [100] rotation axis inferred by stereographic inspection, and reveals subtle orientation variations related to the local boundary structure. Microstructural characteristics and orientation data are consistent with the low-angle boundaries having a tilt boundary geometry with dislocation line [100]. This tilt boundary is most likely to have formed by accumulation of edge dislocations associated with a 〈001〉{100} slip system. Analysis of the energy associated with these dislocations suggest they are energetically more favorable than TEM verified 〈010〉{100} slip. Analysis of minor boundaries in area A indicates deformation by either (001) edge, or [100](100) and [001](100) screw dislocations. In other parts of the grain, cross slip on (111), and (112) planes seems likely. These data provide the first detailed microstructural analysis of naturally deformed zircon and indicate ductile crystal-plastic deformation of zircon by the formation and migration of dislocations into low-angle boundaries. Minimum estimates of dislocation density in the low-angle boundaries are of the order of ∼3.1010 cm−2. This value is sufficiently high to have a marked effect on the geochemical behavior of zircon, via enhanced bulk diffusion and increased dissolution rates. Therefore, crystal plasticity in zircon may have significant implications for the interpretation of radiometric ages, isotopic discordance and trace element mobility during high-grade metamorphism and melting of the crust.  相似文献   

19.
The optical anomalies, and surface and lamellar textures of a birefringent grossular garnet crystal from the Eden Mills, Belvidere Mountain, Vermont, USA, have been investigated by optical polarizing microscope, electron-probe micro-analyzer, back-scattered electron imaging, infrared spectroscopy, and single-crystal X-ray diffractometer from the standpoint of crystal growth. This grossular shows one-to-one correlation between natural surface features and its internal textures under crossed polarizers. Electron-probe micro-analyzer (EPMA) gave average chemical composition in (110) thin section, of bright lamella {Ca2.97Mn0.06}∑3.03 [Al1.59Fe0.37Ti0.01]∑1.97(Si3.00)∑3.00 (Gros79.5And18.9Sps1.6) and of dark host {Ca2.99Mn 0.06}∑3.05 [Al1.73Fe0.26 Ti0.01]∑2.00(Si2.97OH0.03)∑3.00 (Gros85.4And13Sps1.6). The correspondence of surface features and the internal textures with spiral or pyramidal growth mechanism suggest that the internal textures of the Eden Mills grossular are formed during growth process. The optical vibrational orientations and the growth steps inclination along [001] and \( \left[\overset{-}{1}10\right] \) directions predict monoclinic symmetry. With X-ray diffractometer (XRD) method, pseudocubic parameters are a = 11.839(2) Å, b = 11.855(1) Å, and c = 11.868(2) Å with interaxial angles α = 90.00(1)°, β = 89.99(1)°, and γ = 90.02(2)° that show orthorhombic symmetry of this crystal. Lamellar texture of Al3+-rich host with Fe3+-rich lamella infers cation ordering at octahedral site of the garnet structure. IR data favors the non-cubic orientation of [(OH) 4] at tetrahedral position in this grossular structure.  相似文献   

20.
The crystal structure of hydrous wadsleyite, Mg1.75SiH0.5O4 synthesized in an MA 8-type apparatus at conditions of 1300°C and 15.5 GPa, has been analyzed and refined in space group Imma, using the X-ray intensities measured on a 60X60X10 μm single crystal. The composition (Z=8) and unit cell are Mg1.74Si0.97H0.65O4 by E.P.M.A. analysis and a=5.663(1) Å, b= 11.546(2) Å, c=8.247(4) Å, V=539.2(5) Å3. The partial M-site occupancies were determined; vacancies associated with the incorporation of water are strongly concentrated on the Mg 3 site. The OH in the structure was confirmed by Raman and FTIR spectroscopies. The result of valence sum calculation based on the refined bond lengths indicates that O1 is a hydroxyl. The formula of hydrous wadsleyite can be expressed as Mg2-xSiH2xO4, where 0≤x≤0.25. When x=0.25, all of the O1 site is hydroxyl and the maximum solubility of 3.3 wt% H2O is realized. Structural relations to other dense hydrous phases are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号