首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utility of classifying chrysophyte stomatocysts by their characteristic honeycomb and ridge patterns is questioned, because a strikingly similar expanding pattern appears on the surface of ionized polymer gels during osmotical swelling as a result of simple physical forces. The rapid accumulation of silicate into a spherical cyst inside a chrysophyte cell appears to be as a physical process sufficiently similar to result in an analogous pattern in microscopic scale. Chrysophyte stomatocysts that possess honeycomb or ridge patterns could be regarded as frozen moments of the pattern evolution during the silicate gel phase. As a consequence, such structures should have little taxonomical value.  相似文献   

2.
The stomatocyst of Mallomanas acaroides v. muskokana is described based on observations made from both live populations and surface sediment remains. The cyst is slightly ovate in shape, covered with evenly spaced, ornamented spines and has a short cylindrical collar with a variable apex and internal annulus surrounding the pore. The spines have a thickened base, a cylindrical middle section and a flattened apex with a ring of finger-like projections. Several immature stages of development are described and the stomatocyst is compared to those described for phylogenetically similar species. Complementary investigations of stomatocysts from both living (planktonic) and sediment collections can greatly facilitate the identification of stomatocyst morphotypes.This is the second in a series of four papers published in this dedicated issue entitled Application of Chrysophyte Stomatocysts in Paleolimnology. Dr. C.D. Sandgren served as guest editor for these papers.  相似文献   

3.
The chrysophycean stomatocyst flora from the sediments of Upper Wallface Pond, a recently acidified Adirondack lake, was described according to the guidelines of the International Statospore Working Group. Sixty-six morphotypes were distinguished, using scanning electron microscopy. Twenty-eight of these cysts were distinguishable using the light microscope (LM), whereas 30 required grouping into 11 collective categories from LM identification, and 7 could not be identified using LM. None of our morphotypes could be linked definitively to the living chrysophyte species that produced them. Stratigraphic analysis showed that a marked change in the cyst assemblage occurred in the 1930's. Previous paleoecological studies inferred a pronouced pH decline at this time. Redundancy analysis of our data showed that diatom-inferred pH explained a significant amount of variation (Monte Carlo permutation test; p=0.01). This suggests that pH influences chrysophyte populations, and that stomatocysts could eventually be used to reconstruct pH and other variables.This is the fourth in a series of four papers published in this dedicated issue entitled Application of Chrysophyte Stomatocysts in Paleolimnology. Dr. C. D. Sandgren served as guest editor for these papers.  相似文献   

4.
5.
A small lake, Kaksoislammi (60° 3830N, 24° 4550E), in southern Finland was studied for Cladocera, diatoms and pollen from a core which covers the entire Holocene. The diatom remains indicate a steady development from alkaliphilous taxa towards the dominance of acidophilous forms and lowering pH in the late Holocene. About 1800–1700 BP, dramatic changes took place in the microfauna, mainly the planktonic Cladocera. Bosmina longirostris, the dominant species, suddenly disappeared, and Daphnia, Chydorus sphaericus and Chaoborus increased. The change is simultaneous with a decline of the diatom-inferred pH to 4.8. It is probable that there was a sudden, profound change in predator-prey relationships. The acidity of the lake water probably increased to such a low level that it led to the disappearance of even the most acid-tolerant fish. Consequently invertebrate predators increased and quickly altered the species composition in the lake. There is also pollen evidence of the onset of Iron Age cultivation and grazing almost simultaneously with the faunal change. Therefore, it cannot be ruled out that the sudden lowering of pH was indirectly caused by prehistoric human activity; possibly the acidic peatland surrounding the lake was disturbed.  相似文献   

