首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The inputs and breakdown of terrestrial leaf litter in streams is a fundamental ecological process that sustains in-stream foodwebs and secondary production. In temporary rivers, litter breakdown is reduced during dry phases, but the long-term effect of alternating drying and wetting cycles on litter breakdown is still poorly understood. We tested the hypothesis that leaf litter breakdown (LLB) in temporary rivers is primarily controlled by flow permanence (the number of flowing days over a given period expressed in %), and that drying events affect LLB during leaf fall periods through reduction of microbial activity and the modification of aquatic invertebrate assemblages. LLB rates (k), microbial activity and invertebrate assemblages were determined in winter at ten cross-sections scattered along a flow permanence gradient on the temporary Albarine River, France. Results demonstrated that summer drying events affected the breakdown process for up to 6 months after flow has resumed in the river. LLB rates decreased exponentially with decreasing flow permanence, and with increasing drying event duration and frequency. These exponential relationships were observed for flow permanence variables calculated for the river for both 24-years and 1-year time periods prior to the experiment. A decrease in flow permanence from 100 to 85% led to a four-fold decrease in leaf litter breakdown rate. Microbial activity, which typically did not differ between cross-sections, failed to explain the between-cross-section differences in k. By contrast, invertebrate assemblages and, shredders, in particular, decreased exponentially with decreasing flow permanence and with increasing drying event duration and frequency.  相似文献   

2.
3.
Riparian zones are important interface areas between soil and stream systems. Few studies carried out in tropical and subtropical regions evaluate litter decomposition in both stream water and riparian soils. Herein, we assessed the effects of land cover on microbial activity on the decomposition of an exotic litter (Pinus elliottii pine needles only) in water and soils of a subtropical riparian zone. Leaf litter breakdown rates (k in d−1) were estimated for different land covers (Grassland without riparian vegetation, Grassland with riparian vegetation, Forest, and Silviculture). To assess the microbial influence on k, we used fine mesh litter bags with monospecific leaf litter of senescent pine needles. Streams in Silviculture land use showed high k values and orthophosphate, dissolved oxygen and water velocity accelerated the leaf litter breakdown in the stream system. The soil system of Silviculture, Forest, and Grassland with riparian vegetation land covers showed high k values due to the high moisture and litter stock on riparian soil. Only a minor difference between stream and soil systems highlights the significant changes and the negative effects of silviculture on subtropical riparian zones.  相似文献   

4.
Cross-ecosystem subsidies, such as terrestrial invertebrates and leaf litter falling into water as resources for aquatic communities, can vary across environmental gradients. We examined whether the effect of terrestrial subsidy inputs on benthic invertebrates was mediated by resident coastal cutthroat trout (Oncorhynchus clarki) in two representative streams. We experimentally manipulated the input rates (reduced, ambient) of terrestrial subsidies (terrestrial invertebrates and leaf litter) as well as the presence or absence of cutthroat trout in the two streams. The hypothesis that the reduction of terrestrial subsidies to the stream influences benthic invertebrate assemblages was supported by experimental results. The treatments of terrestrial subsidy reduction and cutthroat trout presence had a significant negative effect on benthic invertebrate community biomass and shredder biomass in East Creek with high natural terrestrial subsidy input and small amount of large wood in channel. In contrast, results from Spring Creek with low subsidy input and large amount of large wood in channel showed that only the terrestrial subsidy reduction significantly reduced the biomass of shredders. The effects of the terrestrial subsidy input and trout predation on benthic invertebrate communities varied between the two streams. Our results indicate that a subsidy effect on benthic communities can vary between nearby streams differing in canopy and habitats. This study, with the major finding of highly context-dependent effects of spatial subsidies, suggests that the interplay of resource subsidies and predators on invertebrate community assemblages can be site-specific and context-dependent on habitat features.  相似文献   

