首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
Long- and short-term channel changes are documented and analysed for a historically unstable reach of the River Severn at Llandinam, mid-Wales. Long-term changes (the last 150 years), reconstructed from 10 archival sources, are characterized by channel planform switching between meandering (1836–1840 and 1948–1963) and braided (1884–1903 and 1975–present) phases. Short-term changes, monitored by detailed planform surveys over a 2·5 year period, showed smaller-scale channel adjustments involving channel switching, bar accretion and channel expansion. Phases of braiding at Llandinam have been triggered by extrinsic controls, primarily flooding, but intrinsic controls (floodplain sediments, planform evolution and channel gradient) have been influential in priming the reach prior to destabilization. Flow regulation on the River Severn since 1968 has partly frozen the planform of the contemporary braid zone. Management of channel planform adjustments, where environmental change is phased in over time, must be informed by a knowledge of the potential for triggered planform switches. In addition, the effects of environmental change on fluvial systems are often historically contingent upon the state of the channel at the time of impact. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Restoration of the upper Strawberry River included bank stabilization techniques because it was assumed that excessive bank erosion was degrading spawning habitat for Bonneville cutthroat trout (BCT). Using a long‐term aerial photograph record, the historical range of variability in bank erosion rates and channel geometry was determined, and this information was used to assess present‐day conditions and the rationale for restoration. Relative to historical variability, the channel planform was relatively stable and bank erosion rates were the lowest recorded in the post‐disturbance era. Although a historical loss of riparian vegetation coincided with a shift to a wider and more sinuous channel, lateral migration rates declined and the channel narrowed as riparian cover increased in the decades before restoration, indicating a process of natural recovery. Furthermore, it was found that the percentage of fine sediment in the streambed before restoration was insufficient to affect BCT spawning success. Together these results suggest that bank erosion and fine sediment did not affect the quality of spawning habitat or the abundance of BCT on the upper Strawberry River. The results highlight how a historical analysis can be used to identify the sources of habitat degradation and inform the selection of restoration goals and strategies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Air photo interpretation and field survey were used to examine rates and patterns of planform change over the last 40 years on an 80 km reach of the Luangwa River, Zambia. The river, a tributary of the Zambezi, is a 100–200 m wide, medium sinuosity sand‐bed river (sinuosity index 1·84). High rates of channel migration (<33 m a−1) and cutoffs on meandering sections are frequent. Some meandering reaches, however, have remained relatively stable. A form of anastomosing with anabranches up to 14 km in length is also a characteristic. Patterns of meander development vary between bends but all can be described in relation to traditional geomorphic models; change occurs by translation, rotation, double‐heading, concave bank bench formation and cutoff causing river realignment. At the local scale spatial variability in bank resistance, induced by floodplain sedimentology, controls rate of bank erosion, and valley‐side channel ‘deflection’ is also apparent. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Bank erosion rates and processes across a range of spatial scales are poorly understood in most environments, especially in the seasonally wet tropics of northern Australia where sediment yields are among global minima. A total of 177 erosion pins was installed at 45 sites on four sand‐bed streams (Tributaries North and Central, East Tributary and Ngarradj) in the Ngarradj catchment in the Alligator Rivers Region. Bank erosion was measured for up to 3·5 years (start of 1998/99 wet season to end of 2001/02 wet season) at three spatial scales, namely a discontinuous gully (0·6 km2) that was initiated by erosion of a grass swale between 1975 and 1981, a small continuous channel (2·5 km2) on an alluvial fan that was formed by incision of a formerly discontinuous channel between 1964 and 1978, and three medium‐sized, continuous channels (8·5–43·6 km2) with riparian vegetation. The bank erosion measurements during a period of average to above‐average rainfall established that substantial bank erosion occurred during the wet season on the two smaller channels by rapid lateral migration (Tributary Central) and by erosion of gully sidewalls due to a combination of within‐gully flows and overland flow plunging over the sidewalls (Tributary North). Minor bank erosion also occurred during the dry season by faunal activity, by desiccation and loss of cohesion of the sandy bank sediments and by dry flow processes. The larger channels with riparian vegetation (East Tributary and Ngarradj) did not generate significant amounts of sediment by bank erosion. Deposition (i.e. negative pin values) was locally significant at all scales. Bank profile form and channel planform exert a strong control on erosion rates during the wet season but not during the dry season. Copyright © 2006 Commonwealth Government of Australia.  相似文献   

5.
