首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Complexities in the nature of large-scale silicic eruptions and their magmatic systems can be discerned through micro-analytical geochemical studies. We present high-resolution, stratigraphically constrained compositional data on glassy matrix material and feldspar crystals from the initial fall deposits and earliest ignimbrite (base of member A) of the 2.08 Ma, ~?2500 km3 Huckleberry Ridge Tuff (HRT), Yellowstone. We use these data to document the nature of the magmatic system and compositional changes related to the transition from fall to widespread ignimbrite deposition, inferred to mark the onset of caldera collapse. Although major element glass compositions are relatively uniform, trace elements span a large range (e.g. Ba 10–900 ppm, Sr/Rb?=?0.005–0.09), with highly evolved glasses dominating in the fall deposits. Several trace elements (e.g. Ba and light rare earth elements) in the glass samples serve to define statistically significant compositional clustering in the fall deposits and basal ignimbrite. These clusters are inferred to reflect melt compositions controlled by fractional crystallisation processes and are interpreted to represent multiple, discrete melt-dominant domains that were tapped by multiple vents. The onset of widespread ignimbrite deposition is marked by an increase in the number of erupted melt compositional clusters from four in the fall deposits to eight, representing nine melt-dominant domains. There is an absence of geographical variation of glass compositions within the basal ignimbrite, with samples from proximal to distal localities north, west and south of the HRT caldera exhibiting similar variability. Pairing of glass analyses with sanidine major and minor element compositional data suggests that the nine melt compositional domains converged at depth into two compositionally distinct upper-crustal magmatic lineages that were both active during these early stages of the eruption. Our data collectively indicate the evacuation of an exceptionally complex and heterogeneous magma system. The onset of widespread ignimbrite deposition, inferred to relate to caldera collapse, occurred after ~ 50 km3 of magma had been discharged. Although external controls were important as an eruption trigger, depressurisation of the system led to caldera collapse with the eruption of numerous discrete melt-dominant domains.  相似文献   

2.
The Rodalquilar caldera complex is located in the western part of the Cabo de Gata volcanic field in southeastern Spain and is the first documented example of epithermal gold-alunite mineralization within a caldera in Europe. The Rodalquilar caldera is an oval collapse structure having a maximum diameter of 8 km and formed at 11 Ma from eruption of the Cinto ash-flow tuff. The oval Lomilla caldera, with a diameter of 2 km, is nested within the central resurgent dome of the older Rodalquilar caldera. The Lomilla caldera resulted from the eruption of the Lazaras ash-flow tuff which was ponded within the moat of the Rodalquilar caldera. The last phase of volcanic activity in the caldera complex was the emplacement of hornblende andesite flows and intrusions. This magmatic event resulted in structural doming of the caldera, opening of fractures and faults, and provided the heat source for the large hydrothermal systems which deposited quartz-alunite type gold deposits and base metal vein systems. The gold-alunite deposits are enclosed in areas of intense acid sulfate alteration and localized in ring and radial faults and fractures present in the east wall of the Lomilla caldera. Like other acid-sulfate type deposits, the Rodalquilar gold-alunite deposits are closely related in time and space to porphyritic, intermediate composition magma emplaced along caldera structures but unrelated to the caldera forming magmatic system.  相似文献   

3.
Three thin, syn-caldera ash flow tuffs of the Suswa volcano, Kenya, contain pumiceous clasts and globules of trachytic glass, and clasts rich in carbonate globules, in a carbonate ash matrix. Petrographic and textural evidence indicates that the carbonate was magmatic. The trachyte is metaluminous to mildly peralkaline and varies from nepheline- to quartz-normative. The carbonate is calcium-rich, with high REE and F contents. The silicate and carbonate fractions have similar 143Nd/144Nd values, suggesting a common parental magma. Chondrite-normalized REE patterns are consistent with a carbonate liquid being exsolved from a silicate liquid after alkali feldspar fractionation. Sr isotopic and REE data show that the carbonate matrix of even the freshest tuffs interacted to some degree with hydrothermal and/or meteoric water. A liquid immiscibility relationship between the trachyte and carbonate is indicated by the presence of sharp, curved menisci between them, the presence of carbonate globules in silicate glass and of fiamme rich in carbonate globules separated by silicate glass, and by the fact that similar phenocryst phases occur in both melts. It is inferred that the carbonate liquid separated from a carbonated trachyte magma prior to, or during, caldera collapse. Viscosity differences segregated the magma into a fraction comprising silicate magma with scattered carbonate globules, and a fraction comprising carbonate globules in a silicate magmatic host.Explosive disruption of the magma generated silicate-and carbonate-rich clasts in a carbonate matrix. The silicate liquid was disaggregated by explosive disruption and texturally appears to have been budding-off into the carbonate matrix. After emplacement, the basal parts of the flows welded slightly and flattened. The Suswa rocks represent a rare and clear example of a liquid immiscibility relationship between trachyte and carbonate melts.  相似文献   

