首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Vibrio species are marine bacteria that occur in estuaries worldwide; many are virulent human pathogens with high levels of antibiotic resistance. The average annual incidence of all Vibrio infections has increased by 41% between 1996 and 2005. V. vulnificus (Vv), a species associated with shellfish and occurring in the US Southeast, has ranges of temperature (16–33 °C) and salinity (5–20 ppt) dependencies for optimal growth. Increased water temperatures caused by atmospheric warming and increased salinity gradients caused by sea level rise raise concerns for the effect of climate change on the geographic range of Vv and the potential for increased exposure risk. This research combined monthly field sampling, laboratory analysis, and modeling to identify the current occurrence of Vv in the Winyah Bay estuary (South Carolina, USA) and assess the possible effects of climate change on future geographic range and exposure risk in the estuary. Vv concentrations ranged from 0 to 58 colony forming units (CFU)/mL, salinities ranged from 0 to 28 ppt, and temperature from 18 to 31 °C. A significant empirical relationship was found between Vv concentration and salinity and temperature that fit well with published optimal ranges for growth for these environmental parameters. These results, when coupled with an existing model of future specific conductance, indicated that sea level rise has a greater impact on exposure risk than temperature increases in the estuary. Risk increased by as much as four times compared to current conditions with the largest temporally widespread increase at the most upriver site where currently there is minimal risk.  相似文献   

2.
We investigated spatial and temporal changes in spectral irradiance, phytoplankton community composition, and primary productivity in North Inlet Estuary, South Carolina, USA. High concentrations of colored dissolved organic matter (CDOM) were responsible for up to 84 % of the attenuation of photosynthetically available radiation (PAR). Green-yellow wavelengths were the predominant colors of light available at the two sampling sites: Clam Bank Creek and Oyster Landing. Vertical attenuation coefficients of PAR were 0.7–2.1 m?1 with corresponding euphotic zone depths of 1.5–6.7 m. Phytoplankton biomass (as chlorophyll a [chl a]) varied seasonally with a summer maximum of 16 μg chl a l?1 and a winter minimum of 1.4 μg chl a l?1. The phytoplankton community consisted mainly of diatoms, prasinophytes, cryptophytes and haptophytes, with diatoms and prasinophytes accounting for up to 67 % of total chl a. Changes in phytoplankton community composition showed strongest correlations with temperature. Light-saturated chl a-specific rates of photosynthesis and daily primary productivity varied with season and ranged from 1.6 to 14 mg C (mg chl a) ?1?h?1 (32–803 mg C m?3?day?1). Calculated daily rates added up to an annual carbon fixation rate of 84 g C m?3?year?1. Overall, changes in phytoplankton community composition and primary productivity in North Inlet showed a strong dependence on temperature, with PAR and spectral irradiance playing a relatively minor role due to short residence times, strong tidal forcing and vertical mixing.  相似文献   

3.
Coastal upwelling in the northern California Current varies seasonally, with downwelling in winter and upwelling in summer, resulting in pronounced variability in hydrography, nutrients, phytoplankton biomass, and species composition. Winter was characterized by moderate concentrations of nitrate and silicate (averages of 10 and 18 μM, respectively) and low concentrations of chlorophyll a (Chl a). During the upwelling season, concentrations of the same nutrients ranged from near 0 μM to approximately 27 and 43 μM and Chl a 0.5?<?x?<?15 μg L?1. During autumn, upwelling weakened and nutrient concentrations were reduced, but large phytoplankton blooms continued to occur. Variations in hydrography, nutrients, and phytoplankton also occurred within the upwelling season due to alternation of the winds between northerly (active upwelling) and southerly (relaxation of upwelling), on a 5- to 10-day time scale. Eleven blooms were observed, most of which occurred near the end of active upwelling events and during relaxation of upwelling. Nonmetric multidimensional scaling ordination of species composition of the microplankton revealed four distinct communities: a winter community, early upwelling and late upwelling season communities, and an autumn community. Diatoms (Asterionellopsis glacialis, Eucampia zodiacus, and several Chaetoceros, Thalassiosira, and Pseudo-nitzschia species) dominated early in the upwelling season, averaging 80 % of the phytoplankton biomass, and dinoflagellates dominated near the end of the upwelling season, averaging 68 % of the phytoplankton biomass. Dinoflagellates formed two monospecific blooms—Prorocentrum gracile in late summer and Akashiwo sanguinea in autumn. Changes in community composition were correlated with bottom temperature and salinity (representing seasonal variability) and sea surface salinity (representing within-season event-scale variability in upwelling).  相似文献   