5.
Inorganic fine sediments are easily carried into streams and rivers from disturbed land. These sediments can affect the stream biota, including detritivorous invertebrates (shredders) and impair ecosystem functions, such as leaf litter decomposition. We hypothesized that fine sediment (kaolin) deposited on leaves would reduce or suppress fungal development, reducing decomposition rates of leaves. Moreover, we predicted that shredders would act as ecosystem engineers by perturbing sediment deposition, reducing its impact on decomposition and fungi. We used a fully crossed experimental design of sediment addition (control, 400?mg?L?1) and shredders (none, Gammarus, Potamophylax) in laboratory aquaria. Leaf mass loss, suspended solids, microbial respiration, fungal biomass and spore production were measured. Sediment addition had no significant effects on the leaf mass remaining nor on shredders?? consumption rates. However, sediment slightly reduced fungal assemblage richness and the sporulation rate of three fungal species. The presence of shredders substantially increased the resuspension of fine sediments (>300%), resulting in higher suspended loads. However, the action of shredders did not have a significant effect on fungal biomass nor on leaf mass loss. Even if shredders did not enhance fungal colonisation, they affected the settlement of fine sediment, serving as allogenic engineers. Our study suggests that concentrations of fine sediment of 400?mg?L?1 with short exposure times (192?h) can have some effect on leaf decomposition.  相似文献   

6.
Comparisons were made of cadmium accumulation by continually immersed and by alternately immersed and emersed mussels. Mussels subjected to emersion accumulated significantly less cadmium than continually immersed mussels did, but differences in accumulation were not related solely to differences in the time spent immersed. The experimental results also cast doubts on the soundness of using LC50 data and application factors in setting water quality standards.  相似文献   

7.
Ecological flows between habitats are vital for predicting and understanding structure and function of recipient systems. Ecological flows across riparian areas and headwater intermittent streams are likely to be especially important in many river networks because of the shear extent of these interfaces, their high edge-to-width ratio, and the alternation of wet and dry conditions in intermittent channels. While there has been substantial research supporting the importance of riparian-stream linkages above-ground, comparatively less research has investigated below-ground linkages. We tested the hypothesis that riparian roots are colonized by invertebrates as a food source within stream beds of intermittent headwater streams. We compared benthic invertebrate assemblages colonizing three types of buried substrates (leaves, roots, and plastic roots) among three intermittent Coastal Plain streams, each with a different riparian management treatment (clearcut, thinned, and reference), over a 1-year period. Invertebrate density was significantly lower in root litterbags than in plastic roots litterbags, but neither differed from densities in leaf litterbags. Total invertebrate abundances, however, were significantly higher in leaf and root litterbags compared to abundances in plastic root litterbags. Invertebrate biomass and richness did not vary among substrates, but invertebrate density, abundance, and richness all declined from the wet phase (September–December) through the dry phase (June–August). Meiofauna and aquatic dipterans were the primary colonizing invertebrates during the wet phase. Relative abundance of terrestrial taxa increased during the dry phase, but their absolute abundance remained lower than aquatic taxa during the wet phase. Invertebrate composition did not differ among substrate types, but was significantly different among streams and time periods. Cumulative number of dry days, degree days, and redox depth all strongly correlated with assemblage structure as indicated by ordination scores. Our results suggest that subsurface invertebrates respond to leaves and roots as food sources, but assemblage composition is not substrate specific. Colonization of leaves and roots within stream beds by aquatic and terrestrial taxa supports the idea that headwater intermittent streams are important interfaces for the reciprocal exchange of energy and materials between terrestrial and aquatic ecosystems.  相似文献   

