首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The low-temperature heat capacity (C P) of stishovite (SiO2) synthesized with a multi-anvil device was measured over the range of 5–303 K using the heat capacity option of a physical properties measurement system (PPMS) and around ambient temperature using a differential scanning calorimeter (DSC). The entropy of stishovite at standard temperature and pressure calculated from DSC-corrected PPMS data is 24.94 J mol−1 K−1, which is considerably smaller (by 2.86 J mol−1 K−1) than that determined from adiabatic calorimetry (Holm et al. in Geochimica et Cosmochimica Acta 31:2289–2307, 1967) and about 4% larger than the recently reported value (Akaogi et al. in Am Mineral 96:1325–1330, 2011). The coesite–stishovite phase transition boundary calculated using the newly determined entropy value of stishovite agrees reasonably well with the previous experimental results by Zhang et al. (Phys Chem Miner 23:1–10, 1996). The calculated phase boundary of kyanite decomposition reaction is most comparable with the experimental study by Irifune et al. (Earth Planet Sci Lett 77:245–256, 1995) at low temperatures around 1,400 K, and the calculated slope in this temperature range is mostly consistent with that determined by in situ X-ray diffraction experiments (Ono et al. in Am Mineral 92:1624–1629, 2007).  相似文献   

2.
Using a DIA-type, cubic-anvil, high-pressure apparatus (SAM-85) in conjunction with in situ X-ray diffraction, we have investigated phase relations between coesite and stishovite up to 12 GPa and 1530 °C using synthetic powders of the two phases as the starting materials. The phase transition between coesite and stishovite was identified by observing the first appearance of a phase that did not already exist or by a change in the relative intensity of the two patterns. In most experiments, the diffraction patterns on samples were collected within 10 minutes after reaching a pressure and temperature condition. On this time scale, two phase boundaries associated with the coesite-stishovite transition have been determined: (1) for the stishovite-to-coesite transition, observations were made in the temperature range of 950–1530 °C, and (2) for the coesite-to-stishovite transition from 500 to 1300 °C. These observations reveal that there exists a critical temperature of about 1000 °C to constrain the coesite-stishovite equilibrium phase boundary. Above this temperature, both boundaries are linear, have positive dP/dT slopes, and lie within a pressure interval of 0.4 GPa. Below this temperature, the dP/dT slope for the stishovite-to-coesite phase boundary becomes significantly larger and that for the coesite-tostishovite phase boundary changes from positive to negative. As a result, an equilibrium phase boundary can only be determined from the results above 1000 °C and is described by a linear equation P (GPa)=6.1 (4)+ 0.0026 (2) T (°C). This dP/dT slope is in good agreement with that of Zhang et al. (1993) but more than twice that of Yagi and Akimoto (1976). For the kinetics of the phase transition, preliminary rate data were obtained for the stishovite-to-coesite transition at 1160 and 1430 °C and are in agreement with the simple geometric transformation model of Avrami and Cahn.  相似文献   

3.
KAlSi3O8 sanidine dissociates into a mixture of K2Si4O9 wadeite, Al2SiO5 kyanite and SiO2 coesite, which further recombine into KAlSi3O8 hollandite with increasing pressure. Enthalpies of KAlSi3O8 sanidine and hollandite, K2Si4O9 wadeite and Al2SiO5 kyanite were measured by high-temperature solution calorimetry. Using the data, enthalpies of transitions at 298 K were obtained as 65.1 ± 7.4 kJ mol–1 for sanidine wadeite + kyanite + coesite and 99.3 ± 3.6 kJ mol–1 for wadeite + kyanite + coesite hollandite. The isobaric heat capacity of KAlSi3O8 hollandite was measured at 160–700 K by differential scanning calorimetry, and was also calculated using the Kieffer model. Combination of both the results yielded a heat-capacity equation of KAlSi3O8 hollandite above 298 K as Cp=3.896 × 102–1.823 × 103T–0.5–1.293 × 107T–2+1.631 × 109T–3 (Cp in J mol–1 K–1, T in K). The equilibrium transition boundaries were calculated using these new data on the transition enthalpies and heat capacity. The calculated transition boundaries are in general agreement with the phase relations experimentally determined previously. The calculated boundary for wadeite + kyanite + coesite hollandite intersects with the coesite–stishovite transition boundary, resulting in a stability field of the assemblage of wadeite + kyanite + stishovite below about 1273 K at about 8 GPa. Some phase–equilibrium experiments in the present study confirmed that sanidine transforms directly to wadeite + kyanite + coesite at 1373 K at about 6.3 GPa, without an intervening stability field of KAlSiO4 kalsilite + coesite which was previously suggested. The transition boundaries in KAlSi3O8 determined in this study put some constraints on the stability range of KAlSi3O8 hollandite in the mantle and that of sanidine inclusions in kimberlitic diamonds.  相似文献   

