首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The computation of sunspot areas is important for many applications in solar physics. Some uncertainty is, however, inherent to this determination, since there is uncertainty in defining the limits of sunspots, as well as their umbrae and penumbrae, particularly in high-resolution images where large variations in intensity are observed, mainly in the penumbrae and photosphere regions. In this paper a methodology based on the classical histogram method is presented that enables the generation of fuzzy sets that correspond to the umbrae and penumbrae of sunspots, as well as to the complete sunspots, which enable the representation of the uncertainty in their locations. The areas of the sunspots and of their umbrae and penumbrae are then obtained by computing the areas of the fuzzy sets used to represent them. Two operators are used: the Rosenfeld Area operator, which generates a real number for the area, and the Fuzzy Area operator, which generates a fuzzy number, providing more information about the uncertainty of the area. A comparison of the obtained results with the area values given by the classical cumulative histogram method is made and the differences analyzed.  相似文献   

2.
Simultaneous photoelectric observations of sunspot penumbrae at 5790, 6690, 8760 and 16700Å are presented. No change in penumbral intensity from spot to spot is found in a sample of 11 large sunspots.  相似文献   

3.
High-resolution white-light pictures are analyzed to study the differences between the granular size near sunspot penumbrae and in light-bridges presenting granular structure and that of the quiet photosphere. No difference is found between the mean granular diameter in light-bridges and the quiet photosphere. The dispersion found in the results corresponding to different zones around the sunspots indicates that the size of the granulation may vary from place to place near the sunspots, its mean value not differing significantly from that of the quiet photosphere. A possible systematic bias in the selection of the granules by Macris (1979) is found.  相似文献   

4.
It is confirmed that the penumbral bright grains are moving towards the sunspots umbra. We find different proper motions of 0.08 to 0.33 km s–1 for different penumbrae and different reduction methods. The lifetimes of these bright grains are about 1.5 to 3 hr depending on the position in the penumbra.  相似文献   

5.
From investigating spectrograms of penumbrae of some sunspots it is concluded that the maximum magnetic field strength occurs in dark filaments and amounts to 1800–1900 G; the intensity of the magnetic field in dark filaments is 100–400 G larger than in the neighbouring bright filaments; the bright filaments seen in the space between the dark features cannot be attributed to the ordinary undisturbed photosphere.  相似文献   

6.
The rotation of sunspot penumbrae has been investigated on the longitudinal magnetic and velocity fields, observed in the photospheric line Fe i λ5253 Å of five lone sunspots. We reconstructed the entire vectors of both fields from their line-of-sight components. All three components of both vectors revealed that the rotation of the sunspots was, in fact, a torsional oscillation. All components of each sunspot had the same rotational period. The penumbrae oscillation periods were distributed in the range from 3.4 days to 7.7 days. The phase of the velocity azimuthal component oscillation was ahead of the phases of all other components of both vectors. If the penumbra plasma density had been equal to the photospheric plasma density (10?7 g cm?3) then the oscillation magnetic energy of the components exceeded their kinetic energy approximately by a factor of 10–200. The obtained results led to the conclusion that these oscillations were constrained.  相似文献   

7.
G. Ekmann 《Solar physics》1974,38(1):73-75
Based on pinhole photometer observations in 4–6 wavelength regions we have searched for a connection between the intensities of the umbra and the penumbra of sunspots. For the 1.67 μm wavelength region it is apparent that spots with dark umbrae also have dark penumbrae. In the other wavelength regions similar relations are found. The darkness of the spot is probably connected with the degree of complexity of the spot.  相似文献   

