首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

2.
Natural barbosalite Fe2+Fe3+ 2 (PO4)2(OH)2 from Bull Moose Mine, South Dakota, U.S.A., having ideal composition, was investigated with single crystal X-ray diffraction techniques, Mössbauer spectroscopy and SQUID magnetometry to redetermine crystal structure, valence state of iron and evolution of 57Fe Mössbauer parameter and to propose the magnetic structure at low temperatures. At 298?K the title compound is monoclinic, space group P21/n, a o ?= 7.3294(16)?Å, b o ?=?7.4921(17)?Å, c o ?=?7.4148 (18)?Å, β?=?118.43(3)°, Z?=?2. No crystallographic phase transition was observed between 298?K and 110?K. Slight discontinuities in the temperature dependence of lattice parameters and bond angles in the range between 150?K and 180?K are ascribed to the magnetic phase transition of the title compound. At 298?K the Mössbauer spectrum of the barbosalite shows two paramagnetic components, typical for Fe2+ and Fe3+ in octahedral coordination; the area ratio Fe3+/Fe2+ is exactly two, corresponding to the ideal value. Both the Fe2+ and the Fe3+ sublattice order magnetically below 173?K and exhibit a fully developed magnetic pattern at 160?K. The electric field gradient at the Fe2+ site is distorted from axial symmetry with the direction of the magnetic field nearly perpendicular to Vzz, the main component of the electric field gradient. The temperature dependent magnetic susceptibility exhibits strong antiferromagnetic ordering within the corner-sharing Fe3+-chains parallel to [101], whereas ferromagnetic coupling is assumed within the face-sharing [1?1?0] and [?1?1?0] Fe3+-Fe2+-Fe3+ trimer, connecting the Fe3+-chains to each other.  相似文献   

3.
The topotactic oxidation and delithiation reaction from triphylite, Li(Fe,Mn)PO4, leading to ferrisicklerite, Li<1(Fe3+,Mn2+)PO4, was investigated under hydrothermal conditions. A cuboid cut from a triphylite single-crystal (Palermo Mine, New Hampshire, USA) with the composition Li0.93(3)(Fe2+ 0.733(6),Fe3+ 0.015(1),Mn2+ 0.210(4),Mg0.063(2))1.021(8)P1.00(2)O4 in addition with ground bulk material were treated with KMnO4 and 30 % H2O2(aq) as oxidizing agent in a 0.1 N hydrochloric acid solution in the temperature range between 60 and 200 °C. At 120 °C a rim of 0.1 mm thickness of ferrisicklerite had formed around the core of unreacted triphylite. The sharp reaction boundary was clearly visible, due to the reddish brown absorption colors of ferrisicklerite, compared to colorless triphylite. Using single-crystal X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), electron probe micro-analysis (EPMA) and 57Fe-Mössbauer spectroscopy the product ferrisicklerite was characterized and its composition determined as Li0.30(7)(Fe2+ 0.049(1)Fe3+ 0.65(2)Mn2+ 0.218(5)Mg0.062(2))0.98(1)P1.01(3)O4, with unit cell parameters a?=?4.795(1), b?=?9.992(4), and c?=?5.886(2) Å. EPMA investigations across the reaction boundary showed no changes in the concentrations of Fe, Mn, Mg, and P. In contrast, SIMS measurements clearly proved the delithiated state of the ferrisicklerite product. Polarization microscopy revealed that the orientation of the ferrisicklerite rim was the same as that of the original triphylite single-crystal, confirming the strictly topotactic character of the reaction.  相似文献   

