首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.  相似文献   

2.
This study examines the potential impact of vegetation feedback on changes in summer climate aridity over the contiguous United States (US) due to the doubling of atmospheric CO2 concentration using a set of 100-year-long climate simulations made by a global climate model interactively coupled with a dynamic vegetation model. The Thornthwaite moisture index (I m ), which quantifies climate aridity on the basis of atmospheric water supply (i.e., precipitation) and atmospheric water demand (i.e., potential evapotranspiration, PET), is used to measure climate aridity. Warmer atmosphere and drier surface resulting from increased CO2 concentration increase climate aridity over most of the contiguous US. This phenomenon is due to larger increments in PET than in precipitation, regardless of the presence or absence of vegetation feedback. Compared to simulations without active dynamic vegetation feedback, the presence of vegetation feedback significantly alleviates the increase in aridity. This vegetation-feedback effect is most noticeable in the subhumid regions such as southern, midwestern and northwestern US, primarily by the increasing vegetation greenness. In these regions, the greening in response to warmer temperatures enhances moisture transfer from soil to atmosphere by evapotranspiration (ET). The increased ET and subsequent moistening over land areas result in weaker surface warming (1–2?K) and PET (3–10?mm?month?1), and greater precipitation (4–10?mm?month?1). Collectively, they result in moderate increases in I m . Our results suggest that moistening by enhanced vegetation feedback may prevent aridification under climatic warming especially in areas vulnerable to climate change, with consequent implications for mitigation strategies.  相似文献   

3.
Numerous studies have shown that increased atmospheric CO2 concentration is one of the most important factors altering land water balance. In this study, we investigated the effects of increased CO2 on global land water balance using the dataset released by the Coupled Model Intercomparison Project Phase 5 derived from the Canadian Centre for Climate Modelling and Analysis second-generation Earth System Model. The results suggested that the radiative effect of CO2 was much greater than the physiological effect on the water balance. At the model experiment only integrating CO2 radiative effect, the precipitation, evapotranspiration (ET) and runoff had significantly increased by 0.37, 0.12 and 0.31 mm year?2, respectively. Increases of ET and runoff caused a significant decrease of soil water storage by 0.05 mm year?2. However, the results showed increases of runoff and decreases of precipitation and ET in response to the CO2 fertilisation effect, which resulted into a small, non-significant decrease in the land water budget. In the Northern Hemisphere, especially on the coasts of Greenland, Northern Asia and Alaska, there were obvious decreases of soil water responding to the CO2 radiative effect. This trend could result from increased ice–snow melting as a consequence of warmer surface temperature. Although the evidence suggested that variations in soil moisture and snow cover and vegetation feedback made an important contribution to the variations in the land water budget, the effect of other factors, such as aerosols, should not be ignored, implying that more efforts are needed to investigate the effects of these factors on the hydrological cycle and land water balance.  相似文献   

4.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   

5.
An increase in atmospheric carbon dioxide concentration has both a radiative (greenhouse) effect and a physiological effect on climate. The physiological effect forces climate as plant stomata do not open as wide under enhanced CO2 levels and this alters the surface energy balance by reducing the evapotranspiration flux to the atmosphere, a process referred to as ‘carbon dioxide physiological forcing’. Here the climate impact of the carbon dioxide physiological forcing is isolated using an ensemble of twelve 5-year experiments with the Met Office Hadley Centre HadCM3LC fully coupled atmosphere–ocean model where atmospheric carbon dioxide levels are instantaneously quadrupled and thereafter held constant. Fast responses (within a few months) to carbon dioxide physiological forcing are analyzed at a global and regional scale. Results show a strong influence of the physiological forcing on the land surface energy budget, hydrological cycle and near surface climate. For example, global precipitation rate reduces by ~3% with significant decreases over most land-regions, mainly from reductions to convective rainfall. This fast hydrological response is still evident after 5 years of model integration. Decreased evapotranspiration over land also leads to land surface warming and a drying of near surface air, both of which lead to significant reductions in near surface relative humidity (~6%) and cloud fraction (~3%). Patterns of fast responses consistently show that results are largest in the Amazon and central African forest, and to a lesser extent in the boreal and temperate forest. Carbon dioxide physiological forcing could be a source of uncertainty in many model predicted quantities, such as climate sensitivity, transient climate response and the hydrological sensitivity. These results highlight the importance of including biological components of the Earth system in climate change studies.  相似文献   

