首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To assess individual direct radiative effects of diverse aerosol species on a regional scale,the air quality modeling system RAMS-CMAQ(Regional Atmospheric Modeling System and Community Multiscale Air Quality) coupled with an aerosol optical properties/radiative transfer module was used to simulate the temporal and spatial distributions of their optical and radiative properties over East Asia throughout 2005.Annual and seasonal averaged aerosol direct radiative forcing(ADRF) of all important aerosols and individual components,such as sulfate,nitrate,ammonium,black carbon(BC),organic carbon(OC),and dust at top-of-atmosphere(TOA) in clear sky are analyzed.Analysis of the model results shows that the annual average ADRF of all important aerosols was in the range of 0 to-18 W m?2,with the maximum values mainly distributed over the Sichuan Basin.The direct radiative effects of sulfate,nitrate,and ammonium make up most of the total ADRF in East Asia,being concentrated mainly over North and Southeast China.The model domain is also divided into seven regions based on different administrative regions or countries to investigate detailed information about regional ADRF variations over East Asia.The model results show that the ADRFs of sulfate,ammonium,BC,and OC were stronger in summer and weaker in winter over most regions of East Asia,except over Southeast Asia.The seasonal variation in the ADRF of nitrate exhibited the opposite trend.A strong ADRF of dust mainly appeared in spring over Northwest China and Mongolia.  相似文献   

2.
The indirect radiative and climatic effects of sulfate and organic carbon aerosols over East Asia were investigated using a Regional Integrated Environment Model System (RIEMS) with an empirical aerosol-cloud parameterization.The first indirect radiative forcing was negative and ranged from-9-0 W m-2 in the domain.The maximum cooling,up to-9 W m-2,occurred in the Chongqing District in winter,whereas the cooling areas were larger during summer than in winter.Organic carbon (OC) aerosols were more abundant in winter than in summer,whereas the sulfate concentration during summer was much higher than during winter.The concentrations of sulfate and OC were comparable in winter,and sulfate played a dominant role in determining indirect radiative forcing in summer,whereas in winter,both sulfate and OC were important.The regional mean indirect radiative forcings were-0.73 W m-2 and-0.41 W m-2 in summer and winter,respectively.The surface cooling caused by indirect effects was more obvious in winter than that in summer.The ground temperature decreased by ~1.2 K in most areas of eastern China in winter,whereas in summer,the temperature decreased (~-1.5 K) in some regions,such as the Yangtze River region,but increased (~0.9 K) in the areas between the Yellow and Yangtze Rivers.In winter,the precipitation decreased by 0-6 mm in most areas of eastern China,but in summer,alternating bands of increasing (up to 80 mm) and decreasing (~-80 mm) precipitation appeared in eastern China.  相似文献   

3.
The Regional Integrated Environmental Model System(RIEMS 2.0) coupled with a chemistry-aerosol model and the Princeton Ocean Model(POM) is employed to simulate regional oceanic impact on atmospheric circulation and the direct radiative effect(DRE) of aerosol over East Asia.The aerosols considered in this study include both major anthropogenic aerosols(e.g.,sulfate,black carbon,and organic carbon) and natural aerosols(e.g.,soil dust and sea salt) .The RIEMS 2.0 is driven by NCEP/NCAR reanalysis II,and the simulated period is from 1 January to 31 December 2006.The results show the following:(1) The simulated annual mean sea-level pressure by RIEMS 2.0 with POM is lower than without POM over the mainland and higher without POM over the ocean.(2) In summer,the subtropical high simulated by RIEMS 2.0 with POM is stronger and extends further westward,and the continental low is stronger than without POM in summer.(3) The aerosol optical depth(AOD) simulated by RIEMS 2.0 with POM is larger in the middle and lower reaches of the Yangtze River than without POM.(4) The direct radiative effect with POM is stronger than that without POM in the middle and lower reaches of the Yangtze River and parts of southern China. Therefore,the authors should take account of the impact of the regional ocean model on studying the direct climate effect of aerosols in long term simulation.  相似文献   