4.
The effects of temperature on the crystal structure of a natural epidote [Ca1.925 Fe0.745Al2.265Ti0.004Si3.037O12(OH), a = 8.890(6), b = 5.630(4), c = 10.150(6) Å and β = 115.36(5)°, Sp. Gr. P21 /m] have been investigated by means of neutron single-crystal diffraction at 293 and 1,070 K. At room conditions, the structural refinement confirms the presence of Fe3+ at the M3 site [%Fe(M3) = 73.1(8)%] and all attempts to refine the amount of Fe at the M(1) site were unsuccessful. Only one independent proton site was located. Two possible hydrogen bonds, with O(2) and O(4) as acceptors [i.e. O(10)–H(1)···O(2) and O(10)–H(1)···O(4)], occur. However, the topological configuration of the bonds suggests that the O(10)–H(1)···O(4) is energetically more favourable, as H(1)···O(4) = 1.9731(28) Å, O(10)···O(4) = 2.9318(22) Å and O(10)–H(1)···O4 = 166.7(2)°, whereas H(1)···O(2) = 2.5921(23) Å, O(10)···O(2) = 2.8221(17) Å and O(10)–H(1)···O2 = 93.3(1)°. The O(10)–H(1) bond distance corrected for “riding motion” is 0.9943 Å. The diffraction data at 1,070 K show that epidote is stable within the T-range investigated, and that its crystallinity is maintained. A positive thermal expansion is observed along all the three crystallographic axes. At 1,070 K the structural refinement again shows that Fe3+ share the M(3) site along with Al3+ [%Fe(M3)1,070K = 74(2)%]. The refined amount of Fe3+ at the M(1) is not significant [%Fe(M1)1,070K = 1(2)%]. The tetrahedral and octahedral bond distances and angles show a slight distortion of the polyhedra at high-T, but a significant increase of the bond distances compared to those at room temperature is observed, especially for bond distances corrected for “rigid body motions”. The high-T conditions also affect the inter-polyhedral configurations: the bridging angle Si(2)–O(9)–Si(1) of the Si2O7 group increases significantly with T. The high-T structure refinement shows that no dehydration effect occurs at least within the T-range investigated. The configuration of the H-bonding is basically maintained with temperature. However, the hydrogen bond strength changes at 1,070 K, as the O(10)···O(4) and H(1)···O(4) distances are slightly longer than those at 293 K. The anisotropic displacement parameters of the proton site are significantly larger than those at room condition. Reasons for the thermal stability of epidote up to 1,070 K observed in this study, the absence of dehydration and/or non-convergent ordering of Al and Fe3+ between different octahedral sites and/or convergent ordering on M(3) are discussed.  相似文献   

5.
Using single-crystal X-ray diffraction at 293, 200 and 100 K, and neutron diffraction at 50 K, we have refined the positions of all atoms, including hydrogen atoms (previously undetermined), in the structure of coquimbite ( $ P {\bar 3}1c $ , a?=?10.924(2)/10.882(2) Å, c?=?17.086(3) / 17.154(3) Å, V?=?1765.8(3)/1759.2(5) Å3, at 293 / 50 K, respectively). The use of neutron diffraction allowed us to determine precise and accurate hydrogen positions. The O–H distances in coquimbite at 50 K vary between 0.98 and 1.01 Å. In addition to H2O molecules coordinated to the Al3+ and Fe3+ ions, there are rings of six “free” H2O molecules in the coquimbite structure. These rings can be visualized as flattened octahedra with the distance between oxygen and the geometric center of the polyhedron of 2.46 Å. The hydrogen-bonding scheme undergoes no changes with decreasing temperature and the unit cell shrinks linearly from 293 to 100 K. A review of the available data on coquimbite and its “dimorph” paracoquimbite indicates that paracoquimbite may form in phases closer to the nominal composition of Fe2(SO4)3·9H2O. Coquimbite, on the other hand, has a composition approximating Fe1.5Al0.5(SO4)3·9H2O. Hence, even a “simple” sulfate Fe2-x Al x (SO4)3·9H2O may be structurally rather complex.  相似文献   

6.
The influence on the spinel structure of Fe3+ → Cr substitution was studied in flux-grown synthetic single crystals of the magnesiochromite–magnesioferrite (MgCr2O4–MgFe2O4) solid solution series. Samples were analysed by single-crystal X-ray diffraction, electron microprobe analyses, optical absorption and Mössbauer spectroscopy. With the exception of iron-poor samples (3–12 mol-% MgFe2O4), optical absorption and Mössbauer spectra show that iron occurs almost exclusively as trivalent Fe in the present samples. A very intense and broad absorption band at ca 7,800 cm?1 dominates the optical absorption spectra of samples with higher Fe-contents. The appearance of this band is related to a distinct structural disorder of Fe3+ and a development of magnetic ordering as demonstrated by Mössbauer spectra. Profound composition-related changes are observed in the Mössbauer spectra, which are magnetically unsplit in the range 2–41 mol-% magnesioferrite, but become magnetically split in the range 59–100 mol-% magnesioferrite. Structural parameters a 0 and M–O increase with magnesioferrite content and inversion degree, while u and T–O decrease. Our study confirms the previously reported (Lavina et al. 2002) influence of Fe3+ at the M site on T–O bond lengths in the spinel structure.  相似文献   

7.
The crystal structure and chemical composition of a crystal of (Mg14?x Cr x )(Si5?x Cr x )O24 (x ≈ 0.30) anhydrous Phase B (Anh-B) synthesized in the model system MgCr2O4–Mg2SiO4 at 12 GPa and 1600 °C have been investigated. The compound was found to be orthorhombic, space group Pmcb, with lattice parameters a = 5.900(1), b = 14.218(2), c = 10.029(2) Å, V = 841.3(2) Å3 and Z = 2. The structure was refined to R 1 = 0.065 using 1492 independent reflections. Chromium was found to substitute for both Mg at the M3 site (with a mean bond distance of 2.145 Å) and Si at the octahedral Si1 site (mean bond distance: 1.856 Å), according to the reaction Mg2+ + Si4+ = 2Cr3+. Such substitutions cause a reduction in the volume of the M3 site and an increase in the volume of the Si-dominant octahedron with respect to the values typically observed for pure Anh-B and Fe2+-bearing Anh-B. Taking into account that Cr3+ is not expected to be Jahn–Teller active, it appears that both the Cr3+–for–Mg and Cr3+–for–Si substitutions in the Anh-B structure decrease the distortion of the octahedra. Electron microprobe analysis gave the Mg13.66(8)Si4.70(6)Cr0.62(4)O24 stoichiometry for the studied phase. The successful synthesis of this phase provides new information for the possible mineral assemblages occurring in the Earth’s deep upper mantle and shed new light on the so-called X discontinuity that has been observed at 275–345 km depth in several subcontinental and subduction zone environments.  相似文献   