6.
Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (~10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285–570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.  相似文献   

7.
A recent modelling study has shown that precipitation and runoff over land would increase when the reflectivity of marine clouds is increased to counter global warming. This implies that large scale albedo enhancement over land could lead to a decrease in runoff over land. In this study, we perform simulations using NCAR CAM3.1 that have implications for Solar Radiation Management geoengineering schemes that increase the albedo over land. We find that an increase in reflectivity over land that mitigates the global mean warming from a doubling of CO2 leads to a large residual warming in the southern hemisphere and cooling in the northern hemisphere since most of the land is located in northern hemisphere. Precipitation and runoff over land decrease by 13.4 and 22.3%, respectively, because of a large residual sinking motion over land triggered by albedo enhancement over land. Soil water content also declines when albedo over land is enhanced. The simulated magnitude of hydrological changes over land are much larger when compared to changes over oceans in the recent marine cloud albedo enhancement study since the radiative forcing over land needed (?8.2?W?m?2) to counter global mean radiative forcing from a doubling of CO2 (3.3?W?m?2) is approximately twice the forcing needed over the oceans (?4.2?W?m?2). Our results imply that albedo enhancement over oceans produce climates closer to the unperturbed climate state than do albedo changes on land when the consequences on land hydrology are considered. Our study also has important implications for any intentional or unintentional large scale changes in land surface albedo such as deforestation/afforestation/reforestation, air pollution, and desert and urban albedo modification.  相似文献   

8.
By using a climate system model of intermediate complexity, we have simulated long-term natural climate changes occurring over the last 9000 years. The paleo-simulations in which the model is driven by orbital forcing only, i.e., by changes in insolation caused by changes in the Earth's orbit, are compared with sensitivity simulations in which various scenarios of increasing atmospheric CO2 concentration are prescribed. Focussing on climate and vegetation change in northern Africa, we recapture the strong greening of the Sahara in the early and mid-Holocene (some 9000–6000 years ago), and we show that some expansion of grasslandinto the Sahara is theoretically possible, if the atmospheric CO2 concentration increases well above pre-industrial values and if vegetation growth is not disturbed. Depending on the rate of CO2 increase, vegetation migration into the Sahara can be rapid, up to 1/10th of the Saharan area per decade, but could not exceed a coverage of 45%. In ourmodel, vegetation expansion into today's Sahara is triggered by an increase in summer precipitation which is amplified by a positive feedback between vegetation and precipitation. This is valid for simulations with orbital forcing and greenhouse-gas forcing. However, we argue that the mid-Holocene climate optimum some 9000 to 6000 years ago with its marked reduction of deserts in northern Africa is not a direct analogue for future greenhouse-gas induced climate change, as previously hypothesized. Not only does the global pattern of climate change differ between the mid-Holocene model experiments and the greenhouse-gas sensitivity experiments, but the relative role of mechanisms which lead to a reduction of the Sahara also changes. Moreover, the amplitude of simulated vegetation cover changes in northern Africa is less than is estimated for mid-Holocene climate.  相似文献   

9.
Physical processes responsible for tropospheric adjustment to increasing carbon dioxide concentration are investigated using abrupt CO2 quadrupling experiments of a general circulation model (GCM) called the model for interdisciplinary research on climate version 5 with several configurations including a coupled atmosphere–ocean GCM, atmospheric GCM, and aqua-planet model. A similar experiment was performed in weather forecast mode to explore timescales of the tropospheric adjustment. We found that the shortwave component of the cloud radiative effect (SWcld) reaches its equilibrium within 2 days of the abrupt CO2 increase. The change in SWcld is positive, associated with reduced clouds in the lower troposphere due to warming and drying by instantaneous radiative forcing. A reduction in surface turbulent heat fluxes and increase of the near-surface stability result in shoaling of the marine boundary layer, which shifts the cloud layer downward. These changes are common to all experiments regardless of model configuration, indicating that the cloud adjustment is primarily independent of air–sea coupling and land–sea thermal contrast. The role of land in cloud adjustment is further examined by a series of idealized aqua-planet experiments, with a rectangular continent of varying width. Land surface warming from quadrupled CO2 induces anomalous upward motion, which increases high cloud and associated negative SWcld over land. The geographic distribution of continents regulates the spatial pattern of the cloud adjustment. A larger continent produces more negative SWcld, which partly compensates for a positive SWcld over the ocean. The land-induced negative adjustment is a factor but not necessary requirement for the tropospheric adjustment.  相似文献   