6.
Changes in microfossils (diatoms, chrysophytes, chironomids and cladocera remains), geochemistry and deposition of atmospheric pollutants have been investigated in the sediment records of the alpine lake Gossenköllesee (Tyrol, Austria) spanning the last two centuries. The sediment records were compared with seasonal and annual air temperature trends calculated for the elevation (2417 m a.s.l.) and the geographical position (47° 1346N, 11° 0051E) of the lake, and with precipitation records available since 1866 from Innsbruck. Temperature trends followed a 20–30 year oscillation between cold and warm periods. Regarding long-term changes, temperature trends showed a U-shaped trend between 1780 and 1950, followed by a steep increase since 1975.Physical, geochemical, and organic parameters were not controlled by air temperature. Among the biological records only diatoms and chrysophytes reacted to air temperature changes: the relative abundance of planktonic diatoms increased during warm periods and changes in mean annual alpine air temperature explained 36.5% of their variation. The relation between abundance of seasonal stomatocyst types and air temperature varied on two different time scales: while summer stomatocysts were influenced by short term temperature fluctuations, the autumn stomatocysts were affected only by the long term changes. Other biological parameters exhibited a constant species composition (chironomids, pigments) or changes were small and independent of temperature (cladocera). Spheroidal carbonaceous fly-ash particles, and trends in Pb and Cr indicated increasing deposition of atmospheric pollutants but had no detectable effects on the biological parameters either. In respect to temperature variations over the last 200 years, this alpine lake is much less sensitive than expected and has thus to be regarded as a well buffered site. However, temperature alone is not sufficient to understand changes in species composition and other biogeochemical processes with unknown historical patterns might have affected species composition more strongly.  相似文献   

7.
The Cenozoic continental sedimentary basins in eastern China are rich in lacustrine source rocks. Based on their paleogeographic location and fossils, these basins can be grouped into inland and near-shore basins. Before the collision of India and Eurasia about 45 million years ago, the inland basins were dominated by arid climates that were unfavorable for the substantial preservation of oil source rocks. In contrast, the contemporary near-shore basins experienced alternating arid and humid climates, probably induced by sea level changes, which produced conditions that favoured the formation and preservation of oil source rocks. With the rise of the Tibetan Plateau, the Asian monsoon was initiated or significantly intensified in the Late Eocene. This, in turn, changed the arid climates in the inland basins to humid or to alternating arid and humid, providing ideal conditions for the formation and preservation of lacustrine source rocks in the inland basins. The evidence suggests that Tibetan uplift played a crucial role in the generation and preservation of the Cenozoic lacustrine source rocks in eastern China.This is the third paper in a series of papers published in this issue on Climatic and Tectonic Rhythms in Lake Deposits.  相似文献   

8.
Using the principles of electroosmosis, a subsampling technique for clay-rich sediments is introduced that produces undisturbed thinsections from sediment cores. The fragile sample remains in the same disposable box throughout the process, preventing collapse of its structure during subsampling, manipulation and impregnation, as well as other potential problems.  相似文献   

9.
Lake Manitoba, the largest lake in the Prairie region of North America, contains a fine-grained sequence of late Pleistocene and Holocene sediment that documents a complex postglacial history. This record indicates that differential isostatic rebound and changing climate have interacted with varying drainage basin size and hydrologic budget to create significant variations in lake level and limnological conditions. During the initial depositional period in the basin, the Lake Agassiz phase (12–9 ka), 18O of ostracodes ranged from –16 to –5 (PDB), implying the lake was variously dominated by cold, dilute glacial meltwater and warm to cold, slightly saline water.Candona subtriangulata, which prefers cold, dilute water, dominates the most negative 18O intervals, when the basin was part of proglacial Lake Agassiz. At times during this early phase, the 18O of the lake abruptly shifted to higher values; euryhaline taxa such asC. rawsoni orLimnocythere ceriotuberosa, and halobiont taxa such asL. staplini orL. sappaensis are dominant in these intervals. This positive covariance of isotope and ostracode records implies that the lake level episodically fell, isolating the Lake Manitoba basin from the main glacial lake.18O values from inorganic endogenic Mg-calcite in the post-Agassiz phase of Lake Manitoba trend from –4 at 8 ka to –11 at 4.5 ka. We interpret that this trend indicates a gradually increasing influence of isotopically low (–20 SMOW) Paleozoic groundwater inflow, although periods of increased evaporation during this time may account for zones of less negative isotopic values. The 18O of this inorganic calcite abruptly shifts to higher values (–6) after 4.5 ka due to the combined effects of increased evaporative enrichment in a closed basin lake and the increased contribution of isotopically high surface water inflow on the hydrologic budget. After 2 ka, the 18O of the Mg-calcite fluctuates between –13 and –7, implying short-term variability in the lake's hydrologic budget, with values indicating the lake varied from outflow-dominated to evaporation-dominated. The 13C values of Mg-calcite remain nearly constant from 8 to 4.5 ka and then trend to higher values upward in the section. This pattern suggests primary productivity in the lake was initially constant but gradually increased after 4.5 ka.This is the sixth in a series of papers published in this issue on the paleolimnology of arid regions. These papers were presented at the Sixth International Palaeolimnology Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. R. Chivas served as guest editor for these papers.  相似文献   