8.
Magnesium silicate perovskite is the predominant phase in the Earth’s lower mantle, and it is well known that incorporation of iron has a strong effect on its crystal structure and physical properties. To constrain the crystal chemistry of (Mg, Fe)SiO3 perovskite more accurately, we synthesized single crystals of Mg0.946(17)Fe0.056(12)Si0.997(16)O3 perovskite at 26 GPa and 2,073 K using a multianvil press and investigated its crystal structure, oxidation state and iron-site occupancy using single-crystal X-ray diffraction and energy-domain Synchrotron Mössbauer Source spectroscopy. Single-crystal refinements indicate that all iron (Fe2+ and Fe3+) substitutes on the A-site only, where \( {\text{Fe}}^{ 3+ } /\Upsigma {\text{Fe}}\sim 20\,\% \) based on Mössbauer spectroscopy. Charge balance likely occurs through a small number of cation vacancies on either the A- or the B-site. The octahedral tilt angle (Φ) calculated for our sample from the refined atomic coordinates is 20.3°, which is 2° higher than the value calculated from the unit-cell parameters (a = 4.7877 Å, b = 4.9480 Å, c = 6.915 Å) which assumes undistorted octahedra. A compilation of all available single-crystal data (atomic coordinates) for (Mg, Fe)(Si, Al)O3 perovskite from the literature shows a smooth increase of Φ with composition that is independent of the nature of cation substitution (e.g., \( {\text{Mg}}^{ 2+ } - {\text{Fe}}^{ 2+ } \) or \( {\text{Mg}}^{ 2+ } {\text{Si}}^{ 4+ } - {\text{Fe}}^{ 3+ } {\text{Al}}^{ 3+ } \) substitution mechanism), contrary to previous observations based on unit-cell parameter calculations.  相似文献   

9.
X-ray absorption spectroscopy, including extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) techniques, have been used to determine the structure and speciation of complexes for Fe2+ and Fe3+ chloride solutions at a variety of pH's, ionic strengths, and chloride/iron ratios.Low intensity K-edge transition features and analysis of modified pair correlation functions, derived from Fourier transformation of EXAFS spectra, show a regular octahedral coordination of Fe(II) by water molecules with a first-shell Fe2+-O bond distance, closely matching octahedral Fe2+-O bonds obtained from solid oxide model compounds. Solution Fe2+-O bond distances decrease with chloride/iron ratio, pH, and total FeCl2 concentration. A slight intensification of the 1s → 3d transition with increasing FeCl2 concentration suggests that chloride may begin to mix with water as a nearest-neighbor octahedral ligand. Fe3+ solutions show a pronounced increase in the 1s → 3d transition intensities between 1.0 M FeCl3/7.8 M Cl? to 1.0 M FeCl3/ 15 M Cl?, indicating a coordination change from octahedral to tetrahedral complexes. EXAFS analyses of these solutions show an increase in first-shell Fe3+-ligand distances despite this apparent reduction in coordination number. This can be best explained by a change from regular octahedral complexes of ferric iron (either Fe(H2O)63+ or trans-Fe(H2O)4Cl2 or both; Fe3+-O bond distances of 2.10 Å) to tetra-chloro complexes [Fe3+-Cl bond distances of 2.25 Å].  相似文献   