10.
This study examines the role of vegetation dynamics in regional predictions of future climate change in western Africa using a dynamic vegetation model asynchronously coupled to a regional climate model. Two experiments, one for present day and one for future, are conducted with the linked regional climate-vegetation model, and the third with the regional climate model standing alone that predicts future climate based on present-day vegetation. These simulations are so designed in order to tease out the impact of structural vegetation feedback on simulated climate and hydrological processes. According to future predictions by the regional climate-vegetation model, increase in LAI is widespread, with significant shift in vegetation type. Over the Guinean Coast in 2084–2093, evergreen tree coverage decreases by 49% compared to 1984–1993, while drought deciduous tree coverage increases by 56%. Over the Sahel region in the same period, grass cover increases by 31%. Such vegetation changes are accompanied by a decrease of JJA rainfall by 2% over the Guinean Coast and an increase by 23% over the Sahel. This rather small decrease or large increase of precipitation is largely attributable to the role of vegetation feedback. Without the feedback effect from vegetation, the regional climate model would have predicted a 5% decrease of JJA rainfall in both the Guinean Coast and the Sahel as a result of the radiative and physiological effects of higher atmospheric CO2 concentration. These results demonstrate that climate- and CO2-induced changes in vegetation structure modify hydrological processes and climate at magnitudes comparable to or even higher than the radiative and physiological effects, thus evincing the importance of including vegetation feedback in future climate predictions.  相似文献   

11.
Human activities have notably affected the Earth’s climate through greenhouse gases(GHG), aerosol, and land use/land cover change(LULCC). To investigate the impact of forest changes on regional climate under different shared socioeconomic pathways(SSPs), changes in surface air temperature and precipitation over China under low and medium/high radiative forcing scenarios from 2021 to 2099 are analyzed using multimodel climate simulations from the Coupled Model Intercomparison Project Phase 6(CMIP...  相似文献   

12.
Richard VanCuren 《Climatic change》2012,112(3-4):1071-1083
Exploiting surface albedo change has been proposed as a form of geoengineering to reduce the heating effect of anthropogenic increases in greenhouse gases (GHGs). Recent modeling experiments have projected significant negative radiative forcing from large-scale implementation of albedo reduction technologies (“cool” roofs and pavements). This paper complements such model studies with measurement-based calculations of the direct radiation balance impacts of replacement of conventional roofing with “cool” roof materials in California. This analysis uses, as a case study, the required changes to commercial buildings embodied in California’s building energy efficiency regulations, representing a total of 4300 ha of roof area distributed over 16 climate zones. The estimated statewide mean radiative forcing per 0.01 increase in albedo (here labeled RF01) is ?1.38 W/m2. The resulting unit-roof-area mean annual radiative forcing impact of this regulation is ?44.2 W/m2. This forcing is computed to counteract the positive radiative forcing of ambient atmospheric CO2 at a rate of about 41 kg for each square meter of roof. Aggregated over the 4300 ha of cool roof estimated built in the first decade after adoption of the State regulation, this is comparable to removing about 1.76 million metric tons (MMT) of CO2 from the atmosphere. The point radiation data used in this study also provide perspective on the spatial variability of cool roof radiative forcing in California, with individual climate zone effectiveness ranging from ?37 to ?59 W/m2 of roof. These “bottom-up” calculations validate the estimates reported for published “top down” modeling, highlight the large spatial diversity of the effects of albedo change within even a limited geographical area, and offer a potential methodology for regulatory agencies to account for the climate effects of “cool” roofing in addition to its well-known energy efficiency benefits.  相似文献   