4.
The S-type Peninsula Pluton (South Africa) exhibits substantial compositional variability and hosts a large variety of mafic and felsic magmatic enclaves with contrasting textures and compositions. Moreover, the pluton is characterized by mechanical concentrations of K-feldspar megacrysts, cordierite and biotite, generating a complex array of magmatic structures including schlieren, pipes, and spectacular sheeted structures. Chemical evidence indicates that the pluton is constructed incrementally by rapid emplacement of numerous magma pulses. Field, and textural data suggest that magmatic structures form by local flow at the emplacement level of highly viscous crystal-rich magmas (i.e. crystallinity up to 50?vol.%) through magma mushes assembled from older batches. At the time of arrival of relatively late magma batches, some areas within the pluton had achieved crystal fractions that allowed the material to act as a solid, whilst maintaining enough melt to prevent formation of sharp intrusional contacts. Magmatic structures represent “snapshots” of processes that operate in multiphase crystal-rich mushes and their genesis is due to mechanical and thermal instabilities in the crystal-rich magma chamber that are triggered by the emplacement of pulses of new magma derived from the melting of a compositionally variable metasedimentary source.  相似文献   

5.
At Santa Maria Volcano (New Hebrides island arc), extensive ash and scoria flow deposits overlie the mainly effusive, pre-caldera cone. Hydromagmatic features characterize these deposits, the composition of juvenile clasts ranges from basalt to acid andesite/dacite (SiO2= 51–63.6%) with a dominant basaltic composition. The stratigraphic position of this pyroclastic series and its spatial distribution around a 8.5 km × 6 km wide caldera provide evidence of a relationship between this series and the caldera formation. In addition, these pyroclastic deposits are co-genetic to parasitic cones and lava flows developed along faults concentric to the caldera. Both series result from a compositionally layered magma reservoir, the subordinate differentiated magmas being the result of fractional crystallization from the basalts. A model of caldera formation which implies a large hydromagmatic eruption at the central vent and minor magma withdrawal by flank eruptions is proposed. This model emphasizes the importance of mafic hydroclastic eruptions in the caldera forming event and contradicts a model implying only quiet subsidence, a process often proposed for the formation of calderas in island are volcanoes of mainly mafic composition.  相似文献   

6.
The 12·7–10·5 Ma Cougar Point Tuff in southernIdaho, USA, consists of 10 large-volume (>102–103 km3each), high-temperature (800–1000°C), rhyolitic ash-flowtuffs erupted from the Bruneau–Jarbidge volcanic centerof the Yellowstone hotspot. These tuffs provide evidence forcompositional and thermal zonation in pre-eruptive rhyolitemagma, and suggest the presence of a long-lived reservoir thatwas tapped by numerous large explosive eruptions. Pyroxene compositionsexhibit discrete compositional modes with respect to Fe andMg that define a linear spectrum punctuated by conspicuous gaps.Airfall glass compositions also cluster into modes, and thepresence of multiple modes indicates tapping of different magmavolumes during early phases of eruption. Equilibrium assemblagesof pigeonite and augite are used to reconstruct compositionaland thermal gradients in the pre-eruptive reservoir. The recurrenceof identical compositional modes and of mineral pairs equilibratedat high temperatures in successive eruptive units is consistentwith the persistence of their respective liquids in the magmareservoir. Recurrence intervals of identical modes range from0·3 to 0·9 Myr and suggest possible magma residencetimes of similar duration. Eruption ages, magma temperatures,Nd isotopes, and pyroxene and glass compositions are consistentwith a long-lived, dynamically evolving magma reservoir thatwas chemically and thermally zoned and composed of multiplediscrete magma volumes. KEY WORDS: ash-flow tuff; Bruneau–Jarbidge; rhyolite; Yellowstone hotspot; residence time  相似文献   