4.
The spatial distributions and interannual variations of aerosol concentrations,aerosol optical depth(AOD) ,aerosol direct radiative forcings,and their responses to heterogeneous reactions on dust surfaces over East Asia in March 2006-10 were investigated by utilizing a regional coupled climate-chemistry/aerosol model. Anthropogenic aerosol concentrations(inorganic+carbonaceous) were higher in March 2006 and 2008,whereas soil dust reached its highest levels in March 2006 and 2010,resulting in stronger aerosol radiative forcings in these periods.The domain and five-year(2006-10) monthly mean concentrations of anthropogenic and dust aerosols,AOD,and radiative forcings at the surface(SURF) and at the top of the atmosphere(TOA) in March were 2.4μg m-3,13.1μg m-3,0.18,-19.0 W m-2,and-7.4 W m-2,respectively.Heterogeneous reactions led to an increase of total inorganic aerosol concentration;however,the ambient inorganic aerosol concentration decreased,resulting in a smaller AOD and weaker aerosol radiative forcings.In March 2006 and 2010,the changes in ambient inorganic aerosols,AOD,and aerosol radiative forcings were more evident.In terms of the domain and five-year averages,the total inorganic aerosol concentrations increased by 13.7%(0.17μg m-3) due to heterogeneous reactions,but the ambient inorganic aerosol concentrations were reduced by 10.5%(0.13μg m-3) .As a result,the changes in AOD,SURF and TOA radiative forcings were estimated to be-3.9%(-0.007) ,-1.7%(0.34 W m-2) ,and-4.3%(0.34 W m-2) ,respectively,in March over East Asia.  相似文献   

5.
This study investigated the second indirect climatic effect of anthropogenic aerosols,including sulfate,organic carbon(OC) ,and black carbon(BC) ,over East Asia.The seasonal variation of the climatic response to the second indirect effect was also characterized.The simulation period for this study was 2006.Due to a decrease in autoconversion rate from cloud water to rain as a result of aerosols,the cloud liquid water path(LWP) ,and radiative flux(RF) at the top of the atmosphere(TOA) changed dramatically,increasing by 14.3 g m-2 and decreasing by-4.1 W m-2 in terms of domain and annual average.Both LWP and RF changed most in autumn. There were strong decreases in ground temperature in Southwest China,the middle reaches of the Yangtze River in spring and autumn,while maximum cooling of up to-1.5 K occurred in the Chongqing district.The regional and annual mean change in ground temperature reached-0.2 K over eastern China.In all seasons except summer,precipitation generally decreased in most areas north of the Yangtze River,whereas precipitation changed little in South China.Precipitation changed most in summer,with alternating bands of increasing(~40 mm) and decreasing(~40 mm) precipitation appearing in eastern China.Precipitation decreased by 1.5-40 mm over large areas of Northeast China and the Huabei Plain.The domain and annual mean change in precipitation was approximately-0.3 mm over eastern China.The maximum reduction in precipitation occurred in summer,with mean absolute and relative changes of-1.2 mm and-3.8%over eastern China.This study revealed considerable climate responses to the second indirect effect of aerosols over specific regions of China.  相似文献   