4.
A vertical two-dimensional, laterally averaged hydrodynamic and water quality model CE-QUAL-W2 was used to simulate water temperature, dissolved oxygen, electrical conductivity, chlorophyll a, total suspended solids, alkalinity, ammonium, phosphate, and total iron in the Sejnane Dam (North Tunisia) in response to external forcings that characterize main features of climate in the southern side of the Mediterranean Sea. The hydrodynamic modelling results show that the model is able to reproduce accurately the measured water surface elevation, spatio-temporal patterns of temperature, dissolved oxygen and other state of variables and to capture most of the seasonal changes in the reservoir. Three scenarios involving the impacts of severe drought season, summer rainfall and total suspended solids load on hydrodynamics and water quality are analyzed. Severe drought reduces the thickness of hypoxic waters from 10 to 2–4 m and shifts the temperature of the entire water column up to 5 °C during summer and about 1.2 °C in winter. The thermocline takes place 1 month before that of the reference and sinks to the bottom faster by 1–2 m per month. Summer rainfall dilutes the first waves of the autumn rains and disrupts the thermal gradient in the water column, which may show complex thermal structures. TSS load has the most negative effects on water quality in that it shifts the phosphorus concentration by 1–3 mg/l and promotes an early warming of surface water in spring and an early cooling since late summer by up to 1 °C. During summer stratification, it contributes to the cooling of the metalimnion by 2 °C on average, which may alter its structure and dynamics as an aquatic biotope.  相似文献   

5.
The dominant members of the freshwater zooplankton in the Sacramento-San Joaquin delta were those typical of temperate zone rivers—Bosmina andCyclops among the crustaceans andKeratella, Polyarthra, Trichocerca andSynchaeta among the rotifers. The estuarine or brackish component of the plankton was represented by the copepodEurytemora affinis and the rotiferSynchaeta bicornis. Abundace of freshwater zooplankton was highest in the San Joaquin River near Stockton, the region with the highest chlorophylla concentrations and highest temperatures. This was also the region least affected by water project operations, which alter the normal river flow patterns and bring large volumes of zooplankton-deficient Sacramento River water into the San Joaquin River and south delta chanels. Over a seven-year period, abundance of most zooplankton genera was positively correlated with chlorophylla concentrations and temperature but not with net flow velocity. OnlyBosmina had a significant and negative correlation with abundance of a predacious shrimp,Neomysis mercedis. Extreme salinity intrusion in 1977 reduced freshwater zooplankton abundance throughout most of the delta to seven-year lows. All zooplankton groups showed a long-term abundance decline from 1972 to 1978. In the cases of rotifers and copepods, this deciline was significantly correlated with a decline in chlorophylla.  相似文献   

6.
Maryland Coastal Bays differ in hydrography from river-dominated estuaries because of limited freshwater inflow from tributary creeks and more marine influence. Consequently, the copepod community structure may be different from that of the coastal ocean and river-dominated estuaries in the mid-Atlantic region. A 2-year study was conducted to describe copepod species composition and seasonal patterns in abundance and factors influencing the community structure. Seven copepod genera, Acartia, Centropages, Pseudodiaptomus, Parvocalanus, Eurytemora, Oithona, and Temora, in addition to harpacticoids were found. The copepod community was dominated by Acartia spp. (64%), followed by Centropages spp. (30%), unlike in river-dominated estuaries in the region where the copepod community is usually dominated by Acartia spp. followed by Eurytemora affinis. Acartia tonsa was the most abundant in summer and fall whereas Centropages spp., Temora sp., Oithona similis, E. affinis, and harpacticoids were most abundant in winter and early spring. Parvocalanus crassirostris and Pseudodiaptomus pelagicus were present in fall and winter but at relatively low densities. The highest mean density of copepods occurred in winter 2012 (36,437 m?3) and the lowest in spring 2013 (347 m?3). Low densities occurred through early summer (614 m?3) coinciding with peak spawning by bay anchovy (Anchoa mitchilli). Bottom-up control via low phytoplankton biomass coupled with top-down control by ctenophores (Mnemiopsis sp.), mysids (Neomysis americana), and bay anchovy was probably responsible for the low copepod densities in spring and early summer. Temperature and salinity were also important factors that influenced the seasonal patterns of copepod species occurrence. The observed seasonal differences in the abundance of copepods have important implications for planktivorous fishes as they may experience lower growth rates and survival due to food limitation in spring/early summer when copepod densities are relatively low than in late summer/fall when copepod abundance is higher.  相似文献   