8.
Mechanisms of the formation and stability of sunspots are among the longest-standing and intriguing puzzles of solar physics and astrophysics. Sunspots are controlled by subsurface dynamics, hidden from direct observations. Recently, substantial progress in our understanding of the physics of the turbulent magnetized plasma in strong-field regions has been made by using numerical simulations and local helioseismology. Both the simulations and helioseismic measurements are extremely challenging, but it is becoming clear that the key to understanding the enigma of sunspots is a synergy between models and observations. Recent observations and radiative MHD numerical models have provided a convincing explanation for the Evershed flows in sunspot penumbrae. Also, they lead to the understanding of sunspots as self-organized magnetic structures in the turbulent plasma of the upper convection zone, which are maintained by a large-scale dynamics. Local helioseismic diagnostics of sunspots still have many uncertainties, some of which are discussed in this review. However, there have been significant achievements in resolving these uncertainties, verifying the basic results by new high-resolution observations, testing the helioseismic techniques by numerical simulations, and comparing results obtained by different methods. For instance, a recent analysis of helioseismology data from the Hinode space mission has successfully resolved several uncertainties and concerns (such as the inclined-field and phase-speed filtering effects) that might affect the inferences of the subsurface wave-speed structure of sunspots and the flow pattern. It is becoming clear that for the understanding of the phenomenon of sunspots it is important to further improve the helioseismology methods and investigate the whole life cycle of active regions, from magnetic flux emergence to dissipation. The Solar Dynamics Observatory mission has started to provide data for such investigations.  相似文献   

9.
The distribution of acoustic power over sunspots shows an enhanced absorption near the umbra – penumbra boundary. Previous studies revealed that the region of enhanced absorption coincides with the region of strongest transverse potential field. The aim of this paper is to i) utilize the high-resolution vector magnetograms derived using Hinode SOT/SP observations and study the relationship between the vector magnetic field and power absorption and ii) study the variation of power absorption in sunspot penumbrae due to the presence of spine-like radial structures.  相似文献   

10.
We applied automatic identification of sunspot umbrae and penumbrae to daily observations from the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to study their magnetic flux density (B) and area (A). The results confirm an already known logarithmic relationship between the area of sunspots and their maximum flux density. In addition, we find that the relation between average magnetic flux density ( $B_{\rm avg}$ ) and sunspot area shows a bimodal distribution: for small sunspots and pores (A≤20 millionth of solar hemisphere, MSH), $B_{\rm avg} \approx 800~\mbox{G}$ (gauss), and for large sunspots (A≥100 MSH), $B_{\rm avg}$ is about 600 G. For intermediate sunspots, average flux density linearly decreases from about 800 G to 600 G. A similar bimodal distribution was found in several other integral parameters of sunspots. We show that this bimodality can be related to different stages of sunspot penumbra formation and can be explained by the difference in average inclination of magnetic fields at the periphery of small and large sunspots.  相似文献   

11.
Flux elements, pores and sunspots form a family of magnetic features observed at the solar surface. As a first step towards developing a fully non-linear model of the structure of these features and of the dynamics of their interaction with solar convection, we conduct numerical experiments on idealized axisymmetric flux tubes in a compressible convecting atmosphere in cylindrical boxes of radius up to 8 times their depth. We find that the magnetic field strength of the flux tubes is roughly independent of both distance from the centre and the total flux content of the flux tube, but that the angle of inclination from the vertical of the field at the edge of the tube increases with flux content. In all our calculations, fluid motion converges on the flux tube at the surface. The results compare favourably with observations of pores; in contrast, large sunspots lie at the centre of an out-flowing moat cell. We conjecture that there is an inflow hidden beneath the penumbrae of large spots, and that this inflow is responsible for the remarkable longevity of such features.  相似文献   

12.
New measurements of the radiative flux deficits of two large sunspots are presented, based on detailed isophotometric maps. Results are given separately for umbrae and penumbrae. The umbral and penumbral deficits are 4–5 × 1010 and 1–1.5 × 1010 erg cm–2 s–1 respectively, the larger figures ref to the larger spot. Over limited areas centered on the umbral cores the deficits for the two spots amount to 76 and 86% of the photospheric flux.  相似文献   