7.
The late Pleistocene Calabozos ash-flow and caldera complexlies in central Chile in a section of the Andean cordillerathat is transitional between dominantly andesitic-to-rhyoliticvolcanism to the north and mafic andesitic and high-aluminabasaltic volcanism to the south. The Calabozos rocks range incomposition from basaltic andesite to rhyodacite and definea high-K calcalkalic suite. They contain 2–25% phenocrystsof plagioclase, clinopyroxene, orthopyroxene, Fe-Ti oxides,and apatite, ? minor biotite or amphibole. More than 1000km3 of rhyodacitic to dacitic magma erupted atthe Calabozos caldera complex as three major compositionallyzoned ash-flow sheets, Unit L (0?8 Ma), Unit V (0? 30Ma), andUnit S (0?15 Ma) of the Loma Seca Tuff. Phenocryst modes, trace-elementcontents, inferred magmatic volatile contents, and oxygen fugacitiesvary systematically with major-element composition in the tuffs.In the cases of Units V and S, it is possible to reconstructcompositional, thermal, and volatile gradients that existedin density-stratified magma chambers shortly prior to theireruption. The magma graded from crystal-poor, water-rich, andbiotite-bearing rhyodacite in the upper reaches of the chamberto more crystal-rich, water-poor, and amphibole-bearing daciteat deeper levels. Fe-Ti oxide equilibration temperatures are800 to 900?C for rhyodacite and 900 to 950?C for dacite. Magmathat erupted as Unit S was slightly hotter and more oxidizedthan magma that gave rise to Unit V. More mafic magmas wereassociated with the voluminous rhyodacitic to dacitic magmareservoir, as indicated by the presence of andesite and basalticandesite lava flows and by scoria inclusions in Unit V. The compositional suite from basaltic andesite to rhyodacitecan be simulated satisfactorily by crystal-fractionation calculationsbased on major-element phenocryst and rock compositions, andis consistent with modes of the Calabozos rocks. Rhyodacitesof Units V and S, however, are enriched in elements such asRb, Ba, and Zr relative to trace-element contents predictedby crystal-fractionation models. The enrichment can be achievedby assimilation of wall rock or a partial melt of the wall rock.The latter requires that the ratio of assimilation rates tocrystallization rates be between 0?1 and 0?3. Rates of assimilationversus crystallization were greater for Unit S than for UnitV, which is consistent with the lower Fe-Ti oxide temperaturesand less oxidized state of the latter. The Loma Seca Tuff is similar in bulk composition to sanidine-bearingash-flow sheets erupted on ‘mature’ continentalcrust, but it is mineralogically akin to ash-flow tuffs eruptedon ‘immature’ crust. The difference is attributed,in part, to the effect of the density of the crust on the rateof magma ascent at shallow levels. The ascent of large bodiesof silicic magma is slower in silicic (less dense) crust thanin mafic crust, causing the magmas to be erupted at a laterpoint in the crystallization history.  相似文献   