7.
Chesapeake Bay is the largest estuary in the USA and comprises vast areas of polyhaline to freshwater, tidal fish habitat. The Bay experiences large temperature differences between winter and summer, which in combination with the variety of salinities enables approximately 240 species of fish to be temporary inhabitants. This dynamic environment leads to an ever-changing prey field for predators. The goal of this study was to characterize the diet of one of the few resident, euryhaline predators within the tidal rivers in Virginia, Lepisosteus osseus (longnose gar). The top five prey species were Morone americana, Brevoortia tyrannus, Fundulus spp., Micropogonias undulatus, and Leiostomous xanthurus. The diet composition varied with the seasonal fish assemblages, length of L. osseus, water temperature, and salinity. L. osseus consumed a greater amount of marine and anadromous fishes (%W?=?59.4 % and %N?=?56.5 %) than resident fishes (%W?=?40.6 % and %N?=?43.5 %). The seasonal influx of anadromous or coastal spawning fishes appears to be an important prey source for L. osseus and most likely other piscivores in the tributaries of Chesapeake Bay.  相似文献   

8.
Both abiotic and biotic factors govern distributions of estuarine vegetation, and experiments can reveal effects of these drivers under current and future conditions. In upper San Francisco Estuary (SFE), increased salinity could result from sea level rise, levee failure, or water management. We used mesocosms to test salinity effects on, as well as competition between, the native Stuckenia pectinata (sago pondweed) and invasive Egeria densa (Brazilian waterweed), species with overlapping distributions at the freshwater transition in SFE. Grown alone at a salinity of 5, E. densa decreased fivefold in biomass relative to the freshwater treatment and decomposed within 3 weeks at higher salinities. In contrast, S. pectinata biomass accumulated greatly (~4× initial) at salinities of 0 and 5, doubled at 10, and was unchanged at 15. When grown together in freshwater, S. pectinata produced 75 % less biomass than in monoculture and significantly more nodal roots (suggesting increased nutrient foraging). At a salinity of 5, a decline in E. densa performance coincided with a doubling of S. pectinata shoot density. Additional experiments on E. densa showed elevated temperature (26 and 30 °C) suppressed growth especially at higher salinities (≥5). We conclude that salinity strongly influences distributions of both species and that competition from E. densa may impose limits on S. pectinata abundance in the fresher reaches of SFE. With a salinity increase of 5, S. pectinata is likely to maintain its current distribution while spreading up-estuary at the expense of E. densa, especially if increased temperature also reduces E. densa biomass.  相似文献   