4.
ZnSiO3 clinopyroxene stable above 3 GPa transforms to ilmenite at 10–12 GPa, which further decomposes into ZnO (rock salt) plus stishovite at 20–30 GPa. The enthalpy of the clinopyroxene-ilmenite transition was measured by high-temperature solution calorimetry, giving ΔH0=51.71 ±3.18 kJ/mol at 298 K. The heat capacities of clinopyroxene and ilmenite were measured by differential scanning calorimetry at 343–733 and 343–633 K, respectively. The C p of ilmenite is 3–5% smaller than that of clinopyroxene. The entropy of transition was calculated using the measured enthalpy and the free energy calculated from the phase equilibrium data. The enthalpy, entropy and volume changes of the pyroxene-ilmenite transition in ZnSiO3 are similar in magnitude to those in MgSiO3. The present thermochemical data are used to calculate the phase boundary of the ZnSiO3 clinopyroxene-ilmenite transition. The calculated boundary,
  相似文献   

5.
Vibrational density of states of the NaAlSi2O6 jadeite and NaAlSiO4 calcium ferrite (CF)-type, and SiO2 stishovite is calculated as a function of pressure up to 50 GPa using density functional perturbation theory. The calculated frequencies are used to determine the thermal contribution to the Helmholtz free energy within the quasi-harmonic approximation and to derive the equation of state and several thermodynamic properties of interest. A dissociation of jadeite into a mixture of a CF-type phase and stishovite is predicted to occur at 23.4 GPa and 1,800 K with a positive Clapeyron slope of 2.8 MPa/K. Elastic anisotropy for jadeite, the CF-type phase, and stishovite also computed clearly shows that stishovite and the CF-type phase are the most anisotropic and isotropic in these three phases, respectively.  相似文献   

6.
With increasing pressure, MnSiO3 rhodonite stable at atmospheric pressure transforms to pyroxmangite, then to clinopyroxene and further to tetragonal garnet, which finally decomposes into MnO (rocksalt) plus SiO2 (stishovite). High temperature solution calorimetry of synthetic rhodonite, clinopyroxene and garnet forms of MnSiO3 was used to measure the enthalpies of these transitions. ΔH 974 0 for the rhodonite-clinopyroxene and ΔH 298 0 for the clinopyroxene-garnet transition are 520±490 and 8,270±590 cal/mol, respectively. The published data on the enthalpy of the rhodonite-pyroxmangite transition, phase equilibrium boundaries, compressibility and thermal expansion data are used to calculate entropy changes for the transitions. The enthalpy, entropy and volume changes are very small for all the transitions among rhodonite, pyroxmangite and clinopyroxene. The calculated boundary for the clinopyroxene-garnet transition is consistent with the published experimental results. The pyroxene-garnet transition in several materials, including MnSiO3, is characterized by a relatively small negative entropy change and large volume decrease, resulting in a small positiveP – T slope. The disproportionation of MnSiO3 garnet to MnO plus stishovite and of Mn2SiO4 olivine to garnet plus MnO are calculated to occur at about 17–18 and 14–15 GPa, respectively, at 1,000–1,500 K.  相似文献   