10.
Reconnaissance 18O,, D, and 87Sr data for fifteen lakes in the Western Lakes Region of the Sand Hills of Nebraska indicate dynamic hydrologic systems. The rather narrow range of 87Sr from lake water (1.1 to 2.1) and groundwater (0.9 to 1.7) indicates that the groundwater is generally unradiogenic. Groundwater residence times and relatively unradiogenic volcanic ash within the dune sediments control the 87Sr values. Based on the mutual variations of 18O and D, the lakes can be divided into three groups. In Group 1, both 18O and D values increase from spring to fall. The 18O and D values in Group 2 decreased from spring to fall. Group 3 are ephemeral lakes that went dry some time during 1992. The data and isotopic modeling show that variations in the ratio of evaporation relative to groundwater inflow, local humidity conditions, and the a has substantial influence on the isotopic composition. In addition, isotopic behavior in ephemeral lakes can be rather unusual because of the changing activities of water and mineral precipitation and redissolution. The annual and interannual isotopic variability of these lakes which is reflected in the paleonvironmental indicators may be the rule rather than the exception in these types of systems.  相似文献   

11.
The volcanogenic lake Laguna Potrok Aike, Santa Cruz, Argentina, reveals an unprecedented continuous high resolution climatic record for the steppe regions of southern Patagonia. With the applied multi-proxy approach rapid climatic changes before the turn of the first millennium were detected followed by medieval droughts which are intersected by moist and/or cold periods of varying durations and intensities. The total inorganic carbon content was identified as a sensitive lake level indicator. This proxy suggests that during the late Middle Ages (ca. AD 1230–1410) the lake level was rather low representing a signal of the Medieval Climate Anomaly in southeastern Patagonia. At the beginning of the Little Ice Age the lake level rose considerably staying on a high level during the whole period. Subsequently, the lake level lowered again in the course of the 20th century.  相似文献   

12.
Lake Bonneville marl provides a stratigraphic record of lake history preserved in its carbonate minerals and stable isotopes. We have analyzed the marl in shallow cores taken at three localities in the Bonneville basin. Chronology for the cores is provided by dated volcanic ashes, ostracode biostratigraphy, and a distinctive lithologic unit believed to have been deposited during and immediately after the Bonneville Flood.A core taken at Monument Point at the north shore of Great Salt Lake encompasses virtually the entire Bonneville lake cycle, including the 26.5 ka Thiokol basaltic ash at the base and deposits representing the overflowing stage at the Provo shoreline at the top of the core. Two cores from the Old River Bed area near the threshold between the Sevier basin and the Great Salt Lake basin (the main body of Lake Bonneville) represent deposition from the end of the Stansbury oscillation ( 20 ka) to post-Provo time ( 13 ka), and one core from near Sunstone Knoll in the Sevier basin provides a nearly complete record of the period when Lake Bonneville flooded the Sevier basin (20–13 ka).In all cores, percent calcium carbonate, the aragonite to calcite ratio, and percent sand were measured at approximately 2-cm intervals, and 18O and 13C were determined in one core from the Old River Bed area. The transgressive period from about 20 ka to 15 ka is represented in all cores, but the general trends and the details of the records are different, probably as a result of water chemistry and water balance differences between the main body and the Sevier basin because they were fed by different rivers and had different hypsometries. The Old River Bed marl sections are intermediate in position and composition between the Monument Point and Sunstone Knoll sections. Variations in marl composition at the Old River Bed, which are correlated with lake-level changes, were probably caused by changes in the relative proportions of water from the two basins, which were caused by shifts in water balance in the lake.This is the second paper in a series of papers published in this issue on Climatic and Tectonic Rhythms in Lake Deposits.  相似文献   