9.
Phytoplankton chlorophyll a concentration, biovolume, cell diameter, and species composition differed across the narrow, low salinity zone between 0.6‰ to 4‰ and may influence copepod food availability in the northern San Francisco Bay Estuary. The highest chlorophyll a concentrations (range 3.2–12.3 μg 1?1), widest cell diameters (>5 μm diam), highest diatom densities and highest production rates of >10 μm diam cells occurred at the landward edge of the salinity zone in April during a strong spring tide and May during a strong neap tide. Near optimum predator/prey ratios, large prey estimated spherical diameters, and high chlorophyll a concentrations suggest these phytoplankton communities provided good food quantity and quality for the most abundant copepods, Eurytemora affinis, Sinocalanus doerrii, and Pseudodiaptomus forbesi. At the center of the zone, chlorophyll a concentrations, diatom densities, and production rates of >10 μm diam cells were lower and cell diameters were smaller than upstream. Downstream transport was accompanied by accumulation of phytoplankton with depth and tide; maximum biomass occurred on spring tide. The lowest chlorophyll a concentrations (1.4–3.6 μg 1?) and consistently high densities (3,000–4,000 cells ml?1) of <5 μm diam cells occurred at the seaward edge of the zone, where the green alga Nannochloris spp. and the bluegreen alga Synechococcus spp. were the most abundant phytoplankton. Low chlorophyll a concentrations and production rates of >10 μm diam cells, small prey estimated spherical diameters, and high predator/prey ratios suggested the seaward edge of the zone had poor phytoplankton food for copepodids and adult copepods. The seaward decrease in phytoplankton chlorophyll a concentration and cell diameter and shift in species composition in the low salinity zone were probably a function of an estuary-wide decrease in chlorophyll a concentration, cell diameter, and diatom density since the early 1980s that was enhanced in the low salinity zone by clam herbivory after 1987. *** DIRECT SUPPORT *** A01BY090 00008  相似文献   

10.
Rice cultivation in the Ebro Delta (Catalonia, Spain) has inverted the natural hydrological cycles of coastal lagoons and decreased water salinities for over 150 years. Adjustments in the water management practices—in terms of source and amount of freshwater inputs—have resulted in changes in the diversity, distribution and productivity of submerged angiosperms. Between the 1970s and late 1980s, a massive decline of the aquatic vegetation occurred in the Encanyissada–Clot and Tancada lagoons, but little information on the status is available after the recovery of macrophytes in the 1990s. Here, we evaluate the influence of salinity regimes resulting from current water management practices on the composition, distribution, seasonal abundance and flowering rates of submersed macrophytes, as well as on the occurrence of epiphyte and drift macroalgae blooms in three coastal lagoons. Our results show that Ruppia cirrhosa is the dominant species in the Encanyissada lagoon (185.97?±?29.74 g?DW?m?2?year?1; 12–27?‰ salinity) and the only plant species found in the Tancada lagoon (53.26?±?10.94 g?DW?m2?year?1; 16–28?‰ salinity). Flowering of R. cirrhosa (up to 1,011?±?121 flowers?m?2) was only observed within the Encanyissada and suggests that mesohaline summer conditions may favor these events. In contrast, low salinities in Clot lagoon (~3–12?‰) favor the development of Potamogeton pectinatus (130.53?±?13.79 g?DW?m2?year?1) with intersperse R. cirrhosa (8.58?±?1.71 g?DW?m?2) and mixed stands of P. pectinatus and Najas marina (up to ~57 g?DW?m?2?year?1) in some reduced areas. The peak biomasses observed during the study are 88 to 95 % lower than maximum values reported in the literature at similar salinities, and there is also little or no recovery in some areas compared to last reports more than 20 years ago. The main management actions to restore the natural diversity and productivity of submersed angiosperms, such as the recovering of the seagrass Zostera noltii, should be the increase of salinity during the period of rice cultivation, by reducing freshwater inputs and increasing flushing connections with the bays.  相似文献   

11.
The temporal and spatial distributions of salinity, dissolved oxygen, suspended particulate material (SPM), and dissolved nutrients were determined during 1983 in the Choptank River, an estuarine tributary of Chesapeake Bay. During winter and spring freshets, the middle estuary was strongly stratified with changes in salinity of up to 5‰ occurring over 1 m depth intervals. Periodically, the lower estuary was stratified due to the intrusion of higher salinity water from the main channel of Chesapeake Bay. During summer this intrusion caused minimum oxygen and maximum NH4 + concentrations at the mouth of the Choptank River estuary. Highest concentrations of SPM, particulate carbon (PC), particulate nitrogen (PN), total nitrogen (TN), total phosphorous (TP) and dissolved inorganic nitrogen (DIN) occurred in the upper estuary during the early spring freshet. In contrast, minimum soluble reactive phosphate (SRP) concentrations were highest in the upper estuary in summer when freshwater discharge was low. In spring, PC:PN ratios were >13, indicating a strong influence by allochthonous plant detritus on PC and PN concentrations. However, high concentrations of PC and PN in fall coincided with maximum chlorophyll a concentrations and PC:PN ratios were <8, indicating in situ productivity controlled PC and PN levels. During late spring and summer, DIN concentrations decreased from >100 to <10 μg-at l?1, resulting mainly from the nonconservative behavior of NO3 ?, which dominated the DIN pool. Atomic ratios of both the inorganic and total forms of N and P exceeded 100 in spring, but by summer, ratios decreased to <5 and <15, respectively. The seasonal and spatial changes in both absolute concentrations and ratios of N and P reflect the strong influence of allochthonous inputs on nutrient distributions in spring, followed by the effects of internal processes in summer and fall.  相似文献   