Catchment sediment budget models are used to predict the location and rates of bank erosion in tropical catchments draining to the Great Barrier Reef lagoon, yet the reliability of these predictions has not been tested due to a lack of measured bank erosion data. This paper presents the results of a 3 year field study examining bank erosion and channel change on the Daintree River, Australia. Three different methods were employed: (1) erosion pins were used to assess the influence of riparian vegetation on bank erosion, (2) bench‐marked cross‐sections were used to evaluate annual changes in channel width and (3) historical aerial photos were used to place the short term data into a longer temporal perspective of channel change (1972–2000). The erosion pin data suggest that the mean erosion rate of banks with riparian vegetation is 6·5 times (or 85%) lower than that of banks without riparian vegetation. The changes measured from cross‐section surveys suggest that channel width has increased by an average of 0·74 (±0·47) m a?1 over the study period (or ~0·8% yr?1). The aerial photo results suggest that over the last 30 years the Daintree River has undergone channel contraction of the order of 0·25 m a?1. The cross‐section data were compared against modelled SedNet bank erosion rates, and it was found that the model underestimated bank erosion and was unable to represent the variable erosion and accretion processes that were observed in the field data. The reach averaged bank erosion rates were improved by the inclusion of locally derived bed slope and discharge estimates; however, the results suggest that it will be difficult for catchment scale sediment budget models to ever accurately predict the location and rate of bank erosion due to the variation in bank erosion rates in both space and time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The planform dynamics of meandering rivers produce a complex array of meander forms, including elongated meander loops. Thus far, few studies have examined in detail the flow structure within meander loops and the relation of flow structure to patterns of planform change. This field‐based investigation examines relations between three‐dimensional fluid motion and channel change within an elongated, asymmetrical meander loop containing multiple pool–riffle structures. The downstream velocity field is characterized by a high‐velocity core that shifts slightly outward as flow moves through individual lobes of the loop. For some of the measured flows this core becomes submerged below the water surface downstream of the lobe apexes. Vectors of cross‐stream/vertical velocities indicate that skew‐induced helical motion develops within the pools near lobe apexes and decays over riffles where channel curvature is less pronounced. Maximum rates of bank retreat generally occur near lobe apexes where impingement of the flow on the outer channel bank is greatest. However, maximum rates and loci of bank retreat differ for upstream and downstream lobes of the loop, leading to increasing asymmetry of loop geometry over time—a finding consistent with experimental investigations of loop evolution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Several sediment cores were collected from two proglacial lakes in the vicinity of Mittivakkat Glacier, south‐east Greenland, in order to determine sedimentation rates, estimate sediment yields and identify the dominant sources of the lacustrine sediment. The presence of varves in the ice‐dammed Icefall Lake enabled sedimentation rates to be estimated using a combination of X‐ray photography and down‐core variations in 137Cs activity. Sedimentation rates for individual cores ranged between 0·52 and 1·06 g cm−2 year−1, and the average sedimentation rate was estimated to be 0·79 g cm−2 year−1. Despite considerable down‐core variability in annual sedimentation rates, there is no significant trend over the period 1970 to 1994. After correcting for autochthonous organic matter content and trap efficiency, the mean fine‐grained minerogenic sediment yield from the 3·8 km2 basin contributing to the lake was estimated to be 327 t km−2 year−1. Cores were also collected from the topset beds of two small deltas in Icefall Lake. The deposition of coarse‐grained sediment on the delta surface was estimated to total in excess of 15 cm over the last c. 40 years. In the larger Lake Kuutuaq, which is located about 5 km from the glacier front and for which the glacier represents a smaller proportion of the contributing catchment, sedimentation rates determined for six cores collected from the centre of the lake, based on their 137Cs depth profiles, were estimated to range between 0·05 and 0·11 g cm−2 year−1, and the average was 0·08 g cm−2 year−1. The longer‐term (c. 100–150 years) average sedimentation rate for one of the cores, estimated from its unsupported 210Pb profile, was 0·10–0·13 g cm−2 year−1, suggesting that sedimentation rates in this lake have been essentially constant over the last c. 100–150 years. The average fine‐grained sediment yield from the 32·4 km2 catchment contributing to the lake was estimated to be 13 t km−2 year−1. The 137Cs depth profiles for cores collected from the topset beds of the delta of Lake Kuutuaq indicate that in excess of 27 cm of coarse‐grained sediment had accumulated on the delta surface over the last approximately 40 years. Caesium‐137 concentrations associated with the most recently deposited (uppermost) fine‐grained sediment in both Icefall Lake and Lake Kuutuaq were similar to those measured in fine‐grained sediment collected from steep slopes in the immediate proglacial zone, suggesting that this material, rather than contemporary glacial debris, is the most likely source of the sediment deposited in the lakes. This finding is confirmed by the 137Cs concentrations associated with suspended sediment collected from the Mittivakkat stream, which are very similar to those for proglacial material. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