7.
The transition between rutile and α-PbO2 structured TiO2 (TiO2II) has been investigated at 700–1,200 °C and 4.2–9.6 GPa. Hydrothermal phase equilibrium experiments were performed in the multi-anvil apparatus to bracket the phase boundary at 700, 1,000, and 1,200 °C. The equilibrium phase boundary is described by the equation: P (GPa)=1.29+0.0065 T ( °C). In addition, growth of TiO2II was observed in experiments at 500 and 600 °C, although growth of rutile was too slow to bracket unambiguously the equilibrium boundary at these temperatures. Water was not detected in either rutile or TiO2II, and dry synthesis experiments at 1,200 °C were consistent with the phase boundary determined in the fluid-bearing experiments, suggesting that the equilibrium is unaffected by the presence of water. Our bracket of the phase boundary at 700 °C is consistent with the reversed, dry experiments of Akaogi et al. (1992) and the reversals of Olsen et al. (1999). The new data suggest that the phase boundary is linear, in agreement with Akaogi et al. (1992), but in striking contrast to the phase diagram inferred by Olsen et al. (1999). The natural occurrence of TiO2II requires formation pressures considerably higher than the graphite–diamond phase boundary.  相似文献   

8.
The long prism/needle‐shaped polycrystalline quartz aggregates and square/parallelogram‐shaped singlephase quartz inclusions in omphacite and garnet of ultrahigh pressure eclogite were first discovered from the Jiangalesayi area, South Altyn UHP belt. Based on their morphology, these quartz inclusions are quartz paramorphs after stishovite. The minimum peak pressure of the eclogite is estimated to be >8–9 GPa at 800– 1000 °C based on the stability field of stishovite. This new evidence, together with previous stishovite exsolution microstructure in the gneiss from the same region, suggests an ultra‐deep subduction and exhumation of the South Altyn continental rocks to/from mantle depths in stishovite stability field. Evidence of ultra‐deep subduction of continental materials might be more common and diverse than previous thought. Exhumation of subducted continental rocks from≥300 km has been considered impossible because they are denser than mantle at these depths. How did the stishovite bearing continental rocks of the South Altyn exhumated? As we all know, the densities of stishovite (4.3 g/cm3) are much higher than coesite (2.9 g/cm3), and stishovite transforms into coesite with temperature increases. Density calculations were performed for subducted continental rocks along phase transition of stishovite to coesite, using the third‐order Birch‐Murnaghan equation of state based on mineral fractions obtained from experiments and Perple_X. The results show that the density of Siliceous rocks decrease remarkably, lower than the surrounding mantle in coesite stability field, whereas the density of Oligosiliceous and Silicon unsaturated rocks is higher than surrounding mantle. Thus, we propose that the thermal induced transformation could provide an initial driven force for the exhumation of ultra‐deep subducted silica‐enriched felsic continental rocks. Temperature increase could be derived from an increased geothermal gradient from convective mantle or mantle plume. Mafic to ultra‐mafic rocks and silica‐deficient rocks may be captured by the upwelling subducted continental rocks and exhumated together.  相似文献   

9.
The phase relations and the element partitioning in a mid-oceanic ridge basalt composition were determined for both above-solidus and subsolidus conditions at 22 to 27.5 GPa by means of a multianvil apparatus. The mineral assemblage at the solidus changes remarkably with pressure; majorite and stishovite at 22 GPa, joined by Ca-perovskite at 23 GPa, further joined by CaAl4Si2O11-rich CAS phase at 25.5 GPa, and Mg-perovskite, stishovite, Ca-perovskite, CF phase (approximately on the join NaAlSiO4-MgAl2O4), and NAL phase ([Na,K,Ca]1[Mg,Fe2+]2[Al,Fe3+,Si]5.5-6.0O12) above 27 GPa. The liquidus phase is Ca-perovskite, and stishovite, a CAS phase, a NAL phase, Mg-perovskite, and a CF phase appear with decreasing temperature at 27.5 GPa. Partial melt at 27 to 27.5 GPa is significantly depleted in SiO2 and CaO and enriched in FeO and MgO compared with those formed at lower pressures, reflecting the narrow stability of (Fe,Mg)-rich phases (majorite or Mg-perovskite) above solidus temperature. The basaltic composition has a lower melting temperature than the peridotitic composition at high pressures except at 13 to 18 GPa (Yasuda et al., 1994) and therefore can preferentially melt in the Earth’s interior. Recycled basaltic crusts were possibly included in hot Archean plumes, and they might have melted in the uppermost lower mantle. In this case, Ca-perovskite plays a dominant role in the trace element partitioning between melt and solid. This contrasts remarkably with the case of partial melting of a peridotitic composition in which magnesiowüstite is the liquidus phase at this depth.  相似文献   