8.
Locally, voluminous andesitic volcanism both preceded and followedlarge eruptions of silicic ash-flow tuff from many calderasin the San Juan volcanic field. The most voluminous post-collapselava suite of the central San Juan caldera cluster is the 28Ma Huerto Andesite, a diverse assemblage erupted from at least5–6 volcanic centres that were active around the southernmargins of the La Garita caldera shortly after eruption of theFish Canyon Tuff. These andesitic centres are inferred, in part,to represent eruptions of magma that ponded and differentiatedwithin the crust below the La Garita caldera, thereby providingthe thermal energy necessary for rejuvenation and remobilizationof the Fish Canyon magma body. The multiple Huerto eruptivecentres produced two magmatic series that differ in phenocrystmineralogy (hydrous vs anhydrous assemblages), whole-rock majorand trace element chemistry and isotopic compositions. Hornblende-bearinglavas from three volcanic centres located close to the southeasternmargin of the La Garita caldera (Eagle Mountain–FourmileCreek, West Fork of the San Juan River, Table Mountain) definea high-K calc-alkaline series (57–65 wt % SiO2) that isoxidized, hydrous and sulphur rich. Trachyandesitic lavas fromwidely separated centres at Baldy Mountain–Red Lake (westernmargin), Sugarloaf Mountain (southern margin) and Ribbon Mesa(20 km east of the La Garita caldera) are mutually indistinguishable(55–61 wt % SiO2); they are characterized by higher andmore variable concentrations of alkalis and many incompatibletrace elements (e.g. Zr, Nb, heavy rare earth elements), andthey contain anhydrous phenocryst assemblages (including olivine).These mildly alkaline magmas were less water rich and oxidizedthan the hornblende-bearing calc-alkaline suite. The same distinctionscharacterize the voluminous precaldera andesitic lavas of theConejos Formation, indicating that these contrasting suitesare long-term manifestations of San Juan volcanism. The favouredmodel for their origin involves contrasting ascent paths anddifferentiation histories through crustal columns with differentthermal and density gradients. Magmas ascending into the mainfocus of the La Garita caldera were impeded, and they evolvedat greater depths, retaining more of their primary volatileload. This model is supported by systematic differences in isotopiccompositions suggestive of crust–magma interactions withcontrasting lithologies. KEY WORDS: alkaline; calc-alkaline; petrogenesis; episodic magmatism; Fish Canyon system  相似文献   

9.
At least 8 km3 of felsic ignimbrites and high-K silica-undersaturatedlavas and tephra were erupted from the Latera caldera between250 and 150 ka. Four distinct periods of explosive eruptions(at about 232, 206, 195, and 156 ka) produced ignimbrite sequencesthat show an upward compositional progression from trachyteand differentiated phonolite to less evolved phonolite. Duringthe last two of these periods, the tuffs grade upward from phonoliteto tephriphonolite. The stratigraphy indicates that eruptionssampled magmas that were stratified downward from trachyte andphonolite to tephriphonolite, and the compositional cyclicitysuggested by the timing of the eruptions implies an unusualcontemporaneity of silica-saturated and -undersaturated compositions. At Latera, pumice fragments in the same deposit can exhibitup to 10-fold differences in vesicularity and crystal content(from <5 to >50 vol.% phenocrysts). These clasts, in conjunctionwith glassbearing syenite and skarn xenoliths, represent a rangeof progressively crystallized magmas that were quenched at theinstant of their eruptive entrainment. The syenites compriseeutectic mineral assemblages with high percentages of titanite,apatite, and melanite garnet as accessory minerals. Least-squaresmodels based on major element and compatible trace element (e.g.,Ba and Sr) abundances of the pumices and syenite indicate thatthe fractionation of plagioclase and sanidine largely controlledthe liquid lines of descent for phonolite and trachyte, respectively.Additional mineral phases that may have contributed to magmaticdifferentiation include fassaitic diopside, leucite, biotite,apatite, and alkali amphibole. Models further imply that tephriphonoliticliquids required roughly 70% crystallization of tephritic orbasanitic parent magmas, whereas the evolved phonolitic liquidswere obtained after the removal of >85% of the above mineralassemblage. The commonly aphyric trachytic tuffs represent themost evolved derivatives. Despite the limited range in major element contents, trace elementsvary considerably among the different pumice types and syenites.Large ranges in Rb/Sr, Nb/Ta, Zr/Hf, La/Yb, and Ba/Th reflectthe selective partitioning of some elements into accessory phases.However, the variations of B, Sc, Rb, Nb, Hf, Y, and Yb cannotbe explained completely by crystal fractionation. Syenite compositions,for example, bracket the range of most elements in all pumicetypes, and chemical models demonstrate that processes operatingalong the chamber margins could have greatly influenced thebehavior of trace elements in the evolved liquids. Plausiblemechanisms that might have accompanied crystal fractionationin these magmas include the mixing of several magma batches,and the possible dilution of central reservoir magmas by back-mixingwith fractionated liquids or with CO2-rich fluids released fromskarns. *Present Address: Bureau of Economic Geology, Mineral Studies Laboratory, University of Texas, Austin, Texas 78713-7508  相似文献   