13.
14.
Evidence is presented that the recent trend patterns of surface air temperature and precipitation over the land masses surrounding the North Atlantic Ocean (North America, Greenland, Europe, and North Africa) have been strongly influenced by the warming pattern of the tropical oceans. The current generation of atmosphere–ocean coupled climate models with prescribed radiative forcing changes generally do not capture these regional trend patterns. On the other hand, even uncoupled atmospheric models without the prescribed radiative forcing changes, but with the observed oceanic warming specified only in the tropics, are more successful in this regard. The tropical oceanic warming pattern is poorly represented in the coupled simulations. Our analysis points to model error rather than unpredictable climate noise as a major cause of this discrepancy with respect to the observed trends. This tropical error needs to be reduced to increase confidence in regional climate change projections around the globe, and to formulate better societal responses to projected changes in high-impact phenomena such as droughts and wet spells.  相似文献   

15.
蒸散发是水文循环和能量传输的中间环节,同时也是联结土壤、植被、大气过程的纽带。基于第六次国际耦合模式比较计划(CMIP6)12个全球气候模式数据,研究了SSP1-2.6、SSP2-4.5和SSP5-8.5三种情景下,长江流域2020-2099年实际蒸散发ET(Evapotranspiration,简称ET)的时空变化及其影响因素。研究结果表明,在3种气候变化情景下长江流域ET相较基准期(1995-2014年)均存在显著增加趋势,且长江中下游地区增加趋势最为显著;SSP1-2.6情景ET较基准期先快速增加,21世纪60年代之后减缓并趋于平稳,SSP2-4.5和SSP5-8.5情景下均呈持续增加趋势。研究了降水(Precipitation,简称Pr)、气温(Air Temperature,简称T)和叶面积指数LAI(Leaf Area Index,简称LAI)对长江流域ET的影响;SSP1-2.6和SSP2-4.5情景下,长江流域ET受T影响最为显著,而SSP5-8.5情景下,LAI是影响ET的主导因素。在3种气候情景下,辐射强迫越大,植被增加趋势越显著,对ET的影响越强(SSP5-8.5、SSP2-4.5、SSP1-2.6情景下影响逐渐减弱),而ET对LAI的敏感性则逐渐降低(SSP1-2.6、SSP2-4.5、SSP5-8.5情景下敏感性逐渐降低)。  相似文献   

16.
The radiative forcings and feedbacks that determine Earth’s climate sensitivity are typically defined at the top-of-atmosphere (TOA) or tropopause, yet climate sensitivity itself refers to a change in temperature at the surface. In this paper, we describe how TOA radiative perturbations translate into surface temperature changes. It is shown using first principles that radiation changes at the TOA can be equated with the change in energy stored by the oceans and land surface. This ocean and land heat uptake in turn involves an adjustment of the surface radiative and non-radiative energy fluxes, with the latter being comprised of the turbulent exchange of latent and sensible heat between the surface and atmosphere. We employ the radiative kernel technique to decompose TOA radiative feedbacks in the IPCC Fourth Assessment Report climate models into components associated with changes in radiative heating of the atmosphere and of the surface. (We consider the equilibrium response of atmosphere-mixed layer ocean models subjected to an instantaneous doubling of atmospheric CO2). It is shown that most feedbacks, i.e., the temperature, water vapor and cloud feedbacks, (as well as CO2 forcing) affect primarily the turbulent energy exchange at the surface rather than the radiative energy exchange. Specifically, the temperature feedback increases the surface turbulent (radiative) energy loss by 2.87 W m?2 K?1 (0.60 W m?2 K?1) in the multimodel mean; the water vapor feedback decreases the surface turbulent energy loss by 1.07 W m?2 K?1 and increases the surface radiative heating by 0.89 W m?2 K?1; and the cloud feedback decreases both the turbulent energy loss and the radiative heating at the surface by 0.43 and 0.24 W m?2 K?1, respectively. Since changes to the surface turbulent energy exchange are dominated in the global mean sense by changes in surface evaporation, these results serve to highlight the fundamental importance of the global water cycle to Earth’s climate sensitivity.  相似文献   