10.
The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 has been determined in situ using a multi-anvil apparatus and synchrotron X-rays radiation at SPring-8. In spite of the similar X-ray diffraction profiles of these high-pressure phases with closely related structures, we were able to identify the occurrence of the mutual phase transformations based on the change in the difference profile by utilizing a newly introduced press-oscillation system. The boundary was located at ~18.9 GPa and 1,400°C when we used Shim’s gold pressure scale (Shim et al. in Earth Planet Sci Lett 203:729–739, 2002), which was slightly (~0.8 GPa) lower than the pressure as determined from the quench experiments of Katsura and Ito (J Geophys Res 94:15663–15670, 1989). Although it was difficult to constrain the Clapeyron slope based solely on the present data due to the kinetic problem, the phase boundary [P (GPa)=13.1+4.11×10−3×T (K)] calculated by a combination of a PT position well constrained by the present experiment and the calorimetric data of Akaogi et al. (J Geophys Res 94:15671–15685, 1989) reasonably explains all the present data within the experimental error. When we used Anderson’s gold pressure scale (Anderson et al. in J Appl Phys 65:1535–1543, 1989), our phase boundary was located in ~18.1 GPa and 1,400°C, and the extrapolation boundary was consistent with that of Kuroda et al. (Phys Chem Miner 27:523–532, 2000), which was determined at high temperature (1,800–2,000°C) using a calibration based on the same pressure scale. Our new phase boundary is marginally consistent with that of Suzuki et al. (Geophys Res Lett 27:803–806, 2000) based on in situ X-ray experiments at lower temperatures (<1,000°C) using Brown’s and Decker’s NaCl pressure scales.  相似文献   

11.
 Mg-Fe partitioning experiments between (Mg,Fe)2SiO4 spinel and (Mg,Fe)O magnesiowüstite were carried out at pressures of 17–21.3 GPa at temperatures of 1400 and 1600 °C, using a multi-anvil apparatus, in order to determine interaction parameters of spinel and magnesiowüstite solid solutions and also to constrain the equilibrium boundaries of the postspinel transition in the Fe-rich side in the system Mg2SiO4-Fe2SiO4. The obtained values of the interaction parameters were 3.4 ± 1.5 and 13.9 ± 1.4 kJ mol−1, respectively, for spinel and magnesiowüstite solid solutions at 19 GPa and 1600 °C. The partitioning data in the system Mg2SiO4-Fe2SiO4 at 1400 and 1600 °C showed that the transition boundary between spinel and the mixture of magnesiowüstite and stishovite has a negative dP/dT slope. Using the above interaction parameters and available thermodynamic data of the Mg2SiO4 and Fe2SiO4 end members, the transition boundaries of spinel to the mixture of magnesiowüstite and stishovite were calculated. Within the uncertainties of the data used, the calculated boundaries are in good agreement with the boundaries at 1400 and 1600 °C experimentally determined in this study. The dissociation boundary of Fe2SiO4 spinel to wüstite and stishovite, calculated from the thermodynamic data, has a negative slope of −1.5 ± 0.6 MPa K−1. Received: 18 February 1998 / Revised, accepted: 18 October 1999  相似文献   

12.
We report relative enthalpy measurements on quartz, cristobalite and amorphous SiO2 between 1000 and 1800 K. We have observed a glass transition around 1480 K for amorphous SiO2. From our results and available Cp, relative enthalpy, and enthalpy of solution data we have derived a consistent set of thermodynamic data for these phases. Our calculated enthalpies of fusion are 8.9 ± 1.0 kJ mole?1 for cristobalite at 1999 K and 9.4 ± 1.0 kJ mole?1 at 1700 K for quartz.  相似文献   

13.
Raman spectra of the two high-pressure polymorphs of SiO2 (coesite and stishovite) were investigated in the temperature range 105–875 K at atmospheric pressure. Coesite remained intact after the highest temperature run, but stishovite became amorphous at temperatures above about 842~872 K. Most Raman modes exhibit a negative frequency shift with temperature for these polymorphs, but positive trends were also observed for some modes. Except for some weak modes, nonlinear temperature variation were established for these polymorphs within the experimental uncertainty and temperature range spanned. The slopes of the variation (δvi/δT)P for these polymorphs were compared with the published values. When compared with quartz and stishovite, the four-membered rings of SiO4-tetrahedra in coesite exhibit very little change with both temperature and pressure. It is also suggested that temperature and pressure should have opposite effects on the Raman shift of each vibrational mode.  相似文献   