8.
The decomposition of plant litter is a fundamental ecological process in small forest streams. Litter decomposition is mostly controlled by litter characteristics and environmental conditions, with shredders playing a critical role. The aim of this study was to evaluate the effect of leaf species (Maprounea guianensis and Inga laurina, which have contrasting physical and chemical characteristics) and water nutrient enrichment (three levels) on leaf litter chemical characteristics and fungal biomass, and subsequent litter preference and consumption by Phylloicus sp. (a typical shredder in tropical streams). Maprounea guianensis leaves had lower lignin and nitrogen (N) concentrations, higher polyphenols concentration and lower lignin:N ratio than I. laurina leaves. Phosphorus concentrations were higher for both leaf species incubated at the highest water nutrient level. Fungal biomass was higher on M. guianensis than on I. laurina leaves, but it did not differ among nutrient levels. Relative consumption rates were higher when shredders fed on M. guianensis than on I. laurina leaves, due to the lower lignin:N ratio and higher fungal biomass of M. guianensis. Consumption rates on M. guianensis leaves were higher for those exposed to low water nutrient levels than for those exposed to moderate water nutrient levels. Feeding preferences by shredders were not affected by leaf species or nutrient level. The low carbon quality on I. laurina leaves makes it a less attractive substrate for microbial decomposers and a less palatable resource for shredders. Changes in litter input characteristics may be more important than short-term nutrient enrichment of stream water on shredder performance and ecosystem functioning.  相似文献   

9.
10.
11.
We assessed leaf breakdown of five native riparian species from Brazilian Cerrado (Myrcia guyanensis, Ocotea sp., Miconia chartacea, Protium brasiliense, and Protium heptaphyllum), incubated in single and mixed species packs in two headwater streams with different physico-chemical properties in the Espinhaço Mountain range (Southeastern Brazil). Leaves were placed in plastic litter bags (15 cm×20 cm, 10 mm mesh size) and the experiments were carried out during the dry seasons of 2003 and 2004. Leaf nitrogen and phosphorus contents were similar in all species, but polyphenolic contents were different (P<0.001). M. guyanensis showed higher polyphenolics content (8.48% g−1 dry mass) and leaf toughness. Individually, higher breakdown rates were found in M. guyanensis at Indaiá stream (k=0.0063±0.0005 d−1) and in Ocotea sp. at Garcia stream (k=0.0088±0.0006 d−1). However, P. brasiliense and P. heptaphyllum showed lower breakdown rates at Indaiá and Garcia streams (Indaiá: k=0.0020±0.0002 and 0.0019±0.0001 d−1; Garcia: k=0.0042±0.0001 and 0.0040±0.0002 d−1). Single and mixed breakdown processes of each species were not statistically different on both streams. However, all species showed higher breakdown rates at Garcia stream (P<0.01). These results suggest that leaf breakdown is not altered when litter benthic patches are composed by a mixture of species in the same proportions that they occur on riparian leaf falls.  相似文献   

12.
比较了毛竹、石栎和山胡椒叶片的理化属性,采用粗网叶袋法研究了三种落叶在太湖流域上游西苕溪中的分解过程,探讨了毛竹叶成为溪流优势外来能源后对溪流生态过程和底栖动物群落结构的影响.三种落叶的氮、磷含量及叶片厚度都存在显著差异,毛竹叶的氮含量(30.23 g/kg)远高于石栎(20.98 g/kg)和山胡椒(9.69 g/kg),其中毛竹叶的分解速率最快(k=0.00592 d-1),山胡椒(0.00297 d-1)和石栎叶(0.00212 d-1)较慢.三种落叶叶袋间的大型底栖无脊椎动物包括各取食功能团的多度和生物量无显著差异,而4次采样间的差异很显著.大型底栖动物的取食功能团中,撕食者的数量比例最高(40.3%),生物量比例为41.6%,是落叶分解的重要功能类群.撕食者中,利用阔叶筑巢的鳞石蛾Lepi-dostoma数量最多,占全部底栖动物的14%,是该溪流中主要的撕食者类群.因此,由于毛竹叶具有氮、磷含量较高、叶形较窄,以及两年进行一次换叶的特点,当毛竹叶替代其他阔叶秋季落叶的树种成为源头溪流优势外来能源后,可能会改变源头溪流中的氮磷含量、溪流外来能源的量和滞留时间以及底栖动物群落结构.  相似文献   