12.
Freshwater inputs often play a more direct role in estuarine phytoplankton biomass (chlorophyll a) accumulation than nitrogen (N) inputs, since discharge simultaneously controls both phytoplankton residence time and N loading. Understanding this link is critical, given potential changes in climate and human activities that may affect discharge and watershed N supply. Chlorophyll a (chla) relationships with hydrologic variability were examined in 3-year time series from two neighboring, shallow (<5?m), microtidal estuaries (New and Neuse River estuaries, NC, USA) influenced by the same climatic conditions and events. Under conditions ranging from drought to floods, N concentration and salinity showed direct positive and negative responses, respectively, to discharge for both estuaries. The response of chla to discharge was more complex, but was elucidated through conversion of discharge to freshwater flushing time, an estimate of transport time scale. Non-linear fits of chla to flushing time revealed non-monotonic, unimodal relationships that reflected the changing balance between intrinsic growth and losses through time and along the axis of each estuary. Maximum biomass occurred at approximately 10-day flushing times for both systems. Residual analysis of the fitted data revealed positive relationships between chla and temperature, suggesting enhanced growth rates at higher temperatures. N loading and system-wide, volume-weighted chla were positively correlated, and biomass yields per N load were greater than other marine systems. When combined with information on loss processes, these results on the hydrologic control of phytoplankton biomass will help formulate mechanistic models necessary to predict ecosystem responses to future climate and anthropogenic changes.  相似文献   

13.
We measured dissolved and particulate organic carbon (DOC and POC) in samples collected along 13 transects of the salinity gradient of Chesapeake Bay. Riverine DOC and POC end-members averaged 232±19 μM and 151±53 μM, respectively, and coastal DOC and POC end-members averaged 172±19 μM and 43±6 μM, respectively. Within the chlorophyll maximum, POC accumulated to concentrations 50–150 μM above those expected from conservative mixing and it was significantly correlated with chlorophylla, indicating phytoplankton origin. POC accumulated primarily in bottom waters in spring, and primarily in surface waters in summer. Net DOC accumulation (60–120 μM) was observed within and downstream of the chlorophyll maximum, primarily during spring and summer in both surface and bottom waters, and it also appeared to be derived from phytoplankton. In the turbidity maximum, there were also net decreases in chlorophylla (?3 μg l?1 to ?22 μg l?1) and POC concentrations (?2 μM to ?89 μM) and transient DOC increases (9–88 μM), primarily in summer. These occurred as freshwater plankton blooms mixed with turbid, low salinity seawater, and we attribute the observed POC and DOC changes to lysis and sedimentation of freshwater plankton. DOC accumulation in both regions of Chesapeake Bay was estimated to be greater than atmospheric or terrestrial organic carbon inputs and was equivalent to ≈10% of estuarine primary production.  相似文献   

14.
During 1973 and 1974 seasonal abundance and mean total length of Atlantic croaker,Micropogonias undulatus, were investigated by otter trawl at 33 stations in South Carolina estuaries in relation to bottom salinity and temperature. Relative abundance of Atlantic croaker was measured by catch per unit effort at 3°C temperature intervals and 3‰ salinity intervals. Croaker occurred over a bottom temperature range of 9.0–31.4°C while occurring most abundantly in waters above 24.0°C. No significant correlation between size and temperature was found. Croaker were collected in salinities from 0.4 to 34.4‰. High correlations of size and salinity were evident in 1973 during winter (r=0.79), summer (r=0.82), and fall (r=0.94). In 1974, correlations were significant only during fall (r=0.76).  相似文献   