6.
本文应用WRF-Chem(Weather Research and Forecasting—Chemistry)模式研究中国东部地区气溶胶及其部分组分(硫酸盐、硝酸盐和黑碳气溶胶)在天气尺度下的辐射强迫和对地面气温的影响。5个无明显降水时间段(2006年8月23~25日、2008年11月10~12日、2008年12月16~18日、2009年1月15~17日和2009年4月27~29日)的模拟显示,气溶胶浓度呈现显著的白天低,夜间高的日变化特征,且北方区域(29.8°~42.6°N,110.2°~120.3°E)平均PM2.5近地面浓度(40~80 μg m-3)高于南方区域(22.3°~29.9°N,109.7°~120.2°E,30~47 μg m-3)。气溶胶对地面2 m温度(地面气温)有明显的降温效果,在早上08:00(北京时,下同)和下午17:00左右最为显著,最高可降低约0.2~1 K,同时气溶胶的参与改善了模式对地面气温的模拟。本文还通过对2006年8月23~25日一次个例的模拟,定量分析了气溶胶及其部分组分(硫酸盐、硝酸盐和黑碳气溶胶)的总天气效应(直接效应+间接效应)、直接效应和间接效应分别对到达地面的短波辐射和地面气温的影响。北方区域平均气溶胶直接效应所造成的短波辐射强迫要高于南方区域,分别为-11.3 W m-2和-5.8 W m-2,导致地面气温分别降低了0.074 K和0.039 K。南方区域平均气溶胶间接效应所产的短波辐射强迫高于北方区域,分别为-14.4 W m-2和-12.4 W m-2,引起的地面气温的改变分别为-0.094 K和-0.035 K。对于气溶胶组分,硫酸盐气溶胶的直接效应和间接效应的作用相当,其总效应在北方和南方区域平均短波辐射强迫分别为-7.0 W m-2和-10.5 W m-2,对地面气温的影响为-0.062 K和-0.074 K,而硝酸盐气溶胶的作用略小。黑碳气溶胶使得北方和南方区域平均到达地表的太阳短波辐射分别减少了6.5 W m-2和5.8 W m-2,而地表气温则分别增加了0.053 K和0.017 K,相比于间接效应,黑碳气溶胶的直接效应的影响更加显著。  相似文献   

7.
利用NCAR的新一代GCM CAM3.0模式耦合一个气溶胶同化系统,研究了中国区域黑碳气溶胶的直接气候效应。结果显示,中国区域黑碳气溶胶引起全球平均辐射强迫为0.13 W/m2,导致除了青藏高原和广西以外的中国大部分地区降温,其中东北、四川和内蒙古中北部降温最显著。由此造成海陆温差缩小,气压差降低,从而总体上使东亚夏季风减弱。但与硫酸盐气溶胶的影响相比,黑碳气溶胶使季风减弱的程度较小,长江中下游地区的降水有所增加。黑碳气溶胶加强了中国东南部地区的对流活动,这与硫酸盐气溶胶的作用相反。同时,探讨了中国区域硫酸盐和黑碳气溶胶的综合直接气候效应。结果表明,硫酸盐和黑碳气溶胶的综合作用与仅有硫酸盐气溶胶的情形十分相似,降水变化的区域也和硫酸盐的保持一致。  相似文献   

8.
 利用NCAR的新一代GCM CAM3.0模式耦合一个气溶胶同化系统,研究了中国区域黑碳气溶胶的直接气候效应。结果显示,中国区域黑碳气溶胶引起全球平均辐射强迫为0.13 W/m2,导致除了青藏高原和广西以外的中国大部分地区降温,其中东北、四川和内蒙古中北部降温最显著。由此造成海陆温差缩小,气压差降低,从而总体上使东亚夏季风减弱。但与硫酸盐气溶胶的影响相比,黑碳气溶胶使季风减弱的程度较小,长江中下游地区的降水有所增加。黑碳气溶胶加强了中国东南部地区的对流活动,这与硫酸盐气溶胶的作用相反。同时,探讨了中国区域硫酸盐和黑碳气溶胶的综合直接气候效应。结果表明,硫酸盐和黑碳气溶胶的综合作用与仅有硫酸盐气溶胶的情形十分相似,降水变化的区域也和硫酸盐的保持一致。  相似文献   

9.
Previous observational studies have estimated anthropogenic aerosol direct radiative forcing over oceans without due consideration of cloudy-sky aerosols.However,when interaction between clouds and aerosols located below or above the cloud level is taken into account,the aerosol direct radiative forcing is larger by as much as 5 W m-2 in most mid-latitude regions in the Northern Hemisphere.  相似文献   

10.
The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach 5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.  相似文献   