13.
Lake Chen Co, situated at 90°33–39E, 28°53–59N with a lake level of 4420 m asl, is an enclosed lake with 148 km2 of catchment area and 40 km2 of lake surface. It is mainly supplied by glacier melt water either from surface inflow or groundwater. Atmospheric precipitation is mainly concentrated in June–September. A 216-cm long lake sediment core was obtained at a site with 8 m of water depth, 800 m from the lakeshore and 1.5% of the bottom slope in this lake. The sediment core was taken by a piston sampler and was sliced with an interval of 1 cm each. 210Pb dating measurement suggested that the average sedimentary rate was 0.16 cm yr–1, which also was confirmed by 137Cs peak occurrence. Magnetic analyses included low-frequency dependent susceptibility (LF), susceptibility of anhysteretic remanent magnetism (ARM), the saturation isothermal remanent magnetism (SIRM), the isothermal remanent magnetism (IRM) reverse and Soft and Hard contents were performed for the sediment core. Results showed that LF was an index for reflecting the environmental conditions, but was not sufficient to reveal details of magnetic features. This had been proved by measurements of IRM Reverse percentage and Soft and Hard magnetic minerals values. The log(SIRM/LF) had much more information to reveal environmental changes. The ARM/LF might be more sensitive to the local environmental conditions because it was well able to indicate the grain-size variations of magnetic particles. In the past ca. 1400 years, the warm stages were ca. 620–740 AD, 1120–1370 AD and since ca. 1900 AD. After an intensively cold stage during ca. 1550–1690 AD, a cold-humid stage from ca. 1690–1900 AD and a warm-dry stage since ca. 1900 AD followed. Among these stages, the warmest one occurred in ca. 1120–1370 AD and the coldest stage was between ca. 1550 and 1690 AD. This result might be compared with many other research results from lake cores, ice cores and the Chinese historical documents.  相似文献   

14.
Oxygen isotopes and geochemistry from lake sediments are commonly used as proxies of past hydrologic and climatic conditions, but the importance of present-day hydrologic processes in controlling these proxies are sometimes not well established and understood. Here we use present-day hydrochemical data from 13 lakes in a hydrologically connected lake chain in the northern Great Plains (NGP) to investigate isotopic and solute evolution along a hydrologic gradient. The 18O and 2H of water from the chain of lakes, when plotted in 2H - 18O space, form a line with a slope of 5.9, indicating that these waters fall on an evaporation trend. However, 10 of the 13 lakes are isotopically similar (18O = –6 ± 1 VSMOW) and show no correlation with salinity (which ranges from 1 to 65). The lack of correlation implies that the isotopic composition of various source waters rather than in-lake evaporation is the main control of the 18O of the lakes. Groundwater, an important input in the water budget of this chain of lakes, has a lower 18O value (–16.7 in 1998) than that of mean annual precipitation (–11) owing to selective recharge from snow melt. For the lakes in this chain with salinity < 15, the water Mg/Ca ratios are strongly correlated with salinity, whereas Sr/Ca is not. The poor correlation between Sr/Ca and salinity results from uptake of Sr by endogenic aragonite. These new results indicate that 18O records may not be interpreted simply in term of climate in the NGP, and that local hydrology needs to be adequately investigated before a meaningful interpretation of sedimentary records can be reached.  相似文献   

