首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A spatially homogeneous and anisotropic Bianchi type-III space-time is considered in the framework of a scalar-tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961) in the presence of bulk viscous fluid containing one dimensional cosmic strings. We have found a determinate solution of the field equations using the plausible physical conditions (i) a barotropic equation state for the pressure and density, (ii) special law of variation for Hubble’s parameter proposed by Berman (Nuovo Cimento B74:182, 1983), (iii) shear scalar is proportional to scalar expansion and (iv) the trace of the energy tensor of the fluid vanishes. We have also assumed that bulk viscous pressure is proportional to energy density. Some physical and kinematical properties of the model are, also, discussed.  相似文献   

2.
A spatially homogeneous and anisotropic Bianchi type-III space-time is considered in the presence of bulk viscous fluid containing one dimensional cosmic strings in the frame work of a scalar-tensor theory of gravity proposed by Saez and Ballester (in Phys. Lett. A 113:467, 1986). We have obtained a determinate solution of the field equations of this theory, using (i) a barotropic equation of state for the pressure and density and (ii) the bulk viscous pressure is proportional to the energy density. Some physical properties of the model are also discussed.  相似文献   

3.
In this paper, a spatially homogeneous and anisotropic Bianchi type-V cosmological model is considered in a scalar-tensor theory of gravitation proposed by Saez and Ballester (in Phys. Lett. A 113:467, 1986) when the source for energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. The field equations being highly non-linear, we obtain a determinate solution using the plausible physical conditions (i) the scalar of expansion of the space-time is proportional to shear scalar (ii) the baratropic equation of state for pressure and density and (iii) the bulk viscous pressure is proportional to the energy density. It is interesting to observe that cosmic strings do not survive in this model. Some physical and kinematical properties of the model are also discussed.  相似文献   

4.
We have studied anisotropic and homogeneous Locally Rotationally Symmetric (LRS) Bianchi type-I, Bianchi type-V, Bianchi type-III, Bianchi type-VI0, and Kantowaski–Sachs space-times with variable equation of state (EoS) parameter (w) in General Relativity. A special form of deceleration parameter (q) which gives an early deceleration and late time accelerating cosmological model has been utilized to solve the field equations. The geometrical and physical aspects of the models are also studied.  相似文献   

5.
Bianchi Type III bulk viscous dust filled cosmological models in Lyra geometry are investigated. To get the deterministic model of the universe, we have assumed two conditions: (i) ζθ=constant; and (ii) shear (σ) is proportional to the expansion (θ). This condition leads to B=C n where ζ the coefficient of bulk viscosity, θ the expansion in the model; B and C are metric potentials and n a constant. The physical and geometrical aspects of the model and singularities in the model are also discussed.  相似文献   

6.
In this paper, we investigate a spatially homogeneous and anisotropic Bianchi type-V cosmological model in a scalar-tensor theory of gravitation proposed by Harko et al. (Phys. Rev. D 84:024020, 2011) when the source for energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. To obtain a determinate solution, a special law of variation proposed by Berman (Nuovo Cimento B 74:182, 1983) is used. We have also used the barotropic equation of state for the pressure and density and bulk viscous pressure is assumed to be proportional to energy density. It is interesting to note that the strings in this model do not survive. Also the model does not remain anisotropic throughout the evolution of the universe. Some physical and kinematical properties of the model are also discussed.  相似文献   

7.
A Bianchi type-III string cosmological model with bulk viscous fluid for massive string is investigated. To get a determinate solution, a supplementary condition B=C n, between metric potentials, is used whereB and C are function of time alone. The behaviour of the model in presence and absence of bulk viscosity, is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A locally rotationally symmetric (LRS) Bianchi type-II space-time is considered in the frame work of a modified theory of gravitation proposed by Harko et al. (Phys. Rev. D 84:024020, 2011) when the source for energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. A barotropic equation of state is assumed to get a determinate solution of the field equations. Also, the bulk viscous pressure is assumed to be proportional to the energy density. The physical behavior of the model is also discussed.  相似文献   

9.
A five dimensional Kaluza-Klein cosmological model is considered in the frame work of f(R,T) gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011) when the source for energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. A barotropic equation of state is assumed to get a determinate solution of the field equations. Also, the bulk viscous pressure is assumed to be proportional to the energy density. The physical behavior of the model is also discussed.  相似文献   

10.
A locally rotationally symmetric(LRS) Bianchi type-II space-time is considered in the frame work of a modified theory of gravitation proposed by Canuto et al. (Phys. Rev. Lett. 39:429, 1977) when the source for energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. A special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento B 74:182, 1983) is used to obtain determinate solution of the field equations. We have also used the barotropic equation of state and the bulk viscous pressure is assumed to be proportional to the energy density. The physical and kinematical properties of the model are also discussed.  相似文献   