14.
The high-pressure stability limit of calcium aluminosilicate (CAS) phase has been examined in its end-member CaAl4Si2O11 composition at 18–39 GPa and 1,670–2,300 K in a laser-heated diamond-anvil cell (LHDAC). The in-situ synchrotron X-ray diffraction measurements revealed that the CAS phase decomposes into three-phase assemblage of cubic Al-bearing CaSiO3 perovskite, Al2O3 corundum, and SiO2 stishovite above 30 GPa and 2,000 K with a positive pressure–temperature slope. Present results have important implications for the subsolidus mineral assemblage of subducted sediment and the melting phase relation of basalt in the lower mantle.  相似文献   

15.
Wadeite-type K2Si4O9 was synthesized with a cubic press at 5.4 GPa and 900 °C for 3 h. Its unit-cell parameters were measured by in situ high-T powder X-ray diffraction up to 600 °C at ambient P. The TV data were fitted with a polynomial expression for the volumetric thermal expansion coefficient (αT = a 0 + a 1 T), yielding a 0 = 2.47(21) × 10?5 K?1 and a 1 = 1.45(36) × 10?8 K?2. Compression experiments at ambient T were conducted up to 10.40 GPa with a diamond-anvil cell combined with synchrotron X-ray radiation. A second-order Birch–Murnaghan equation of state was used to fit the PV data, yielding K T = 97(3) GPa and V 0 = 360.55(9) Å3. These newly determined thermal expansion data and compression data were used to thermodynamically calculate the PT curves of the following reactions: 2 sanidine (KAlSi3O8) = wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite (SiO2) and wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite/stishovite (SiO2) = 2 hollandite (KAlSi3O8). The calculated phase boundaries are generally consistent with previous experimental determinations.  相似文献   

16.
The low-temperature heat capacity (C p ) of KAlSi3O8 with a hollandite structure was measured over the range of 5–303 K with a physical properties measurement system. The standard entropy of KAlSi3O8 hollandite is 166.2±0.2 J mol−1 K−1, including an 18.7 J mol−1 K−1 contribution from the configurational entropy due to disorder of Al and Si in the octahedral sites. The entropy of K2Si4O9 with a wadeite structure (Si-wadeite) was also estimated to facilitate calculation of phase equilibria in the system K2O–Al2O3–SiO2. The calculated phase equilibria obtained using Perple_x are in general agreement with experimental studies. Calculated phase relations in the system K2O–Al2O3–SiO2 confirm a substantial stability field for kyanite–stishovite/coesite–Si-wadeite intervening between KAlSi3O8 hollandite and sanidine. The upper stability of kyanite is bounded by the reaction kyanite (Al2SiO5) = corundum (Al2O3) + stishovite (SiO2), which is located at 13–14 GPa for 1,100–1,400 K. The entropy and enthalpy of formation for K-cymrite (KAlSi3O8·H2O) were modified to better fit global best-fit compilations of thermodynamic data and experimental studies. Thermodynamic calculations were undertaken on the reaction of K-cymrite to KAlSi3O8 hollandite + H2O, which is located at 8.3–10.0 GPa for the temperature range 800–1,600 K, well inside the stability field of stishovite. The reaction of muscovite to KAlSi3O8 hollandite + corundum + H2O is placed at 10.0–10.6 GPa for the temperature range 900–1,500 K, in reasonable agreement with some but not all experiments on this reaction.  相似文献   

17.
The standard enthalpy of formation of thorite and huttonite and the enthalpy of the phase transition between these polymorphs were determined using high-temperature oxide melt solution calorimetry and transposed temperature drop calorimetry. Standard enthalpies of formation of thorite and huttonite are reported for the first time and are −2117.6 ± 4.2 kJ/mol and −2110.9 ± 4.7 kJ/mol, respectively. Based on our measurements, thorite and huttonite are metastable relative to SiO2 (quartz) and ThO2 (thorianite) at standard conditions, but are presumably stabilized at high temperature by the entropy contribution. Based on the measured enthalpy of the thorite-huttonite phase transition of 6.7 ± 2.5 kJ/mol, a dP/dT slope for the transformation was calculated as −1.21 ± 0.45 MPa/K.  相似文献   