15.
We have collected high resolution neutron powder diffraction patterns from Na2SO4·10D2O over the temperature range 4.2–300 K following rapid quenching in liquid nitrogen, and over a series of slow warming and cooling cycles. The crystal is monoclinic, space-group P21/c (Z = 4) with a = 11.44214(4) Å, b = 10.34276(4) Å, c = 12.75486(6) Å, β = 107.847(1)°, and V = 1436.794(8) Å3 at 4.2 K (slowly cooled), and a = 11.51472(6) Å, b = 10.36495(6) Å, c = 12.84651(7) Å, β = 107.7543(1)°, V = 1460.20(1) Å3 at 300 K. Structures were refined to R P (Rietveld powder residual, \( R_{P} = {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } \mathord{\left/ {\vphantom {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } {\sum {I_{\text{obs}} } }}} \right. \kern-\nulldelimiterspace} {\sum {I_{\text{obs}} } }} \)) better than 2.5% at 4.2 K (quenched and slow cooled), 150 and 300 K. The sulfate disorder observed previously by Levy and Lisensky (Acta Cryst B34:3502–3510, 1978) was not present in our specimen, but we did observe changes with temperature in deuteron occupancies of the orientationally disordered water molecules coordinated to Na. The temperature dependence of the unit-cell volume from 4.2 to 300 K is well represented by a simple polynomial of the form V = ? 4.143(1) × 10?7 T 3 + 0.00047(2) T2 ? 0.027(2) T + 1437.0(1) Å3 (R 2 = 99.98%). The coefficient of volume thermal expansion, α V , is positive above 40 K, and displays a similar magnitude and temperature dependence to α V in deuterated epsomite and meridianiite. The relationship between the magnitude and orientation of the principal axes of the thermal expansion tensor and the main structural elements are discussed; freezing in of deuteron disorder in the quenched specimen affects the thermal expansion, manifested most obviously as a change in the behaviour of the unit-cell parameter β.  相似文献   

16.
In order to examine pressure–volume–temperature (PVT) relations for CaSiO3 perovskite (Ca-perovskite), high-temperature compression experiments with in situ X-ray diffraction were performed in a laser-heated diamond anvil cell (DAC) to 127 GPa and 2,300 K. We also employed an external heating system in the DAC in order to obtain PV data at a moderate temperature of 700 K up to 113 GPa, which is the reference temperature for constructing an equation of state. The PV data at 700 K were fitted to the second-order Birch–Murnaghan equation of state, yielding K 700,1bar = 207 ± 4 GPa and V 700,1bar = 46.5 ± 0.1 Å3. Thermal pressure terms were evaluated in the framework of the Mie–Grüneisen–Debye model, yielding γ 700,1bar = 2.7 ± 0.3, q 700,1bar = 1.2 ± 0.8, and θ 700,1bar = 1,300 ± 500 K. A thermodynamic thermal pressure model was also employed, yielding α700,1bar = 5.7 ± 0.5 × 10?5/K and (?K/?T) V  = ?0.010 ± 0.004 GPa/K. Computed densities along a lower mantle geotherm demonstrate that Ca-perovskite is denser than the surrounding lower mantle, suggesting that Ca-perovskite-rich rocks do not rise up through the lower mantle. One of such rocks might be a residue of partial melting of subducted mid-oceanic ridge basalt (MORB) at the base of the mantle. Since the partial melt is FeO-rich and therefore denser than the mantle, all the components of subducted MORB may not return to shallow levels.  相似文献   