10.
Auriacusite, ideally Fe3+Cu2+AsO4O, is a new arsenate mineral (IMA2009–037) and the Fe3+ analogue of olivenite, from the Black Pine mine, 14.5 km NW of Philipsburg, Granite Co., Montana, USA. It occurs lining quartz vughs and coating quartz crystals and is associated with segnitite, brochantite, malachite, tetrahedrite and pyrite. Auriacusite forms fibrous crystals up to about 5?µm in width and up to about 100?µm in length, which are intergrown to form fibrous mats. Individual crystals are a brownish golden yellow, whilst the fibrous mats are ochreous yellow. The crystals have a silky lustre and a brownish yellow streak. Mohs hardness is about 3 (estimated). The fracture is irregular and the tenacity is brittle. Auriacusite crystals are biaxial (+), with α?=?1.830(5), β?=?1.865(5) and γ?=?1.910(5), measured using white light, and with 2V meas.?=?83(3)º and 2V calc. = 84.6º. Orientation: X?=?a, Y?=?c, Z?=?b. Crystals are nonpleochroic or too weakly so to be observed. The empirical formula (based on 5 O atoms) is (Fe 1.33 3+ Cu0.85Zn0.03)Σ2.21(As0.51Sb0.27Si0.04?S0.02Te0.01)Σ0.85O5. Auriacusite is orthorhombic, space group Pnnm, a?=?8.6235(7), b?=?8.2757(7), c?=?5.9501(5) Å, V?=?424.63(6) Å3, Z?=?4. The five strongest lines in the powder X-ray diffraction pattern are [d obs in Å / (I) / hkl]: 4.884 / (100) / 101, 001; 2.991 / (92) / 220; 2.476 / (85) / 311; 2.416 / (83) / 022; 2.669 / (74) / 221. The crystal structure was solved from single-crystal X-ray diffraction data utilising synchrotron radiation and refined to R 1?=?0.1010 on the basis of 951 unique reflections with F o?>?4σF. Auriacusite is identified as a member of the olivenite group with Fe3+ replacing Zn2+ or Cu2+ in trigonal bipyramidal coordination. Evidence suggests that auriacusite is an intermediate member between olivenite and an as yet undescribed Fe3+Fe3+-dominant member. The name is derived from the Latin auri (golden yellow) and acus (needle), in reference to its colour and crystal morphology.  相似文献   

11.
A series of natural omphacites from a wide range of P, T occurrences were investigated by electron microprobe (EMP), infrared (IR)-, Mössbauer (MS)- and optical spectroscopy in the UV/VIS spectral range (UV/VIS), secondary ion mass spectrometry (SIMS) and single crystal structure refinement by X-ray diffraction (XRD) to study the influence of hydrogen loss on valence state and site occupancies of iron. In accordance with literature data we found Fe2+ at M1 as well as at M2, and in a first approach assigned Fe3+ to M1, as indicated by MS and XRD results. Hydrogen content of three of our omphacite samples were measured by SIMS. In combination with IR spectroscopy we determined an absorption coefficient: ε i,tot = 65,000 ± 3,000 lmolH2O ?1 cm?2. Using this new ε i,tot value, we obtained water concentrations ranging from 60 to 700 ppm H2O (by weight). Hydrogen loss was simulated by stepwise heating the most water rich samples in air up to 800°C. After heat treatment the samples were analyzed again by IR, MS, UV/VIS, and XRD. Depending on the type of the OH defect, the grade of dehydration with increasing temperature is significantly different. In samples relatively poor in Fe3+ (<0.1 Fe3+ pfu), hydrogen associated with vacancies at M2 (OH bands around 3,450 cm?1) starts to leave the structure at about 550°C and is completely gone at 780°C. Hydrogen associated with Al3+ at the tetrahedral site (OH bands around 3,525 cm?1, Koch-Müller et al., Am Mineral, 89:921–931, 2004) remains completely unaffected by heat treatment up to 700°C. But all hydrogen vanished at about 775°C. However, this is different for a more Fe3+-rich sample (0.2 Fe3+ pfu). Its IR spectrum is characterized by a very intense OH band at 3,515 cm?1 plus shoulder at 3,450 cm?1. We assign this intense high-energy band to vibrations of an OH dipole associated with Fe3+ at M1 and a vacancy either at M1 or M2. OH release during heating is positively correlated with decrease in Fe2+ and combined with increase in Fe3+. That dehydration is correlated with oxidation of Fe2+ is indirectly confirmed by annealing of one sample in a gas mixing furnace at 700°C under reducing conditions keeping almost constant OH? content and giving no indication of Fe2+-oxidation. Obtained data indicate that in samples with a relatively high concentration of Fe2+ at M2 and low-water concentrations, i.e., at a ratio of Fe2+ M2/H > 10 dehydration occurs by iron oxidation of Fe2+ exclusively at the M2 site following the reaction: \( {\left[ {{\text{Fe}}^{{{\text{2 + [ M2]}}}}{\text{OH}}^{ - } } \right]} = {\left[ {{\text{Fe}}^{{{\text{3 + [ M2]}}}} {\text{O}}^{{{\text{2}} - }} } \right]} + {\text{1/2}}\;{\text{H}}_{{\text{2}}} \uparrow . \) In samples having relatively low concentration of Fe2+ at M2 but high-water concentrations, i.e., ratio of Fe2+ M2/H < 5.0 dehydration occurs through oxidation of Fe2+ at M1.  相似文献   