11.
结合2006年最新的气溶胶排放源资料,以NCEP/NCAR再分析资料为气象场,驱动大气化学传输模式MATCH(Model of Atmospheric Transport and Chemistry),模拟了2006年中国地区硫酸盐、黑碳和沙尘气溶胶的质量浓度分布及其季节变化。模拟的气溶胶光学厚度(AOD)结果与CSHNET观测网数据比较分析后发现,基于21个观测站的61组月平均数据与相应模拟结果的相关系数为0.63。模拟结果表明:2006年中国地区硫酸盐气溶胶高值区主要分布在中国的四川盆地、华北及长江流域等工业较发达地区,而且具有明显的季节变化,四川盆地及长江以南地区,硫酸盐气溶胶1月份浓度高于7月份,长江以北的大部分地区,7月份浓度高于1月份;黑碳气溶胶主要分布在黄河、长江中下游地区及华南等地区,1月份浓度高于7月份;沙尘气溶胶主要分布在内蒙古中部沙漠地区,4月份浓度最高,7月份次之,其他月份较少。  相似文献   

12.
The regional climate model (RegCM3) and a tropospheric atmosphere chemistry model (TACM) were coupled, thus a regional climate chemistry modeling system (RegCCMS) was constructed, which was applied to investigate the spatial distribution of anthropogenic nitrate aerosols, indirect radiative forcing, as well as its climatic effect over China. TACM includes the thermodynamic equilibrium model ISORROPIA and a condensed gas-phase chemistry model. Investigations show that the concentration of nitrate aerosols is relatively high over North and East China with a maximum of 29 μg m-3 in January and 8 μg m-3 in July. Due to the influence of air temperature on thermodynamic equilibrium, wet scavenging of precipitation and the monsoon climate, there are obvious seasonal differences in nitrate concentrations. The average indirect radiative forcing at the tropopause due to nitrate aerosols is -1.63 W m-2 in January and -2.65 W m-2 in July, respectively. In some areas, indirect radiative forcing reaches $-$10 W m-2. Sensitivity tests show that nitrate aerosols make the surface air temperature drop and the precipitation reduce on the national level. The mean changes in surface air temperature and precipitation are -0.13 K and -0.01 mm d-1 in January and -0.09 K and -0.11 mm d-1 in July, respectively, showing significant differences in different regions.  相似文献   

13.
A regional climate model coupled with an aerosol model is employed to numerically simulate the direct climate effects of the anthropogenic aerosol emitted in South Asia and China in the East Asian summer monsoon during 1988 to 2009. Based on the data of the numerical simulation, composite analysis and correlation analysis are used to make diagnostic study of climate dynamics. Results show that the month of maximum emission of the mean column burden of the anthropogenic aerosol in the main emission areas of South Asia is opposite in phase to that in China. Summer is the season of maximum emission amount in China, but the emission amounts are more in South Asia in spring and winter. On the whole, the mean column burden of the anthropogenic aerosol in China is relatively high compared with that in South Asia. The trend of distribution of aerosol is SW-NE in China, and Sichuan Basin is the emission center of aerosol. The effect of negative short wave radiative forcing alters the gradient of pressure between land and sea, weakening the development of East Asian summer monsoon over the northern part of Yangtze-Huaihe River Basin. We also discuss the feedback effect of East-Asian summer monsoon which is changed by the anthropogenic aerosol on the concentration and distribution of aerosol in China.  相似文献   