11.
We have constructed Locally Rotationally Symmetric Bianchi type I (LRSBI) cosmological models in the f(R,T) theory of gravity when the source of gravitation is the bulk viscous fluid. The models are constructed for f(R,T)=R+2f(T) and f(R,T)=f 1(R)+f 2(T). We found that in the first case the model degenerates into effective stiff fluid model of the universe. In the second case we obtained degenerate effective stiff fluid model as well as general bulk viscous models of the universe. Some physical and kinematical properties of the models are also discussed.  相似文献   

12.
In this communication, we studied the aspects of bulk viscous fluid cosmological model with quadratic equation of state in the presence of strings loaded with particles in a higher dimensional (5- dimensional) Bianchi type-III geometry in Lyra’s Manifold (Lyra, 1951). Using physically plausible circumstances, an exact model of the universe is presented by obtaining the solutions of the Einstein’s field equations. Important geometrical and dynamical parameters of the model universes are premeditated and physical significance regarding their prospect in modern cosmology are discussed in details. Interestingly it is seen that both bulk viscosity and quadratic equation of state are acting crucial jobs throughout the evolution of the model which is expanding with acceleration so it represents dark energy model universe. Hence our model can be thought as a realistic universe.  相似文献   

13.
A spatially homogeneous and anisotropic Bianchi type-V space–time is considered in the frame work of a scale covariant theory of gravitation proposed by Canuto et al. (Phys. Rev. Lett. 39:429, 1977) when the matter sources is a bulk viscous fluid containing one dimensional cosmic strings. Using some physically plausible conditions, we have obtained a determinate solution of the field equations of the theory which represents a Bianchi type-V bulk viscous string cosmological model in this theory. Some physical and kinematical properties of the model are also discussed.  相似文献   

14.
LRS Bianchi type-I string cosmological models are studied in the frame work of general relativity when the source for the energy momentum tensor is a bulk viscous fluid containing one dimensional strings embedded in electromagnetic field. A barotropic equation of state for the pressure and density is assumed to get determinate solutions of the field equations. The bulk viscosity is assumed to be inversely proportional to the scalar expansion. The physical and kinematical properties of the models are discussed. The effect of viscosity and electromagnetic field on the physical and kinematical properties is also investigated.  相似文献   

15.
16.
An exact Bianchi type-III cosmological model in the presence of zero-mass scalar fields is obtained when the source of the gravitational field is a perfect fluid with pressure equal to energy density. Some properties of the model are also discussed.  相似文献   

17.
The aim of this paper is to study the warm inflation during intermediate era in the framework of locally rotationally symmetric Bianchi type I universe model. We assume that the universe is composed of inflaton and imperfect fluid having radiation and bulk viscous pressure. To this end, dynamical equations (first model field equation and energy conservation equations) under slow-roll approximation and in high dissipative regime are constructed. A necessary condition is developed for the realization of this anisotropic model. We assume both dissipation and bulk viscous coefficients variable as well as constant. We evaluate entropy density, scalar (tensor) power spectra, their corresponding spectral indices, tensor–scalar ratio and running of spectral index in terms of inflaton. These cosmological parameters are constrained using recent Planck and WMAP7 probe.  相似文献   

18.
Spatially homogeneous and anisotropic LRS Bianchi type-I string cosmological models are studied in the frame work of general relativity when the source for the energy momentum tensor is a bulk viscous fluid containing one dimensional strings. A barotropic equation of state for the pressure and density is assumed to get determinate solutions of the field equations. The bulk viscous pressure is assumed to be proportional to the energy density. The physical and kinematical properties of the models are discussed. The role of bulk viscosity in getting an inflationary phase in the universe is studied.  相似文献   

19.
The paper consists of some exact solutions for a homogeneous Bianchi type VI0 universe. The material distribution is taken to be a magnetized bulk viscous fluid in presence of massive cosmological string. We assume that current is flowing along x-direction. Therefore, the magnetic field is in yz-plane. For deterministic model of the universe, we assume that shear (σ) is proportional to the expansion (θ) and ζ θ=constant=ξ where ζ the coefficient of bulk viscosity and θ the expansion in the model. The physical and kinematical parameters of the models thus formed are discussed.  相似文献   

20.
A spatially homogeneous Bianchi type-VI0 space-time is considered in the frame work of f(R,T) gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011) when the source for energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. Exact solutions of the field equations are obtained both in the absence and in the presence of cosmic strings under some specific plausible physical conditions. Some physical and kinematical properties of the model are, also, studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号