12.
Synthetic melilites on the join Ca2MgSi2O7 (åkermanite: Ak)-Ca2Fe3+AlSiO7 (ferrialuminium gehlenite: FAGeh) were studied using X-ray powder diffraction and 57Fe Mössbauer spectroscopic methods to determine the distribution of Fe3+ between two different tetrahedral sites (T1 and T2), and the relationship between ionic substitution and incommensurate (IC) structure. Melilites were synthesized from starting materials with compositions of Ak100, Ak80FAGeh20, Ak70FAGeh30 and Ak50FAGeh50 by sintering at 1,170–1,350 °C and 1 atm. The average chemical compositions and end-member components, Ak, FAGeh and Geh (Ca2Al2SiO7), of the synthetic melilites were Ca2.015Mg1.023Si1.981O7 (Ak100), Ca2.017Mg0.788Fe 0.187 3+ Al0.221Si1.791O7 (Ak78FAGeh19Geh3), Ca1.995Mg0.695Fe 0.258 3+ Al0.318Si1.723O7 (Ak69FAGeh25Geh6) and Ca1.982Mg0.495Fe 0.449 3+ Al0.519Si1.535O7 (Ak49FAGeh44Geh7), respectively. Rietveld refinements using X-ray powder diffraction data measured using CuK α -radiation at room temperature converged successfully with goodness-of-fits of 1.15–1.26. The refined Fe occupancies at the T1 and T2 sites and the Mg and Si contents determined by electron microprobe analysis gave the site populations of [0.788Mg + 0.082Fe3+ + 0.130Al]T1[0.104Fe3+ + 0.104Al + 1.792Si]T2 for Ak78FAGeh19Geh3, [0.695Mg + 0.127Fe3+ + 0.178Al]T1[0.132Fe3+ + 0.144Al + 1.724Si]T2 for Ak69FAGeh25Geh6 and [0.495Mg + 0.202Fe3+ + 0.303Al]T1[0.248Fe3+ + 0.216Al + 1.536Si]T2 for Ak49FAGeh44Geh7 (apfu: atoms per formula unit), respectively. The results indicate that Fe3+ is distributed at both the T1 and the T2 sites. The mean T1–O distance decreases with the substitution of Fe3+ + Al3+ for Mg2+ at the T1 site, whereas the mean T2–O distance increases with substitution of Fe3+ + Al3+ for Si4+ at the T2 site, causing decrease in the a dimension and increase in the c dimension. However, in spite of the successful Rietveld refinements for the X-ray powder diffraction data measured using CuK α-radiation at room temperature, each Bragg reflection measured using CuK α1-radiation at room temperature showed weak shoulders, which were not observed in those measured at 200 °C. The Mössbauer spectra of the melilites measured at room temperature consist of two doublets assigned to Fe3+ at the T1 site and two or three doublets to Fe3+ at the T2 site, implying the existence of multiple T1 and T2 sites with different site distortions. These facts can be interpreted in terms of the IC structure in all synthetic melilites at room temperature, respectively. The results of Mössbauer analysis indicate that the IC structure in melilite is caused by not only known multiple T1 site, but also multiple T2 site at room temperature.  相似文献   

13.
The influence of Al–Cr substitution on the spinel structure was studied in synthetic single crystals belonging to the FeCr2O4–FeAl2O4 series produced by flux growth at 1,000–1,300 °C in controlled atmosphere. Samples were characterized by single-crystal X-ray diffraction, electron microprobe analyses and Mössbauer spectroscopy. Crystals of sufficient size and quality for single-crystal X-ray diffraction were obtained in the ranges Chr0–0.45 and Chr70–100 but not for intermediate compositions, possibly due to a reduced stability in this range. The increase in chromite component leads to an increase in the cell edge from 8.1534 (6) to 8.3672 (1) Å and a decrease in the u parameter from 0.2645 (2) to 0.2628 (1). Chemical analyses show that Fe2+ is very close to 1 apfu (0.994–1.007), Al is in the range 0.0793–1.981 apfu, Cr between 0 and 1.925 apfu. In some cases, Fe3+ is present in amounts up to 0.031 apfu. Spinels with intermediate Cr content (Chr component between 40 and 60) are strongly zoned with Cr-rich cores and Cr-poor rims. Mössbauer analyses on powdered spinels of the runs from which single crystal has been used for X-ray structural data show values of Fe3+/Fetot consistently larger than that calculated by EMPA on single crystals, presumably due to chemical variation between single crystals from the same runs. The synthesis runs ended at a temperature of 1,000 °C, but it is possible that cation ordering continued in the Cr-poor samples towards lower temperatures, possibly down to 700 °C.  相似文献   