18.
The low-temperature heat capacity (C p) of Si-wadeite (K2Si4O9) synthesized with a piston cylinder device was measured over the range of 5–303 K using the heat capacity option of a physical properties measurement system. The entropy of Si-wadeite at standard temperature and pressure calculated from the measured heat capacity data is 253.8 ± 0.6 J mol−1 K−1, which is considerably larger than some of the previous estimated values. The calculated phase transition boundaries in the system K2O–Al2O3–SiO2 are generally consistent with previous experimental results. Together with our calculated phase boundaries, seven multi-anvil experiments at 1,400 K and 6.0–7.7 GPa suggest that no equilibrium stability field of kalsilite + coesite intervenes between the stability field of sanidine and that of coesite + kyanite + Si-wadeite, in contrast to previous predictions. First-order approximations were undertaken to calculate the phase diagram in the system K2Si4O9 at lower pressure and temperature. Large discrepancies were shown between the calculated diagram compared with previously published versions, suggesting that further experimental or/and calorimetric work is needed to better constrain the low-pressure phase relations of the K2Si4O9 polymorphs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
In situ X-ray diffraction measurements of KAlSi3O8-hollandite (K-hollandite) were performed at pressures of 15–27 GPa and temperatures of 300–1,800 K using a Kawai-type apparatus. Unit-cell volumes obtained at various pressure and temperature conditions in a series of measurements were fitted to the high-temperature Birch-Murnaghan equation of state and a complete set of thermoelastic parameters was obtained with an assumed K300,0=4. The determined parameters are V 300,0=237.6(2) Å3, K 300,0=183(3) GPa, (?K T,0/?T) P =?0.033(2) GPa K?1, a 0=3.32(5)×10?5 K?1, and b 0=1.09(1)×10?8 K?2, where a 0 and b 0 are coefficients describing the zero-pressure thermal expansion: α T,0 = a 0 + b 0 T. We observed broadening and splitting of diffraction peaks of K-hollandite at pressures of 20–23 GPa and temperatures of 300–1,000 K. We attribute this to the phase transitions from hollandite to hollandite II that is an unquenchable high-pressure phase recently found. We determined the phase boundary to be P (GPa)=16.6 + 0.007 T (K). Using the equation of state parameters of K-hollandite determined in the present study, we calculated a density profile of a hypothetical continental crust (HCC), which consists only of K-hollandite, majorite garnet, and stishovite with 1:1:1 ratio in volume. Density of HCC is higher than the surrounding mantle by about 0.2 g cm?3 in the mantle transition zone while this relation is reversed below 660-km depth and HCC becomes less dense than the surrounding mantle by about 0.15 g cm?3 in the uppermost lower mantle. Thus the 660-km seismic discontinuity can be a barrier to prevent the transportation of subducted continental crust materials to the lower mantle and the subducted continental crust may reside at the bottom of the mantle transition zone.  相似文献   

20.
We have determined the P-V equation of state of Al-rich H-bearing SiO2 stishovite by X-ray powder diffraction at pressures up to 58 GPa using synchrotron radiation. The sample contained 1.8 wt% Al2O3 and up to 500 ppm H2O, and had a composition that would coexist with Mg-silicate perovskite in a subducted slab. By fitting a third-order Birch-Murnaghan equation of state to our compression data, we obtained a bulk modulus K T0=298(7) GPa with K′=4.3(5). With K′ fixed to a value of 4, the bulk modulus K T0=304(3) GPa. Our results indicate that Al3+ and H+ have a small effect on the elastic properties of stishovite. Compared with data obtained up to 43.8 GPa, peak intensities changed and we observed a decreased quality of fit to a tetragonal unit cell at pressures of 49 GPa and higher. These changes may be an indication that the rutile↔CaCl2 transition occurs between these pressures. After laser annealing of the sample at 58.3(10) GPa and subsequent decompression to room conditions, the cell volume is the same as before compression, giving strong evidence that the composition of the recovered sample is also unchanged. This suggests that Al and H are retained in the sample under extreme P-T conditions and that stishovite can be an agent for transporting water to the deepest lower mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号