15.
The paleohydrological evolution of several high altitude, saline lakes located in the southernmost Altiplano (El Peinado and San Francisco basins, Catamarca province, NW Argentina) was reconstructed applying sedimentological, geochemical and isotopic techniques. Several playa lakes from the San Francisco basin (26° 56 S; 68° 08 W, 3800-3900 m a.s.l.) show evidence of a recent raise in the watertable that led to modern deposition of carbonate and diatomaceous muds. A 2 m - long core from El Peinado Lake (26° 29 59 S, 68°05 32 W, 3820 m a.s.l.) consists of calcitic crusts (unit 3), overlaid by an alternation of macrophyte-rich and travertine clast- rich, laminated muds (unit 2), and topped by travertine facies (unit 1). This sedimentary sequence illustrates a paleohydrological evolution from a subaerial exposure (unit 3) to a high lake stand (unit 2), and a subsequent smaller decrease in lake level (unit 1). The 13Corganic matterrecord also reflects the lake transgression between units 3 and 2. Although there is a general positive correlation between 18Ocarbonate and salinity proxies (Na, Li and B content), the large data dispersion indicates that other factors besides evaporation effects control chemical and isotopic composition of lakewater. Consequently, the oxygen isotopic composition cannot be interpreted exclusively as an indicator of salinity or evaporation ratio. The degassing of CO2 during groundwater discharge can explain the enriched 13C values for primary carbonates precipitated. The carbon budget in these high altitude, saline lakes seems to be controlled by physical rather than biological processes.The Altiplano saline lakes contain records of environmental and climatic change, although accurate 14C dating of these lacustrine sediments is hindered by the scarcity of terrestrial organic material, and the large reservoir effects. Sedimentologic evidence, a 210Pb-based chronology, and a preliminary U/Th chronology indicate a very large reservoir effect in El Peinado, likely as a result of old groundwaters and large contributions of volcanic and geothermal 14C-free CO2 to the lake system. Alternative chronologies are needed to place these paleorecords in a reliable chronological framework. A period of increased water balance in the San Francisco basin ended at about 1660 ± 82 yr B.P. (calendar yr U/Th age), and would correlates with the humid phase between 3000 and 1800 yr B.P detected in other sites of the southern Altiplano. Both, 210Pb and preliminary U/Th dating favor a younger age for the paleohydrological changes in El Peinado. The arid period reflected by subaerial exposure and low lake levels in unit 3 would have ended with a large increase in effective moisture during the late 17th century. The increased lake level during deposition of unit 2 would represent the period between AD1650 - 1900, synchronous to the Little Ice Age. This chronological framework is coherent with other regional records that show an abrupt transition from more arid to more humid conditions in the early 17th century, and a change to modern conditions in the late 19th century. Although there are local differences, the Little Ice Age stands as a significant climatic event in the Andean Altiplano.  相似文献   

16.
New sediment core data from a unique slow-sedimentation rate site in Lake Tanganyika contain a much longer and continuous record of limnological response to climate change than have been previously observed in equatorial regions of central Africa. The new core site was first located through an extensive seismic reflection survey over the Kavala Island Ridge (KIR), a sedimented basement high that separates the Kigoma and Kalemie Basins in Lake Tanganyika.Proxy analyses of paleoclimate response carried out on core T97-52V include paleomagnetic and index properties, TOC and isotopic analyses of organic carbon, and diatom and biogenic silica analyses. A robust age model based on 11 radiocarbon (AMS) dates indicates a linear, continuous sedimentation rate nearly an order of magnitude slower here compared to other core sites around the lake. This age model indicates continuous sedimentation over the past 79 k yr, and a basal age in excess of 100 k yr.The results of the proxy analyses for the past 20 k yr are comparable to previous studies focused on that interval in Lake Tanganyika, and show that the lake was about 350 m lower than present at the Last Glacial Maximum (LGM). Repetitive peaks in TOC and corresponding drops in 13C over the past 79 k yr indicate periods of high productivity and mixing above the T97-52V core site, probably due to cooler and perhaps windier conditions. From 80 through 58 k yr the 13C values are relatively negative (–26 to –28 l) suggesting predominance of algal contributions to bottom sediments at this site during this time. Following this interval there is a shift to higher values of 13C, indicating a possible shift to C-4 pathway-dominated grassland-type vegetation in the catchment, and indicating cooler, dryer conditions from 55 k yr through the LGM. Two seismic sequence boundaries are observed at shallow stratigraphic levels in the seismic reflection data, and the upper boundary correlates to a major discontinuity near the base of T97-52V. We interpret these discontinuities to reflect major, prolonged drops in lake level below the core site (393 m), with the lower boundary correlating to marine oxygen isotope Stage 6. This suggests that the previous glacial period was considerably cooler and more arid in the equatorial tropics than was the last glacial period.  相似文献   