10.
The Yr Arddu Tuffs (Ordovician) are a sequence of predominantly welded acid ash-flow tuffs in the outlier centred on Yr Arddu (North Wales). The tuffs accumulated above a NNE-trending fracture, the Yr Arddu Fracture, which had previously influenced sedimentation. The heterogeneity of the tuffs and their restricted development suggest that they represent proximal accumulations from small or suppressed (boiling-over) eruption columns. The eruptions and emplacement developed, at least in the initial stages, in a submarine environment. Lithological, geochemical and palaeontological evidence indicates that the tuffs represent the earliest eruptive phase of the Lower Rhyolitic Tuff Formation. They were later intruded by comagmatic rhyolite domes, whose alignment reflects the continued influence of the early fracture.  相似文献   

11.
The Youngest Toba Tuff contains five distinct glass populations, identified from Ba, Sr and Y compositions, termed PI (lowest Ba) – PV (highest Ba), representing five compositionally distinct pre-eruptive magma batches that fed the eruption. The PI–PV compositions display systematic changes, with higher FeO, CaO, MgO, TiO2 and lower incompatible element concentrations in the low-SiO2 PIV/PV, than the high-SiO2 PI–PIII compositions. Glass shard abundances indicate PIV and PV were the least voluminous magma batches, and PI and PIII the most voluminous. Pressure estimates using rhyolite-MELTS indicate PV magma equilibrated at ~6 km, and PI magma at ~3.8 km. Glass population proportions in distal tephra and proximal (caldera-wall) material describe an eruption which commenced by emptying the deepest PIV and PV reservoirs, this being preferentially deposited in a narrow band across southern India (possibly due to jet-stream and/or plinian eruption transport), and as abundant pumice clasts in the lowermost proximal ignimbrites. Later, shallower magma reservoirs erupted, with PI being the most abundant as the eruption ended, sourcing the majority of distal ash from co-ignimbrite clouds (PI- and PIII-dominant), where associated ignimbrites isolated earlier (PIV- and PV-rich) deposits. This study shows how analysis of tephra glass compositional data can yield pre-eruption magma volume estimates, and enable aspects of magma storage conditions and eruption dynamics to be described.  相似文献   

12.
The Bandas del Sur Formation preserves a Quaternary extra-calderarecord of central phonolitic explosive volcanism of the LasCañadas volcano at Tenerife. Volcanic rocks are bimodalin composition, being predominantly phonolitic pyroclastic deposits,several eruptions of which resulted in summit caldera collapse,alkali basaltic lavas erupted from many fissures around theflanks. For the pyroclastic deposits, there is a broad rangeof pumice glass compositions from phonotephrite to phonolite.The phonolite pyroclastic deposits are also characterized bya diverse, 7–8-phase phenocryst assemblage (alkali feldspar+ biotite + sodian diopside + titanomagnetite + ilmenite + nosean–haüyne+ titanite + apatite) with alkali feldspar dominant, in contrastto interbedded phonolite lavas that typically have lower phenocrystcontents and lack hydrous phases. Petrological and geochemicaldata are consistent with fractional crystallization (involvingthe observed phenocryst assemblages) as the dominant processin the development of phonolite magmas. New stratigraphicallyconstrained data indicate that petrological and geochemicaldifferences exist between pyroclastic deposits of the last twoexplosive cycles of phonolitic volcanism. Cycle 2 (0·85–0·57Ma) pyroclastic fall deposits commonly show a cryptic compositionalzonation indicating that several eruptions tapped chemically,and probably thermally stratified magma systems. Evidence formagma mixing is most widespread in the pyroclastic depositsof Cycle 3 (0·37–0·17 Ma), which includesthe presence of reversely and normally zoned phenocrysts, quenchedmafic glass blebs in pumice, banded pumice, and bimodal to polymodalphenocryst compositional populations. Syn-eruptive mixing eventsinvolved mostly phonolite and tephriphonolite magmas, whereasa pre-eruptive mixing event involving basaltic magma is recordedin several banded pumice-bearing ignimbrites of Cycle 3. Theperiodic addition and mixing of basaltic magma ultimately mayhave triggered several eruptions. Recharge and underplatingby basaltic magma is interpreted to have elevated sulphur contents(occurring as an exsolved gas phase) in the capping phonoliticmagma reservoir. This promoted nosean–haüyne crystallizationover nepheline, elevated SO3 contents in apatite, and possiblyresulted in large, climatologically important SO2 emissions. KEY WORDS: Tenerife; phonolite; crystal fractionation; magma mixing; sulphur-rich explosive eruptions  相似文献   