17.
This study aimed to investigate the population of annelida communities in relation to environmental factors and heavy metals accumulated in sediments of the Gorgan Bay. The pollution load index and potential ecological risk (PER) were calculated. The results indicated mean concentrations (ppm) of heavy metals were (mean ± SD) Pb: 11.5 ± 4.88, Cu: 18 ± 8.83, Zn: 42 ± 22.15, Ni: 29.20 ± 14.68, Co: 10.56 ± 14.68, As: 7.77 ± 2.12, Sr: 1,449 ± 902.59 and V: 26.64 ± 10.25. Considering PER, sediments of the Gorgan Bay had low ecological risk. Based on abundance data, dominant species were Streblospio gynobranchiata, Nereis diversicolor, Tubificoides fraseri and Tubificidae unknown, respectively. Results of redundancy analysis displayed that T. fraseri and N. diversicolor were associated with high values of Sr. All the species were negatively correlated with As. There were positive correlation between S. gynobranchiata and N. diversicolor with values of clay, salinity, depth and silt. The present study provided the relative importance of heavy metals and environmental variables which partly assist in structuring assemblages of annelida in a transitional area.  相似文献   

18.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   

19.
A habitat suitability index (HSI) model, developed for the American oyster,Crassostrea virginica, along the Gulf of Mexico, was field tested on 38 0.1-ha reef and nonreef sites in Galveston Bay, Texas. The HSI depends upon six (HSI1) or, optionally, eight (HSI2) variables. The six variables are percent of bottom covered with suitable cultch (V1), mean summer water salinity (V2), mean abundance of living oysters (V3) (a gregarious settling factor), historic mean water salinity (V4), frequency of killing floods (V5), and substrate firmness (V6). The optional variables are the abundance of the southern oyster drillThais haemostoma (V7), and the intensity of the oyster pathogenPerkinsus marinus (V8). The HSI values were lowest at high and low salinity sites and highest at intermediate-salinity sites. To validate the model, the hypothesis that the output of the HSI model was correlated with oyster density was therefore tested. A significant correlation was found between HSI1 and oyster density (Kendall Tau Beta correlation coefficient, τ=0.674, p<0.001, n=38); however, a statistical independence problem exists with the above test, that is, oyster density is both the independent standard for the test and a variable in the model. A regression model was constructed to test the relationship between log-transformed oyster density values (dependent variable) and the other variables of the model (independent variables). Most variation (r2=0.72, r=0.85) in the log-transformed density values were explained by a regression model that contained V2, V4, V5, V6, V7, and V8 as independent variables. The regression model was useful in constructing a modified HSI model (MHSI). A significant correlation (τ=0.674, p<0.05, n=10) was found between MHSI1 values and oyster densities from reefs closed to harvesting. The MHSI improves upon the original model by (i) simplifying the model structure, (ii) removing the requirement to measure V3, (iii) accounting better for the negative effects of high salinity, disease, and parasitism upon oysters, and (iv) eliminating the statistical independence problem by dropping V3 from the model. The MHSI should be tested against a new, independently-collected data set.  相似文献   

20.
In this study, nineteen brine samples from the Qarhan Salt Lake (QSL) in western China were collected and analyzed for boron (B) and chlorine (Cl) concentrations, total dissolved solids (TDS), pH values and stable B isotopic compositions. The B concentrations and δ11B values of brines in the QSL range from 51.6 mg/L to 138.4 mg/L, and from +9.32‰ to +13.08‰, respectively. By comparison of B concentrations and TDS of brines in QSL with evaporation paths of brackish water, we found that B enrichment of brines primarily results from strong evaporation and concentration of Qarhan lake water. Combining with comparisons of B concentrations, TDS, pH values and δ11B values of brines, previously elemental ratios (K/Cl, Mg/Cl, Ca/Cl, B/Cl) and δ11B values of halite from a sediment core (ISL1A), we observe good correlations between B concentrations and TDS, TDS and pH values, pH and δ11B values of brines, which demonstrate that higher B concentrations and more positive δ11B values of halite indicate higher salinity of the Qarhan paleolake water as well as drier paleoclimatic conditions. Based on this interpretation of the δ11B values of halite in core ISL1A, higher salinity of the Qarhan paleolake occurred during two intervals, around 46–34 ka and 26–9 ka, which are almost coincident with the upper and lower halite-dominated salt layers in core ISL1A, drier climate phases documented from the δ18O record of carbonate in core ISL1A and the paleomoisture record in monsoonal central Asia, and a higher solar insolation at 30°N. These results demonstrate that the δ11B values of halite in the arid Qaidam Basin could be regarded as a new proxy for reconstructing the salinity record of paleolake water as well as paleoclimate conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号