We evaluate the validity of the beaver‐meadow complex hypothesis, used to explain the deposition of extensive fine sediment in broad, low‐gradient valleys. Previous work establishes that beaver damming forms wet meadows with multi‐thread channels and enhanced sediment storage, but the long‐term geomorphic effects of beaver are unclear. We focus on two low‐gradient broad valleys, Beaver Meadows and Moraine Park, in Rocky Mountain National Park (Colorado, USA). Both valleys experienced a dramatic decrease in beaver population in the past century and provide an ideal setting for determining whether contemporary geomorphic conditions and sedimentation are within the historical range of variability of valley bottom processes. We examine the geomorphic significance of beaver‐pond sediment by determining the rates and types of sedimentation since the middle Holocene and the role of beaver in driving floodplain evolution through increased channel complexity and fine sediment deposition. Sediment analyses from cores and cutbanks indicate that 33–50% of the alluvial sediment in Beaver Meadows is ponded and 28–40% was deposited in‐channel; in Moraine Park 32–41% is ponded sediment and 40–52% was deposited in‐channel. Radiocarbon ages spanning 4300 years indicate long‐term aggradation rates of ~0.05 cm yr‐1. The observed highly variable short‐term rates indicate temporal heterogeneity in aggradation, which in turn reflects spatial heterogeneity in processes at any point in time. Channel complexity increases directly downstream of beaver dams. The increased complexity forms a positive feedback for beaver‐induced sedimentation; the multi‐thread channel increases potential channel length for further damming, which increases the potential area occupied by beaver ponds and the volume of fine sediment trapped. Channel complexity decreased significantly as surveyed beaver population decreased. Beaver Meadows and Moraine Park represent settings where beaver substantially influence post‐glacial floodplain aggradation. These findings underscore the importance of understanding the historical range of variability of valley bottom processes, and implications for environmental restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Photogrammetric monitoring of small streams under a riparian forest canopy   总被引:2,自引:0,他引:2  
The recent advent of digital photogrammetry has enabled the modeling and monitoring of river beds at relatively high spatial resolution (0·01 to 1 m) through the extraction of digital elevation models (DEMs). The traditional approach to image capture has been to mount a metric camera to an aircraft, although non‐metric cameras have been mounted to a variety of novel aerial platforms to acquire river‐based imagery (e.g. helicopters, radio‐controlled motorized vehicles, tethered blimps and balloons). However, most of these techniques are designed to acquire imagery at flying heights above the riparian tree canopy. In relatively narrow channels (e.g. <20 m bankfull width), streamside trees can obscure the channel and limit continuous photogrammetric data acquisition of both the channel bed and banks, while still providing useful information regarding the riparian canopy and even spot elevations of the channel. This paper presents a technique for the capture and analysis of close‐range photogrammetric data acquired from a vertically mounted non‐metric camera suspended 10 m above the channel bed by a unipod. The camera is positioned under the riparian forest canopy so that the channel bed can be imaged without obstruction. The system is portable and permits relatively rapid image acquisition over rough terrain and in dense forest. The platform was used to generate DEMs with a nominal ground resolution of 0·03 m. DEMs generated from this platform required post‐possessing to either adjust or eliminate erroneous cells introduced by the extraction process, overhanging branches, and by the effects of refraction at the air–water interface for submerged portions of the channel bed. The vertical precision in the post‐processed surface generally ranged from ± 0·01 to 0·1 m depending on the quality of triangulation and the characteristics of the surface being imaged. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We evaluated controls on locations of channel incision, variation in channel evolution pathways and the time required to reconnect incised channels to their historical floodplains in the Walla Walla and Tucannon River basins, northwestern USA. Controls on incision locations are hierarchically nested. A first‐order geological control defines locations of channels prone to incision, and a second‐order control determines which of these channels are incised. Channels prone to incision are reaches with silt‐dominated valley fills, which have sediment source areas dominated by loess deposits and channel slopes less than 0·1(area)?0·45. Among channels prone to incision, channels below a second slope–area threshold (slope = 0·15(area)?0·8) did not incise. Once incised, channels follow two different evolution models. Small, deeply incised channels follow Model I, which is characterized by the absence of a significant widening phase following incision. Widening is limited by accumulation of bank failure deposits at the base of banks, which reduces lateral channel migration. Larger channels follow Model II, in which widening is followed by development of an inset floodplain and aggradation. In contrast to patterns observed elsewhere, we found the widest incised channels upstream of narrower reaches, which reflects a downstream decrease in bed load supply. Based on literature values of floodplain aggradation rates, we estimate recovery times for incised channels (the time required to reconnect to the historical floodplain) between 60 and 275 years. Restoration actions such as allowing modest beaver recolonization can decrease recovery time by 17–33 per cent. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

11.