13.
Agricultural practices affect the integrity of riparian areas of small streams. In this study we tested the hypothesis that the increase of agricultural activities influences negatively the functional conditions of the low order streams in the Atlantic forest of southern Brazil. Litter bags with leaves of Nectandra megapotamica (Spreng.) Mez were located in eight streams with different amounts of woody vegetation and agriculture land uses in their riparian zones. After 7, 15 and 30 days, the litter bags were removed for identification of associated invertebrates and determination of decomposition rate. Decomposition rates were negatively influenced by agriculture in the riparian zone while primary production was positively influenced. On the other hand, the decomposition mediated by microorganisms did not vary along the degradation gradient. The abundance of collectors increased in streams adjacent to agricultural land while the abundance of shredders was decreased. Our results showed that algae biomass and leaf decomposition were sensitive to the replacement of native vegetation by agricultural use. However, the trophic structure of invertebrates was moderately sensitive to agricultural land use.  相似文献   

14.
Riparian invasion by non-native trees may lead to changes in the quality of leaf litter inputs into freshwater ecosystems. Different plant species may affect the community of decomposers and the rate of litter decay in different ways. We studied the microbial colonization and decomposition of leaf litter of the invasive to Lithuania Acer negundo and native Alnus glutinosa during 64-day litterbag experiments in the littoral zones of mesotrophic and eutrophic lakes. The decomposition of A. negundo leaf litter proceeded faster than that of A. glutinosa irrespective of differences in the trophic conditions of the lakes. The amount of terrestrial and cellulose-degrading fungi (during the initial period) and bacterial numbers (during the experiment) were higher on A. negundo leaves than on A. glutinosa in both lakes. Differences in the assemblages of aquatic fungi colonizing the leaves of both types might be one of the reasons causing variation in their decay. The trophic conditions of the lakes did not significantly determine the extent of differences in decomposition rates between the two leaf species, but affected the microbial decomposers. The sporulation rate and diversity of aquatic fungi, especially on A. glutinosa leaves, was higher in the mesotrophic lake than in the eutrophic lake, while heterotrophic bacteria were more numerous on the leaves in the eutrophic lake. Generally, differences in the colonization dynamics of heterotrophs and the faster decay of A. negundo litter than of A. glutinosa suggest that the replacement of native riparian species such as the dominating A. glutinosa by invasive A. negundo may cause changes of organic matter processing in the littoral zones of lakes.  相似文献   

15.
Alien plant invasions of riparian zones can trigger bottom-up effects on freshwater ecosystems through changes in leaf litter supply. Riparian zones of ponds are often invaded by alien species, and although these habitats are common, the effect of invasive alien species on ponds has rarely been studied. We performed a leaf litter experiment in a pond and compared within- and between-species variation in the breakdown rates of three native species (Alnus glutinosa, Phragmites australis and Typha angustifolia) and two aggressive alien invaders of riparian zones (Fallopia japonica and Solidago canadensis). The litter of S. canadensis decomposed faster than the litter of the other plants; more than 50 % of the S. canadensis biomass decomposed within a week. This contradicts the home-field advantage hypothesis, and we argue that the quality rather than the origin of litter might be the key factor driving breakdown rates. We also reported considerable intra-specific variation; old leaves (collected in spring after a partial aerial breakdown on stems) decomposed two to seven times slower than senescent leaves (collected in autumn just after abscission). The continuous seasonal supply of leaves of different quality into freshwaters may be disrupted by terrestrial invasions, especially if an invader forms monoculture stands and produces a highly palatable litter, as is the case with S. canadensis. This may fundamentally alter the resource dynamics in the pond environment through a rapid depletion of litter mass before the next litterfall.  相似文献   

16.
Freshwater communities on remote oceanic islands can be depauperate due to the influence of biogeographic processes that operate over a range of spatial scales, influencing the colonization of organisms, and events that shape local freshwater assemblages. The consequences of this paucity in organism diversity for the functioning of these ecosystems are, however, not well understood.Here, we examine the relative decomposition rate of leaf litter of native vs. exotic origin by aquatic macroinvertebrates and microbial communities in an isolated and depauperate oceanic environment.Bags containing a standard amount of leaf litter of each of 10 tree species (5 native and 5 non-native species) were deployed on two streams. Two types of bags differing in mesh size were used to allow or prevent the access of leaf litter to macroinvertebrates, respectively. Over a period of 28 days, mass loss of leaf litter was similar in the two bag types suggesting that macroinvertebrates had little influence on the break down of leaf litter in this system. In addition, there was no difference in mass loss of leaf litter of native and exotic origin. Decomposition rates were highly species-specific suggesting that decomposition rates were related to inhibitory substance specific of each leaf species. Our results add to the wider literature by showing that in depauperate and isolated ecosystems, and in contrast to temperate continental ecosystems, decomposition of plant litter by aquatic macroinvertebrates is negligible.  相似文献   