14.
A coupled meteorology and aerosol/chemistry model WRF-Chem(Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day(PD) and preindustrial(PI) emissions over East Asia to examine the aerosol indirect effect on clouds.As a result of an increase in aerosols in January,the cloud droplet number increased by 650 cm-3 over the ocean and East China,400 cm-3 over Central and Southwest China,and less than 200 cm-3 over North China.The cloud liquid water path(LWP) increased by 40-60 g m-2 over the ocean and Southeast China and 30 g m-2 over Central China;the LWP increased less than 5 g m-2 or decreased by 5 g m-2 over North China.The effective radius(Re) decreased by more than 4 μm over Southwest,Central,and Southeast China and 2μm over North China.In July,variations in cloud properties were more uniform;the cloud droplet number increased by approximately 250-400 cm-3,the LWP increased by approximately 30-50 g m-2,and Re decreased by approximately 3 ?m over most regions of China.In response to cloud property changes from PI to PD,shortwave(SW) cloud radiative forcing strengthened by 30 W m-2 over the ocean and 10 W m-2 over Southeast China,and it weakened slightly by approximately 2-10 W m-2 over Central and Southwest China in January.In July,SW cloud radiative forcing strengthened by 15 W m-2 over Southeast and North China and weakened by 10 W m-2 over Central China.The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.  相似文献   

15.
The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). The aerosol-specific extinction, single scattering albedo, and asymmetry factor are parameterized based on Mie theory taking into account the aerosol size distribution, composition, refractive index, and water uptake of solution particles. A two-stream solar radiative model considers all gaseous molecular absorption, Rayleigh scattering, and aerosols and clouds. RAMSCMAQ is applied to simulate all major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, fine soil, and sea salt) and AOD and DF over East Asia in 2005. To evaluate its performance, the simulated AOD values were compared with ground-based in situ measurements. The comparison shows that RAMSCMAQ performed well in most of the model domain and generally captured the observed variations. High AOD values (0.2-1.0) mainly appear in the Sichuan Basin as well as in central and southeastern China. The geographic distribution of DF generally follows the AOD distribution patterns, and the DF at the top-of-the-atmosphere is less than -25 and -20 W m^-2 in clear-sky and all-sky over the Sichuan Basin. Both AOD and DF exhibit seasonal variations with lower values in July and higher ones in January. The DF could obviously be impacted by high cloud fractions.  相似文献   

16.
In this paper,the RIEMS 2.0 model,source emission in 2006 and 2010 are used to simulate the distributions and radiative effects of different anthropogenic aerosols over China.The comparison between the results forced by source emissions in 2006 and 2010 also reveals the sensitivity of the radiative effects to source emission.The results are shown as follows:(1) Compared with those in 2006,the annual average surface concentration of sulfate in 2010 decreased over central and eastern China with a range of-5 to 0 μg/m~3;the decrease of annual average aerosol optical depth of sulfate over East China varied from 0.04 to 0.08;the annual average surface concentrations of BC,OC and nitrate increased over central and eastern China with maximums of 10.90,11.52 and 12.50μg/m~3,respectively;the annual aerosol optical depths of BC,OC and nitrate increased over some areas of East China with extremes of 0.006,0.007 and 0.008,respectively.(2)For the regional average results in 2010,the radiative forcings of sulfate,BC,OC,nitrate and their total net radiative forcing at the top of the atmosphere over central and eastern China were-0.64,0.29,-0.41,-0.33 and-1.1 W/m~2,respectively.Compared with those in 2006,the radiative forcings of BC and OC in 2010 were both enhanced,while that of sulfate and the net radiative forcing were both weakened over East China mostly.(3)The reduction of the cooling effect of sulfate in 2010 produced a warmer surface air temperature over central and eastern China;the maximum value was 0.25 K.The cooling effect of nitrate was also slightly weakened.The warming effect of BC was enhanced over most of the areas in China,while the cooling effect of OC was enhanced over the similar area,particularly the area between Yangtze and Huanghe Rivers.The net radiative effect of the four anthropogenic aerosols generated the annual average reduction and the maximum reduction were-0.096 and-0.285 K,respectively,for the surface temperature in 2006,while in 2010 they were-0.063 and-0.256 K,respectively.In summary,the change in source emission lowered the cooling effect of anthropogenic aerosols,mainly because of the enhanced warming effect of BC and weakened cooling effect of scattering aerosols.  相似文献   