14.
Meridianiite, MgSO4·11H2O, is the most highly hydrated phase in the binary MgSO4–H2O system. Lower hydrates in the MgSO4–H2O system have end-member analogues containing alternative divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) and exhibit extensive solid solution with MgSO4 and with one another, but no other undecahydrate is known. We have prepared aqueous MgSO4 solutions doped with these other cations in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. The solid products have been characterised by X-ray powder diffraction, and the onset of partial melting has been quantified using a thermal probe. We have established that of the seven end-member metal sulfates studied, only MgSO4 forms an undecahydrate; ZnSO4 forms an orthorhombic heptahydrate (synthetic goslarite), MnSO4, FeSO4, and CoSO4 form monoclinic heptahydrates (syn. mallardite, melanterite, bieberite, respectively), and CuSO4 crystallises as the well-known triclinic pentahydrate (syn. chalcanthite). NiSO4 forms a new hydrate which has been indexed with a triclinic unit cell of dimensions a = 6.1275(1) Å, b = 6.8628(1) Å, c = 12.6318(2) Å, α = 92.904(2)°, β = 97.678(2)°, and γ = 96.618(2)°. The unit-cell volume of this crystal, V = 521.74(1) Å3, is consistent with it being an octahydrate, NiSO4·8H2O. Further analysis of doped specimens has shown that synthetic meridianiite is able to accommodate significant quantities of foreign cations in its structure; of the order 50 mol. % Co2+ or Mn2+, 20–30 mol. % Ni2+ or Zn2+, but less than 10 mol. % of Cu2+ or Fe2+. In three of the systems we examined, an ‘intermediate’ phase occurred that differed in hydration state both from the Mg-bearing meridianiite end-member and the pure dopant end-member hydrate. In the case of CuSO4, we observed a melanterite-structured heptahydrate at Cu/(Cu + Mg) = 0.5, which we identify as synthetic alpersite [(Mg0.5Cu0.5)SO4·7H2O)]. In the NiSO4- and ZnSO4-doped systems we characterised an entirely new hydrate which could also be identified to a lesser degree in the CuSO4- and the FeSO4-doped systems. The Ni-doped substance has been indexed with a monoclinic unit-cell of dimensions a = 6.7488(2) Å, b = 11.9613(4) Å, c = 14.6321(5) Å, and β = 95.047(3)°, systematic absences being indicative of space-group P21/c with Z = 4. The unit-cell volume, V = 1,176.59(5) Å3, is consistent with it being an enneahydrate [i.e. (Mg0.5Ni0.5)SO4·9H2O)]. Similarly, the new Zn-bearing enneahydrate has refined unit cell dimensions of a = 6.7555(3) Å, b = 11.9834(5) Å, c = 14.6666(8) Å, β = 95.020(4)°, V = 1,182.77(7) Å3, and the new Fe-bearing enneahydrate has refined unit cell dimensions of a = 6.7726(3) Å, b = 12.0077(3) Å, c = 14.6920(5) Å, β = 95.037(3)°, and V = 1,190.20(6) Å3. The observation that synthetic meridianiite can form in the presence of, and accommodate significant quantities of other ions increases the likelihood that this mineral will occur naturally on Mars—and elsewhere in the outer solar system—in metalliferous brines.  相似文献   

15.
Pale-blue to pale-green tourmalines from the contact zone of Permian pegmatites to mica schists and marbles from different localities of the Austroalpine basement units (Rappold Complex) in Styria, Austria, are characterized. All these Mg-rich tourmalines have small but significant Li contents, up to 0.29 wt% Li2O, and can be characterized as dravite, with FeO contents of ?~?0.9–2.7 wt%. Their chemical composition varies from X (Na0.67Ca0.19?K0.02?0.12) Y (Mg1.26Al0.97Fe2+ 0.36Li0.19Ti4+ 0.06Zn0.01?0.15) Z (Al5.31?Mg0.69) (BO3)3 Si6O18 V (OH)3? W [F0.66(OH)0.34], with a?=?15.9220(3), c?=?7.1732(2) Å to X (Na0.67Ca0.24?K0.02?0.07) Y (Mg1.83Al0.88Fe2+ 0.20Li0.08Zn0.01Ti4+ 0.01?0.09) Z (Al5.25?Mg0.75) (BO3)3 Si6O18 V (OH)3? W [F0.87(OH)0.13], with a?=?15.9354(4), c?=?7.1934(4) Å, and they show a significant Al-Mg disorder between the Y and the Z sites (R1?=?0.013–0.015). There is a positive correlation between the Ca content and?<?Y-O?>?distance for all investigated tourmalines (r?≈?1.00), which may reflect short-range order configurations including Ca and Fe2+, Mg, and Li. The tourmalines have XMg (XMg?=?Mg/Mg?+?Fetotal) values in the range 0.84–0.95. The REE patterns show more or less pronounced negative Eu and positive Yb anomalies. In comparison to tourmalines from highly-evolved pegmatites, the tourmaline samples from the border zone of the pegmatites of the Rappold Complex contain relatively low amounts of total REE (~8–36 ppm) and Th (0.1–1.8 ppm) and have low LaN/YbN ratios. There is a positive correlation (r?≈?0.91) between MgO of the tourmalines and the MgO contents of the surrounding mica schists. We conclude that the pegmatites formed by anatectic melting of mica schists and paragneisses in Permian time. The tourmalines crystallized from the pegmatitic melt, influenced by the metacarbonate and metapelitic host rocks.  相似文献   