17.
A coupled general circulation model has been used to perform a set of experiments with high CO2 concentration (2, 4, 16 times the present day mean value). The experiments have been analyzed to study the response of the climate system to strong radiative forcing in terms of the processes involved in the adjustment at the ocean–atmosphere interface. The analysis of the experiments revealed a non-linear response of the mean state of the atmosphere and ocean to the increase in the carbon dioxide concentration. In the 16 × CO2 experiment the equilibrium at the ocean–atmosphere interface is characterized by an atmosphere with a shut off of the convective precipitation in the tropical Pacific sector, associated with air warmer than the ocean below. A cloud feedback mechanism is found to be involved in the increased stability of the troposphere. In this more stable condition the mean total precipitation is mainly due to large-scale moisture flux even in the tropics. In the equatorial Pacific Ocean the zonal temperature gradient of both surface and sub-surface waters is significantly smaller in the 16 × CO2 experiment than in the control experiment. The thermocline slope and the zonal wind stress decrease as well. When the CO2 concentration increases by about two and four times with respect to the control experiment there is an intensification of El Niño. On the other hand, in the experiment with 16 times the present-day value of CO2, the Tropical Pacific variability weakens, suggesting the possibility of the establishment of permanent warm conditions that look like the peak of El Niño.  相似文献   

18.
Radiative forcing and climate sensitivity have been widely used as concepts to understand climate change. This work performs climate change experiments with an intermediate general circulation model (IGCM) to examine the robustness of the radiative forcing concept for carbon dioxide and solar constant changes. This IGCM has been specifically developed as a computationally fast model, but one that allows an interaction between physical processes and large-scale dynamics; the model allows many long integrations to be performed relatively quickly. It employs a fast and accurate radiative transfer scheme, as well as simple convection and surface schemes, and a slab ocean, to model the effects of climate change mechanisms on the atmospheric temperatures and dynamics with a reasonable degree of complexity. The climatology of the IGCM run at T-21 resolution with 22 levels is compared to European Centre for Medium Range Weather Forecasting Reanalysis data. The response of the model to changes in carbon dioxide and solar output are examined when these changes are applied globally and when constrained geographically (e.g. over land only). The CO2 experiments have a roughly 17% higher climate sensitivity than the solar experiments. It is also found that a forcing at high latitudes causes a 40% higher climate sensitivity than a forcing only applied at low latitudes. It is found that, despite differences in the model feedbacks, climate sensitivity is roughly constant over a range of distributions of CO2 and solar forcings. Hence, in the IGCM at least, the radiative forcing concept is capable of predicting global surface temperature changes to within 30%, for the perturbations described here. It is concluded that radiative forcing remains a useful tool for assessing the natural and anthropogenic impact of climate change mechanisms on surface temperature.  相似文献   

19.
Experiments with abrupt CO2 forcing allow the diagnosis of the response of global mean temperature and precipitation in terms of fast temperature independent adjustments and slow, linear temperature-dependent feedbacks. Here we compare responses, feedbacks and forcings in experiments performed as part of version 5 of the coupled model inter-comparison project (CMIP5). The experiments facilitate, for the first time, a comparison of fully coupled atmosphere-ocean general circulation models (GCM’s) under both linearly increasing and abrupt radiative forcing. In the case of a 1 % per year compounded increase in CO2 concentration, we find that the non-linear evolution of surface air temperature in time, when combined with the linear evolution of the radiative balance at the top of the atmosphere, results in a feedback parameter and effective climate sensitivity having an offset compared to values computed from abrupt 4× CO2 forcing experiments. The linear evolution of the radiative balance at the top of the atmosphere also contributes to an offset between the global mean precipitation response predicted in the 1 % experiment using linear theory and that diagnosed from the experiments themselves, and a potential error between the adjusted radiative forcing and that produced using a standard linear formula. The non-linear evolution of temperature and precipitation responses are also evident in the RCP8.5 scenario and have implications for understanding, quantifying and emulating the global response of the CMIP5 climate GCMs.  相似文献   

20.
Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle–climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse–response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号