13.
H. Wöhl 《Solar physics》1988,114(1):181-184
Areas of sunspots and their positions taken from the Greenwich Photoheliographic Results (1874–1976) and typical intensities of the umbrae and penumbrae are used to calculate daily values of the solar flux at a wavelength of about 500 nm. Using overlapping time series of 512 days each solar rotation periods are determined by Fourier transformation. The periods found depend on the phase of the solar activity cycle, as expected from the solar differential rotation. This method may be used for solar type stars to determine relations between activity and rotation too. The problems of errors - e.g. by faculae or the variation of the umbral intensity within the activity cycle - are explained.Mitteilungen aus dem Kiepenheuer-Institut Nr. 284  相似文献   

14.
At the surface of the Sun, acoustic waves appear to be affected by the presence of strong magnetic fields in active regions. We explore the possibility that the inclined magnetic field in sunspot penumbrae may convert primarily vertically-propagating acoustic waves into elliptical motion. We use helioseismic holography to measure the modulus and phase of the correlation between incoming acoustic waves and the local surface motion within two sunspots. These correlations are modeled by assuming the surface motion to be elliptical, and we explore the properties of the elliptical motion on the magnetic-field inclination. We also demonstrate that the phase shift of the outward-propagating waves is opposite to the phase shift of the inward-propagating waves in stronger, more vertical fields, but similar to the inward phase shifts in weaker, more-inclined fields.  相似文献   

15.
D. C. Braun  A. C. Birch 《Solar physics》2008,251(1-2):267-289
We present a comprehensive set of observations of the interaction of p-mode oscillations with sunspots using surface-focused seismic holography. Maps of travel-time shifts, relative to quiet-Sun travel times, are shown for incoming and outgoing p modes as well as their mean and difference. We compare results using phase-speed filters with results obtained with filters that isolate single p-mode ridges, and we further divide the data into multiple temporal frequency bandpasses. The f mode is removed from the data. The variations of the resulting travel-time shifts with magnetic-field strength and with the filter parameters are explored. We find that spatial averages of these shifts within sunspot umbrae, penumbrae, and surrounding plage often show strong frequency variations at fixed phase speed. In addition, we find that positive values of the mean and difference travel-time shifts appear exclusively in waves observed with phase-speed filters that are dominated by power in the low-frequency wing of the p 1 ridge. We assess the ratio of incoming to outgoing p-mode power using the ridge filters and compare surface-focused holography measurements with the results of earlier published p-mode scattering measurements using Fourier?–?Hankel decomposition.  相似文献   

16.
The heliographic positions of more than 100 sunspots were accurately measured several times a day from 1974 until 1979 by means of the computer-controlled tracing method described by Schröter and Wöhl (1975). A striking degree of constancy of the solar rotation rate (about 0.15% or 3 m s–1) is found, when east-west proper motion components of each individual stable sunspot is considered. However, large differences of the rotation rate are observed (up to 7% or 130 m s–1) when comparing different sunspots. We found no significant correlation of these fluctuations with characteristics of the sunspots (age, evolution, etc.).Mitteilungen aus dem Kiepenheuer-Institut Nr. 191.  相似文献   

17.
We discuss footpoints of loops seen by Yohkoh in soft X-rays that connect active regions across the equator (transequatorial interconnecting loops – TILs). While most TILs are rooted in moderately strong fields at peripheries of active regions, there are also cases when these loops are anchored in very weak or very strong fields, ranging from < 30 G to several hundred gauss. Some have their footpoints near sunspot penumbrae, creating `X-ray fountains' in a combination with active region loops. But TILs are never rooted in sunspots. The most likely explanation is that magnetic field lines leave spots almost vertically so that TILs rooted in them extend high into the corona and density in them is below the limit of visibility in X-rays. The fact that in force-free modeling some TILs are rooted in sunspots is most probably due to the difference between field-line connections in `vacuum' and in the highly conductive plasma on the Sun. Some TILs end before they reach active regions which sometimes may indicate the real situation, but mostly this `gap' is probably due to a temperature decrease near the loop footpoints which makes them invisible in X-rays. In that case the fact that these cool lowest parts of TILs are never found in TRACE or SOHO EIT images indicates that plasma density in TILs must be very low. Still, the total absence of any counterparts of X-ray TILs in TRACE and EIT images is puzzling and, therefore, other possible interpretations of the `gap' origin are also briefly mentioned.  相似文献   