16.
Polarized optical absorption spectra of natural olivine, Fa10Fo90, were measured before and after annealing/quenching experiments performed at 650, 800, 1,000 and 1,200°C under controlled oxygen fugacity. It was found that the annealing induces weak but definite changes in the olivine spectra. The intensity of the spin-allowed Z > X-polarized band at 9,560 cm?1 and shoulder at ~8,300 cm?1 attributed to Fe2+(M2), continuously decreases with annealing temperature, whereas a weaker band at ~11,600 cm?1 assigned to electronic spin-allowed transitions of Fe2+(M1), increases. This evidently shows that annealing treatments cause a redistribution of Fe2+ from M2 to M1. The fractionation increases with increasing temperature. This observation is in good correspondence with many diffraction structural studies of natural and synthetic olivines, as well as with recent Raman and Mössbauer investigations by Kolesov and Geiger (Mitt Österr Mineral Ges 149:48, 2004) and Morozov et al. (Eur J Mineral 17:495–500, 2005) evidencing a weak tendency of Fe to order into the M1 site with increasing temperature. However, this deduction is incompatible with the results of the in situ neutron power diffraction study of synthetic FeMgSiO4 by Redfern et al. (Phys Chem Minerals 27:630–637, 2000). Polarization properties of the UV absorption edge, attributed to ligand-to-metal charge-transfer transitions in Fe3+, changes from Y > X ? Z in natural samples to a weak Y ≥ X ≥ Z-pleochroism in annealed ones. This may be due to redistribution of a small content of Fe3+ among M1 and M2 structural sites.  相似文献   

17.
The crystal structures of synthetic hexagonal and orthorhombic Fe-cordierite polymorphs with the space groups P6/mcc and Cccm were refined from single-crystal X-ray diffraction data to R 1, hex?=?3.14 % and R 1, ortho?=?4.48 %. The substitution of the larger Fe2+ for Mg leads to multiple structural changes and an increase of the unit cell volumes, with a, c (hex)?=?9.8801(16) Å, 9.2852(5) Å and a, b, c (ortho)?=?17.2306(2) Å, 9.8239(1) Å, 9.2892(1) Å in the end-members. Furthermore Fe incorporation results in an increase of the volumes of the octahedra, although the diameters of the octahedra in direction of the c-axis decrease in both polymorphs. X-ray powder diffraction analysis indicates a high degree of Al/Si ordering in the orthorhombic polymorph, the Miyashiro distortion index is ~0.24. Estimations of site occupancies based on the determined tetrahedral volumes result in the following values for hexagonal Fe-cordierite: ~73 % Al for T1 and ~28 % Al for T2. For the first time Raman spectroscopy was performed on the hexagonal Fe-cordierite polymorph. In the hexagonal Fe-cordierite polymorph most Raman peaks are shifted towards lower wavenumbers when compared with the Mg-end-member.  相似文献   

18.
The crystal chemistry across the garnet series is examined, and several systematic trends are reported. The crystal structure of three different cubic phases intergrown in a birefringent near end-member andradite from Namibia was refined by the Rietveld method, space group $ Ia\bar{3}d, $ Ia 3 ¯ d , and monochromatic synchrotron high-resolution powder X-ray diffraction data. Electron microprobe results indicate three phases with distinct compositions. The sample is birefringent, indicating that it is not cubic when observed optically. The reduced χ 2 and overall R (F 2) Rietveld refinement values are 1.655 and 0.0284, respectively, so the multi-phase refinement is excellent. The composition, weight %, unit-cell parameter (Å), distances (Å), and site-occupancy factors (sofs) are as follows: phase-1, Adr99, 88.5(1)  %, a = 12.06259(1), average 〈Ca–O〉 = 2.4310, Fe–O = 2.0189(4), Si–O = 1.6490(4) Å, Ca(sof) = 0.948(1), Fe(sof) = 0.934(1), and Si(sof) = 0.940(1). For phase-2: Adr71Grs28, 7.1(1) %, a = 12.00361(5), average 〈Ca–O〉 = 2.440, Fe–O = 1.979(3), Si–O = 1.641(3) Å, Ca(sof) = 0.913(5), Fe(sof) = 0.767(4), and Si(sof) = 0.932(5). For phase-3: Grs79Adr17, 4.4(1) %, a = 11.89719(4), average 〈Ca–O〉 = 2.404, Al–O = 1.935(4), Si–O = 1.667(3) Å, Ca(sof) = 0.944(6), Al(sof) = 1.069(7), and Si(sof) = 0.887(5). The dominant phase-1 (89 %; Adr99) is nearly end-member andradite, Ca3Fe 2 3+ Si3O12, which contains no cation order in the Ca(X) or Fe(Y) sites. The intergrowth of the three cubic phases causes considerable strain in the minor phases-2 and phases-3 that arise from different structural parameters and gives rise to strain-induced birefringence. For comparison, the results for an isotropic, single-phase, grossular–andradite garnet (Grs76Adr21) are also presented. The strain in the minor phases is about 3–5 times more than the unstrained dominant phase-1, or the unstrained single-phase grossular–andradite.  相似文献   