Changes in floodplain sediment dynamics have profound effects on riverine habitats and riparian biodiversity. Depopulation due to socio‐economic changes in the Dragonja catchment (91 km2) in southwestern Slovenia resulted in the abandonment of agricultural fields, followed by natural reforestation since 1945. This profoundly changed the water and sediment supply to the streams, as well as floodplain sediment deposition. This paper presents a reconstruction of the development of the Dragonja floodplain due to these land use changes during the last 60 years. The reconstruction is based on dating of floodplain sediments using 137Cs profiles, measurement of actual sedimentation rates using artificial grass sedimentation mats, and linking this information to the present‐day hydrological behaviour of the river. The sedimentation mats showed that floodplain sedimentation was restricted to peak flows of considerable magnitude. Due to the reforestation, the return period of such high flows increased from 0·31 year in the period 1960–1985 to 0·81 year between 1986 and 2003, with commensurate changes in sedimentation rates. At the 1·5 m river terrace (formed about 60 years ago), 137Cs‐based sedimentation rates (1960–1986) were roughly twice the rates inferred from the artificial grass mats (2001–2003). This finding matches the increase in the return period for larger peak events during the 1986–2003 period, which caused fewer major inundations at this level. Conversely, sedimentation rates determined for the lowest terrace at 0·5 m were similar for both techniques (and periods) because the return periods of the peak events responsible for sediment deposition at this lower level did not change much over the period 1986–2003. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
We describe additions made to a multi‐size sediment routing model enabling it to simulate width adjustment simultaneously alongside bed aggradation/incision and fining/coarsening. The model is intended for use in single thread gravel‐bed rivers over annual to decadal timescales and for reach lengths of 1–10 km. It uses a split‐channel approach with separate calculations of flow and sediment transport in the left and right sides of the channel. Bank erosion is treated as a function of excess shear stress with bank accretion occurring when shear stress falls below a second, low, threshold. A curvature function redistributes shear stress to either side of the channel. We illustrate the model through applications to a 5·6‐km reach of the upper River Wharfe in northern England. The sediment routing component with default parameter values gives excellent agreement with field data on downstream fining and down‐reach reduction in bedload flux, and the width‐adjustment components with approximate calibration to match maximum observed rates of bank shifting give plausible patterns of local change. The approach may be useful for exploring interactions between sediment delivery, river management and channel change in upland settings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
When studying the evolution of landscape, it is difficult to discriminate the influence of anthropogenic from natural causes, or recognise changes caused by different sources of human action. This is especially challenging when the influence of certain sources is overprinted. For instance, although dam closure is the most common method of altering river courses, dam construction is often preceded by hydro‐technical works such as channel straightening, embankment construction or sediment mining. Both dam construction and the hydro‐technical works that precede dam closure can result in changes in the balance between sediment supply and transport capacity, and often, changes in river planform. The main objective of this study was to verify whether the works preceding dam closure are an important driver of river planform changes on the lower Drava River (Hungary). The case study is based on geological and geophysical surveys, as well as the analysis of historical maps covering an anabranching, 23 km long valley section. We show that channel straightening conducted prior to dam closure resulted in a transition from a meandering to sinuous planform with channel bars. Dam construction itself then caused enhanced incision, exposure of bar surfaces, vegetation encroachment and the formation of an anabranching planform. Based on this study, we developed models of alluvial island and channel planform evolution downstream of dams. Dam construction enhances channel incision, narrowing, and the reduction of flow caused by earlier hydro‐technical works. Many rivers downstream of dams experience episodes of anabranching or wandering, with a multi‐thread pattern replacing sinuous, braided and meandering courses. When incision continues, river patterns evolve from anabranching to sinuous via the attachment of alluvial islands to floodplains. However, the timing and sequence of these changes depend on hydrological and sediment supply regimes, geomorphic settings and anthropogenic actions accompanying dam construction. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