18.
We have studied solar activity by analyzing naked-eye sunspot observations and aurorae borealis observed at latitudes below \(45^{\circ}\). We focused on the medieval epoch by considering the non-telescopic observations of sunspots from AD 974 to 1278 and aurorae borealis from AD 965 to 1273 that are reported in several Far East historical sources, primarily in China and Korea. After setting selection rules, we analyzed the distribution of these individual events following the months of the Gregorian calendar. In December, an unusual peak is observed with data recorded in both China and Japan, but not within Korean data.In extreme conditions, where the collection of events is reduced and discontinuous in some temporal intervals, we used the non-parametric kernel method. We opted for the plug-in approach of Sheather and Jones instead of cross-validation techniques to estimate the probability density functions (pdf) of the events. We obtained optimized bandwidths of 13.29 years for sunspots and 9.06 years for auroras, and 95% confidence intervals. The pdf curves exhibit multiple peaks occurring at quasi-periodic times with a very high positive correlation, \(r_{\mathrm{tt}} = 0.9958\), between the dates of occurrence of the nine extrema of sunspots and auroras. Furthermore, these extrema enabled us to evaluate mean periods at two standard deviations, \(66.77 \pm 7.25~\mbox{years}\) for sunspots and \(65.06 \pm 9.36~\mbox{years}\) for auroras. The accuracy of the average periods, 62.00 years for sunspots and 61.80 years for auroras, was improved by the use of the power spectrum method. The percentage of the total number of non-observed sunspots, using redundant data, from AD 1151 to 1275 was estimated to be greater than or equal to 78%.  相似文献   

19.
By using the monochromatic images and magnetograms obtained with the satellite Hinode, 35 pairs of bipolar moving magnetic features (MMFs) in sunspot penumbrae are studied in the following three aspects: the morphological characteristics, velocities of motion and responses in low atmospheric layers. Then the following conclusions are drawn. (1) The bipolar MMFs appear in pairs of positive and negative polarities, are located in the midst of the approximately vertical magnetic fields in spot penumbrae, and move toward the outer boundaries of penumbrae. This indirectly justifies that the bipolar MMFs originate in the horizontal magnetic fields of penumbrae. In the time intervals of 2-8 hours and at the same positions, there appear the bipolar MMFs with similar morphologial characteristics and velocities of motion. This povides an evidence which supports the model of magnetic lines in the shape of sea serpent. (2) In the process of motion of bipolar MMFs there may appear brightenings in the photospere and chromosphere, and this implies that the middle and low layers of solar atmosphere are heated by the bipolar MMFs. (3) The sites of occurrence of bipolar MMFs and the distribution of penumbral magnetic field agree with the structural characteristics of uncombed sunspot penumbrae.  相似文献   

20.
We attempt to establish a correlation between the solar activity level and some characteristics of the latitude distribution of sunspots by means of center-of-latitude (COL) of observed sunspots. We calculate the COL by taking the area weighted mean latitude of sunspots for each calendar month during a cycle, and adopt the cycle-integrated sunspot area as a measure of the strength of a cycle. We first determine the latitudinal distribution of COL of sunspots. We then compute three different statistical correlations between the cycle-integrated sunspot areas and the fitting parameters of all sunspot cycles from 1878 to 2009. Our main findings are as follows: (1) The distribution of COL is bimodal well represented by a double Gaussian function. (2) Ignoring cycle 19, the characteristic width of the distribution of COL shows a significant correlation with the cycle amplitude. (3) A correlation between the location of the maxima of the COL distribution (either centroid1 or centroid2) and the sum of sunspot area can be found, when the data point corresponding to the solar cycle 19 is omitted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号