19.
Two samples of hydroxyl-clinohumite, sample SZ0407B with approximate composition Mg8.674(14)Fe0.374(4)(Si0.99(1)O4)4(OH)2 and sample SZ0411B with composition Mg9(SiO4)4(OH)2, were synthesized at 12 GPa and 1,250 °C coexisting with olivine. Unit-cell parameters determined by single-crystal X-ray diffraction are given as follows: a = 4.7525(4) Å, b = 10.2935(12) Å, c = 13.7077(10) Å, α = 100.645(9)°, V = 659.04(9) Å3 for SZ0407B, and a = 4.7518(6) Å, b = 10.2861(12) Å, c = 13.7008(9) Å, α = 100.638(9)°, V = 658.15(9) Å3 for SZ0411B. Single-crystal X-ray intensity data were collected for crystal structure refinements of both samples. Relative to the pure-Mg sample, Fe decreases M3–OH bond lengths by ~0.010(3) Å, consistent with some ferric iron ordering into M3. Raman spectroscopy shows two strong bands in the lattice-mode region at 650 and 690 cm?1 in the Fe-bearing sample, which are not observed in the pure-Mg sample. Spectra in the H2O region show at least five bands, which are deconvolved into seven distinct O–H-stretching modes. Thermal expansion measurements were carried out for both samples from 153 to 787 K by single-crystal X-ray diffraction. The average a-, b-, c-axial and volumetric thermal expansion coefficients (10?6 K?1) are 10.5(1), 12.3(2), 12.5(2) and 34.9(5) for SZ0407B, respectively, and 11.1(1), 12.6(3), 13.7(3), 36.8(6) for SZ0411B, respectively. After heating, the unit-cell parameters were refined again for each sample at ambient condition, and no significant changes were observed, indicating no significant oxidation or dehydration during the experiment. For the DHMS phases along the brucite–forsterite join, linear regression gives a systematic linear decrease in expansivity with increasing density. Further, substitution of ferrous iron into these structures decreases thermal expansivity, making the Fe-bearing varieties slightly stiffer.  相似文献   

20.
Polycrystalline material of a sulfate apatite with chemical composition Na6Ca4(SO4)6F2 or (Na2Ca4)Na4(SO4)6F2 has been synthesized by solid state reactions. Basic crystallographic data are as follows: hexagonal symmetry, a?=?9.3976(1) Å, c?=?6.8956(1) Å, V?=?527.39(1) Å3, Z?=?1, space group P63/m. For structural investigations the Rietveld method was employed. Thermal expansion has been studied between 25 and 600 °C. High temperature (HT) powder diffraction data as well as thermal analysis indicate that the apatite-type compound undergoes a reconstructive phase transition in the range between 610 and 630 °C. Single-crystals of the HT-polymorph were directly grown from the melt. Structural investigations based on single-crystal diffraction data of the quenched crystals performed at ?100 °C showed orthorhombic symmetry (space group Pna21) with a?=?12.7560(8) Å, b?=?8.6930(4) Å, c?=?9.8980(5) Å, V?=?1097.57(10) Å3 and Z?=?2. Unit cell parameters for a quenched polycrystalline sample of the HT-form obtained at ambient conditions from a LeBail-fit are as follows: a?=?12.7875(1) Å, b?=?8.7255(1) Å, c?=?9.9261(1) Å, V?=?1107.53(2) Å3. The lattice parameters of both modifications are related by the following approximate relationships: a HT?≈?2c RT, b HT?≈?-(½a RT?+?b RT), c HT?≈?a RT. The HT-modification is isotypic with the corresponding potassium compound K6Ca4(SO4)6F2. The pronounced disorder of the sulphate group even at low temperatures has been studied by maximum entropy calculations. Despite the first-order character of the transformation clusters of sulfate groups surrounding the fluorine anions can be identified in both polymorphs. Each of the three next neighbor SO4-tetrahedra within a cluster is in turn surrounded by 8–9 M-cations (M: Na,Ca) defining cage-like units. However, in the apatite structure the corresponding three tricapped trigonal prisms are symmetry equivalent. Furthermore, the central fluorine atom of each cluster is coordinated by three next M-neighbors (FM3-triangles), whereas in the HT-polymorph a four-fold coordination is observed (FM4-tetrahedra).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号