Seasonal and event variations in stream channel area and the contributions of channel precipitation to stream flow were studied on a 106‐ha forested headwater catchment in central Pennsylvania. Variations in stream velocity, flowing stream surface width and widths of near‐stream saturated areas were periodically monitored at 61 channel transects over a two‐year period. The area of flowing stream surface and near‐stream saturated zones combined, ranged from 0·07% of basin area during summer low flows to 0·60% of total basin area during peak storm flows. Near‐stream saturated zones generally represented about half of the total channel area available to intercept throughfall and generate channel precipitation. Contributions of routed channel precipitation from the flowing stream surface and near‐stream zones, calculated using the Penn State Runoff Model (PSRM, v. 95), represented from 1·1 to 6·4% of total stream flow and 2·5–29% of total storm flow (stream flow–antecedent baseflow) during the six events. Areas of near‐stream saturated zones contributed 35–52% of the computed channel precipitation during the six events. Channel precipitation contributed a higher percentage of stream flow for events with low antecedent baseflow when storm flow generated by subsurface sources was relatively low. Expansion of channel area and consequent increases in volumes of channel precipitation with flow increases during events was non‐linear, with greater rates of change occurring at lower than at higher discharge rates. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Pikes Peak Highway is a partially paved road between Cascade, Colorado and the summit of Pikes Peak. Significant gully erosion is occurring on the hillslopes due to the concentration of surface runoff, the rearrangement of drainage pathways along the road surface and adjacent drainage ditches, and the high erodibility of weathered Pikes Peak granite that underlies the area. As a result, large quantities of sediment are transported to surrounding valley networks causing significant damage to water quality and aquatic, wetland, and riparian ecosystems. This study establishes the slope/drainage area threshold for gullying along Pikes Peak Highway and a cesium‐137 based sediment budget highlighting rates of gully erosion and subsequent valley deposition for a small headwater basin. The threshold for gullying along the road is Scr = 0 · 21A–0·45 and the road surface reduces the critical slope requirement for gullying compared to natural drainages in the area. Total gully volume for the 20 gullies along the road is estimated at 5974 m3, with an erosion rate of 64 m3 yr–1 to 101 m3 yr–1. Net valley deposition is estimated at 162 m3 yr–1 with 120 m3 yr–1 unaccounted for by gullying. The hillslope–channel interface is decoupled with minimal downstream sediment transport which results in significant local gully‐derived sedimentation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Experiments with the 10 m Flood Channel Facility at HR Wallingford, UK, indicate a fundamental dependency of the overbank deposition pattern of channel suspended sediments on channel planform. Two experiments (100 and 140 l s?1) in a 1·95 m wide straight channel showed deposition concentrated in a berm along the channel bank. Little sediment was transferred further onto the floodplain. For the larger flow, the berm formed further from the channel. A single experiment (103 l s?1) with a 1·31 m wide meandering channel showed deposition across the entire floodplain tongue between successive meanders. Maximum deposition occurred on the downstream side of the meander, just past the bend apex. These generalized flume results complement the real‐world but site‐specific data of field studies. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Two reaches of Aguapeí River, a left‐bank tributary of the Paraná River in western São Paulo state, Brazil, were studied with the objective of assessing the role of bend curvature on channel migration in this wet‐tropical system and examining if land‐use changes or ENSO (El Niño Southern Oscillation) driven climate anomalies over nearly half a century have changed migration behaviour and planform geometry. Meander‐bend migration rates and morphometric parameters including meander‐bend curvature, sinuosity, meander wavelength and channel width, were measured and the frequency of bend cutoffs was analysed in order to determine the rate of change of channel adjustment over a 48 year period to 2010. Results show that maximum average channel migration rates occur in bends with curvatures of about 2–3 rc/w, similar to other previously studied temperate and subarctic freely meandering rivers although not as pronounced and with a tendency to favour tighter curvature. From 1962 to 2010 the Aguapeí River has undergone a significant reduction in sinuosity, a shift from tightly curving to more open bends, an overall decline in channel migration rates, an associated decrease in the frequency of neck‐cutoffs and an overall increase in channel width. As the majority of the drainage basin (96%) was already deforested in 1962, channel form and process changes were, unlike an interpretation for an adjacent river system, not attributed to altered land‐use but rather to a sharp ENSO‐driven increase in the magnitude of peak flow‐discharges of some 32% since 1972. In summary, this research revealed that recent climate and associated flow regime changes are having a pronounced effect on river channel behaviour in the Aguapeí River investigated here. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