17.
The decomposition of plant litter is an important mechanism in regard to energy and nutrient dynamics of ecosystems. Silicon concentration of plant tissue can affect these processes by changing litter quality, i.e. nutrient stoichiometry and cellulose and phenols content. To determine which group of microbial decomposers benefits from high Si content in plants and how this impacts on animal decomposers, a batch experiment was conducted with reed leaf litter (Phragmites australis) differing in Si content in the presence/absence of invertebrate shredders (Gammarus pulex). Lipid concentration of G. pulex, in reed litter and fine particulate matter (FPOM) were examined. High Si concentration in reed resulted in a decline of gram positive bacteria in the heterotrophic biofilm and of gram negative bacteria in FPOM. The lipid composition in the next trophic level, the decomposer G. pulex, changed too, indicating a diet shift in favor of bacteria and algae with increasing litter Si concentration. Thus, basal decomposers were affected by the Si availability in plant resources, and these effects likely persist along the food chain, as FPOM is a dominant food supply for other groups, e.g. collectors. This impact of Si content on plant substrate quality for decomposer food webs may have global relevance, due to related modifications in carbon and nutrient cycling during litter decomposition.  相似文献   

18.
The tropical riparian zone has a high diversity of plant species that produce a wide variety of chemical compounds, which may be released into streams. However, in recent decades there has been an extensive replacement of tropical native vegetation by Eucalyptus monocultures. Our objective was to compare fungal colonization of Eucalyptus camaldulensis leaves with fungal colonization of native plant species from riparian zones in Brazilian Cerrado (savannah) streams. The fungal colonization and enzymatic activity significantly influenced leaf litter decomposition. Fungal sporulation rates from leaf litter varied significantly with leaf species, with E. camaldulensis showing the highest sporulation rate (1226 conidia mg−1AFDM day−1) and leaf mass loss (23.2 ± 0.9%). This species has the lowest lignin content and highest N concentration among the studied species. Among the studied native species, we observed the highest sporulation rate for Protium spruceanum (271 conidia mg−1AFDM day−1), Maprounea guianensis (268 conidia mg−1AFDM day−1) and Copaifera langsdorffii (196 conidia mg−1AFDM day−1). Overall, native plant species of the Brazilian Cerrado exhibited recalcitrant characteristics and a higher lignin:N ratio. Therefore, variations in the physical and chemical characteristics of the leaf litter could explain the higher decay rate and reproductive activity observed for E. camaldulensis. However, the detritus of this species were colonized almost exclusively by Anguillospora filiformis (99.6 ± 0.4%) and exhibited a reduction in aquatic hyphomycetes species diversity. Our results suggest that the disturbance in the composition of riparian vegetation and consequently, in the diversity of leaf litter input into streams, could change the patterns and rates of leaf litter utilization by microbial decomposers. These changes may have important consequences in the processing of organic matter and, consequently, in the functioning of freshwater ecosystems.  相似文献   

19.
In order to provide an accurate annual rate of net benthic community production, community photosynthetic response to incident irradiance and respiration were measured at different times of the year, at mid-tide level on the muddiest part of the Mont Saint-Michel Bay. As the water turbidity prevented any photosynthesis by the microphytobenthos during immersion periods, primary production was measured only during emersion periods. In contrast respiration was expected to vary according to the tidal cycle and was measured during both emersion and immersion periods. Primary production and respiration rates under emersion were assessed using in situ infra-red gas analysis of CO2 exchange measured in a benthic chamber. Respiration rates under immersion were assessed through total CO2 concentration variations in incubated cores.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号