17.
Evaporation dominates the removal of water from Lake Tanganyika, and therefore the oxygen isotope composition of lake water has become very positive in comparison to the waters entering the lake. The surface water in Lake Tanganyika has remained relatively unchanged over the last 30 years with a seasonal range of +3.2 to +3.5 VSMOW. Water from small rivers entering the lake seems to have a 18O value between –3.5 and –4.0, based on scattered measurements. The two largest catchments emptying into the lake deliver water that has a 18O value between these two extremes. This large contrast is the basis of a model presented here that attempts to reconstruct the history of runoff intensity based on the 18O of carbonate shells from Lake Tanganyika cores. In order to use biogenic carbonates to monitor changes in the 18O of mixing-zone water, however, the oxygen isotope fractionation between water and shell carbonate must be well understood. The relatively invariant environmental conditions of the lake allow us to constrain the fractionation of both oxygen and carbon isotope ratios. Although molluskan aragonitic shell 18O values are in agreement with published mineral-water fractionations, ostracode calcite is 1.2 more positive than that of inorganic calcite precipitated under similar conditions. Ostracode shell 18O data from two cores from central Lake Tanganyika suggest that runoff decreased in the first half of this millennium and has increased in the last century. This conclusion is poorly constrained, however, and much more work needs to be done on stable isotope variation in both the waters and carbonates of Lake Tanganyika. We also compared the 13C of shells against predicted values based solely on the 13C of lake water dissolved inorganic carbon (DIC). The ostracode Mecynocypria opaca is the only ostracode or mollusk that falls within the predicted range. This suggests that M. opaca has potential for reconstructing the carbon isotope ratio of DIC in Lake Tanganyika, and may be a useful tool in the study of the history of the lakes productivity and carbon cycle.  相似文献   

18.
Southeastern Missouri has been a major Pb mining region since 1720 AD. Missouri mines produce a Pb ore that has a distinctive elevated 206Pb/207Pb isotopic ratio (>1.30) that is easily recognized in Pb-contaminated sediments. Five 210Pb dated sediment cores from Horseshoe Lake, Madison County, Illinois were examined to reconstruct Pb-contamination of the site from southeastern Missouri mines and from a local Pb smelter located adjacent to the lake. Pb concentrations increased in the cores from 5 ppm in the early 1800s to approximately 350 ppm in the late 1940s and 1950s. Pb concentrations in recently deposited sediment range from 100 to 300 ppm depending on the location within the lake. Throughout the 1800s and early 1900s the 206Pb/207Pb ratios in the sediment cores increased indicating contamination from southeastern Missouri (mean = 1.243). After the local smelter began recycling lead-acid storage batteries in the 1950s, the 206Pb/207Pb ratio declined (mean = 1.224) suggesting contamination of Horseshoe Lake with Pb from sources elsewhere around the world. The results of this study demonstrate how isotopic ratios of Pb can be used to reconstruct historical anthropogenic contamination.  相似文献   

19.
Analysis of 18Ocellulose, 13Corganic matter, and 13Ccellulose at about 100 year intervals from organic matter deposited in Toronto Lake, Northwest Territories, Canada, revealed an 8000-year history of rapid, post-glacial hydrologic change at the treeline zone. Several mid-Holocene phases of enriched 13Corg and 13Ccell, caused by elevated lake productivity, declining [CO2(aq)], and closed basin conditions, were abruptly terminated by intervals of open hydrology recorded by sharply depleted 18Ocell. Two of these events, at 5000 and 4500 BP, are correlated with increased total organic content and Picea mariana pollen concentration, which indicate that high levels of productivity were also accompanied by northern treeline advances. A third treeline advance at about 2500 BP is also marked by an apparent outflow event from Toronto Lake, but this was not associated with 13Corg/cell enrichment in the sediment record because rapid and substantial lake water renewal probably prevented productivity-driven enrichment of the dissolved inorganic carbon and replenished the CO2(aq) supply to thriving phytoplankton. However, high sediment organic content during this period suggests increased productivity. Increases in the inflow:evaporation ratio at about 6500 and 3500 BP were also sufficient to cause Toronto Lake to overflow but the prevailing climate during these periods apparently did not favour appreciable northward treeline migration or changes in lake productivity.This is the 14th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers  相似文献   

20.
The St.16 core obtained from the Academician Ridge of Lake Baikal in eastern Siberia may span about 260 000 years, and some physical properties of the core samples are closely related to aquatic paleoproductivity and climatic change. The median of grain size, grain density, and water content fluctuate synchronously. They also are connected with change in the abundance of biogenic silica (diatoms). The physical parameters indicate that there were high aquatic productivity periods around interglacial periods (MIS 5 and 7; 70 000-125 000 yr B.P. and 180 000-250 000 yr B.P.). Comparatively large clastics were transported from outside of the lake through various routes (ice rafting, etc.) in addition to fluvial routes during the glacials or 'stadials. There are ca. 20 000 yr, 40 000 yr and 100 000 yr periods in the variations of physical properties. These are related to the three Milankovitch parameters of solar insolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号