River banks are important sources of sediment and phosphorus to fluvial systems, and the erosion processes operating on the banks are complex and change over time. This study explores the magnitude of bank erosion on a cohesive streambank within a small channelized stream and studies the various types of erosion processes taking place. Repeat field surveys of erosion pin plots were carried out during a 4‐year period and observations were supplemented by continuous monitoring of volumetric soil water content, soil temperature, ground water level and exposure of a PEEP sensor. Bank erosion rates (17·6–30·1 mm year?1) and total P content on the banks were relatively high, which makes the bank an important source of sediment and phosphorus to the stream, and it was estimated that 0·27 kg Ptot year?1 ha?1 may potentially be supplied to the stream from the banks. Yearly pin erosion rates exceeding 5 cm year?1 were mainly found at the lower parts of the bank and were associated with fluvial erosion. Negative erosion pin readings were widespread with a net advance of the bank during the monitoring period mainly attributed to subaerial processes and bank failure. It was found that dry periods characterized by low soil water content and freeze–thaw cycles during winter triggered bank failures. The great spatial variability, in combination with the temporal interaction of processes operating at different scales, requires new tools such as 3‐D topographical surveying to better capture bank erosion rates. An understanding of the processes governing bank erosion is required for riparian management using vegetational measures as root size and structure play different roles when it comes to controlling bank erosion processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
There has been little work to date into the controls on slope‐to‐channel fine sediment connectivity in alpine environments largely ice‐free for most of the Holocene. Characterization of these controls can be expected to result in better understanding of how landscapes “relax” from such perturbations as climate shock. We monitored fine sediment mobilization on a slope segment hydrologically connected to a stream in the largely ice‐free 8·3 km2 Hoophorn Valley, New Zealand. Gerlach traps were installed in ephemeral slope channels to trap surficial material mobilized during rainfall events. Channel sediment flux was measured using turbidimeters above and below the connected slope, and hysteresis patterns in discharge‐suspended sediment concentrations were used to determine sediment sources. Over the 96 day measurement period, sediment mobilization from the slope segment was limited to rainfall events, with increasingly larger particles trapped as event magnitude increased. Less than 1% of the mass of particles collected during these events was fine sediment. During this period, 714 t of suspended sediment was transported through the lower gauging station, 60% of it during rainfall events. Channel sediment transfer patterns during these events were dominated by clockwise hysteresis, interpreted as remobilization of nearby in‐channel sources, further suggesting limited input of fine sediment from slopes in the lower valley. Strong counterclockwise hysteresis, representing input of fine sediment from slope segments, was restricted to the largest storm event (JD2 2009) when surfaces in the upper basin were activated. The results indicate that the slopes of the lower Hoophorn catchment are no longer functioning as sources of fine sediment, but rather as sources of coarse material, with flux rates controlled by the intensity and duration of rainfall events. Although speculative, these findings suggest a shift to a coarse sediment dominated slope‐to‐channel transfer system as the influence of pre‐Holocene glacial erosion declines. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Relations among hydroclimatic and channel planform changes on Squamish River are presented for the period 1956–2007. Squamish River basin occupies 3600 km2 of mountainous terrain in south‐western British Columbia, about 50 km north of Vancouver. The magnitude, volume and duration of extreme floods (Q ≥ 1500 m3/s) exhibit respective temporal increases of 50, 450 and 300%. The increase in extreme floods is attributed to the intensification of late‐season (August–December) Pacific storms that have produced increases in precipitation amounts, intensity and duration of respectively 340, 200 and 200% over the same period. Changes in floodplain‐surface area calculated from the geographic information system (GIS) differencing of sequential large‐scale aerial photographs indicate that the rate of geomorphic change in Squamish River has accelerated during the 1980s to the mid‐1990s. Among four study reaches of varying planform, erosional, depositional and cumulative changes in floodplain surface‐area have rapidly increased. Channel‐change activity after 1980 has increased by a factor of two to six compared with the period prior to 1980. Erosion is currently outpacing deposition in the majority of study reaches. Although channel geometry generally exhibits no uniform pattern of response to the increase in extreme floods, the meandering reaches have straightened over the duration of the study period. The increase in the magnitude and duration of the annual flood appears to be the principal cause of this recent acceleration of channel change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号