17.
Anthropogenic influences on regional climate and water resources over East Asia are simulated by using a regional model nested to a global model. The changes of land use/land cover (LULC) and CO2 concentration are considered. The results show that variations of LULC and CO2 concentration during the past 130 years caused a warming trend in many regions of East Asia. The most remarkable temperature increase occurred in Inner Mongolia, Northeast and North China, whereas temperature decreased in Gansu Province and north of Sichuan Province. LULC and CO2 changes over the past 130 years resulted in a decreasing trend of precipitation in the Huaihe River valley, Shandong Byland, and Yunnan-Guizhou Plateau, but precipitation increased along the middle reaches of the Yangtze River, the middle reaches of the Yellow River, and parts of South China. This pattern of precipitation change with changes in surface evapotranspiration may have caused a more severe drought in the lower reaches of the Yellow River and the Huaihe River valley. The drought trend, however, weakened in the mid and upper reaches of the Yellow River valley, and the Yangtze River valley floods were increasing. In addition, changes in LULC and CO2 concentration during the past 130 years led to adjustments in the East Asian monsoon circulation, which further affected water vapor transport and budget, making North China warm and dry, the Sichuan basin cold and wet, and East China warm and wet.  相似文献   

18.
运用区域气候模式RegCM3耦合入一个化学过程,对东亚地区三类人为排放气溶胶(硫酸盐、黑碳和有机碳)的时空分布特征及其对夏季风环流的影响进行了数值模拟研究。模拟结果显示,气溶胶的引入会引起东亚地区夏季850 hPa风场发生改变,我国江淮以东洋面上空出现了一个气旋式距平环流中心,中心以西的偏北风气流将削弱东亚地区夏季西南季风。通过讨论春季中国地区气溶胶浓度与夏季东亚地区850 hPa经向风的时滞关系,以及夏季中国地区气溶胶浓度与同期东亚地区850 hPa经向风的关系,可以发现,春、夏季中国地区气溶胶浓度均与夏季东亚地区850 hPa经向风有很好的负相关关系,当春季中国北方和夏季中国南方地区气溶胶浓度增加时,中国东部地区夏季偏南季风减弱。这可能与气溶胶改变了大气层顶和地表的辐射强迫,进而引起了海陆气压差异和位势高度场的变化有关。  相似文献   

19.
运用区域气候模式RegCM3耦合入一个化学过程,对东亚地区三类人为排放气溶胶(硫酸盐、黑碳和有机碳)的时空分布特征及其对夏季风环流的影响进行了数值模拟研究.模拟结果显示,气溶胶的引入会引起东亚地区夏季850 hPa风场发生改变,我国江淮以东洋面上空出现了一个气旋式距平环流中心,中心以西的偏北风气流将削弱东亚地区夏季西南季风.通过讨论春季中国地区气溶胶浓度与夏季东亚地区850 hPa经向风的时滞关系,以及夏季中国地区气溶胶浓度与同期东亚地区850 hPa经向风的关系,可以发现,春、夏季中国地区气溶胶浓度均与夏季东亚地区850hPa经向风有很好的负相关关系,当春季中国北方和夏季中国南方地区气溶胶浓度增加时,中国东部地区夏季偏南季风减弱.这可能与气溶胶改变了大气层顶和地表的辐射强迫,进而引起了海陆气压差异和位势高度场的变化有关.  相似文献   

20.
利用耦合化学过程的区域气候模式RegCM3,模拟研究3种主要人为排放气溶胶(硫酸盐、黑碳、有机碳)对东亚区域气候的影响.计算分析近20 a来3种气溶胶的时空分布、综合辐射强迫作用及其对地面气温和降水的影响.模拟结果表明:3种气溶胶冬夏季分布有所不同,冬季气溶胶大值区主要分布在南方地区,而夏季大值区北移;气溶胶短波辐射强迫在大气层顶和地面均为负值;气溶胶的加入对东亚地区地表气温有明显影响,冬季降温中心位于四川盆地,夏季降温大值区位于华北地区.气溶胶直接气候效应使得冬季东亚大部分地区降水减少,夏季东亚地区降水与中国南方地区夏季气溶胶浓度有较好的相关关系,中国东部雨带有南移趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号