13.
The nature of compositional heterogeneity within large silicic magma bodies has important implications for how silicic reservoirs are assembled and evolve through time. We examine compositional heterogeneity in the youngest (~170 to 70 ka) post-caldera volcanism at Yellowstone caldera, the Central Plateau Member (CPM) rhyolites, as a case study. We compare 238U–230Th age, trace-element, and Hf isotopic data from zircons, and major-element, Ba, and Pb isotopic data from sanidines hosted in two CPM rhyolites (Hayden Valley and Solfatara Plateau flows) and one extracaldera rhyolite (Gibbon River flow), all of which erupted near the caldera margin ca. 100 ka. The Hayden Valley flow hosts two zircon populations and one sanidine population that are consistent with residence in the CPM reservoir. The Gibbon River flow hosts one zircon population that is compositionally distinct from Hayden Valley flow zircons. The Solfatara Plateau flow contains multiple sanidine populations and all three zircon populations found in the Hayden Valley and Gibbon River flows, demonstrating that the Solfatara Plateau flow formed by mixing extracaldera magma with the margin of the CPM reservoir. This process highlights the dynamic nature of magmatic interactions at the margins of large silicic reservoirs. More generally, Hf isotopic data from the CPM zircons provide the first direct evidence for isotopically juvenile magmas contributing mass to the youngest post-caldera magmatic system and demonstrate that the sources contributing magma to the CPM reservoir were heterogeneous in 176Hf/177Hf at ca. 100 ka. Thus, the limited compositional variability of CPM glasses reflects homogenization occurring within the CPM reservoir, not a homogeneous source.  相似文献   

14.
The isotopic compositions of Nd and Sr and concentrations of major and trace elements were measured in flows and tuffs of the Woods Mountains volcanic center of eastern California to assess the relative roles of mantle versus crustal magma sources and of fractional crystallization in the evolution of silicic magmatic systems. This site was chosen because the contrast in isotopic composition between Precambrian-to-Mesozoic country rocks and the underlying mantle make the isotope ratios sensitive indicators of the proportions of crustal- and mantle-derived magma. The major eruptive unit is the Wild Horse Mesa tuff (15.8 m.y. old), a compositionally zoned rhyolite ignimbrite. Trachyte pumice fragments in the ash-flow deposits provide information on intermediate composition magma types. Crustal xenoliths and younger flows of basalt and andesite (10 m.y. old) provide opportunities to confirm the isotopic compositions of potential mantle and crustal magma sources inferred from regional patterns. The trachyte and rhyolite have Nd values of -6.2 to -7.5 and initial 87Sr/86Sr ratios mostly between 0.7086 and 0.7113. These magmas cannot have been melted directly from the continental basement because the Nd values are too high. They also cannot have formed by closed system fractional crystallization of basalt because the 87Sr/86Sr ratios are higher than likely values for parental basalt. Both major and trace element variations indicate that crystal fractionation was an important process. These results require that the silicic magmas are end products of the evolution of mantle-derived basalt that underwent extensive fractional crystallization accompanied by assimilation of crustal rock. The mass fraction of crustal components in the trachyte and rhyolite is estimated to be between 10% and 40%, with the lower end of the range considered more likely. The generation of magmas with SiO2 contents greater than 60% appears to be dominated by crystal fractionation with minimal assimilation of upper crustal rocks.  相似文献   

15.
The Matahina Ignimbrite (~160 km3 rhyolite magma, 330 ka) was deposited during a caldera-forming eruption from the Okataina Volcanic Centre, Taupo Volcanic Zone (TVZ), New Zealand. Juvenile clasts are divided into three groups: Group (1) the dominant crystal-poor rhyolite type, Group (2) a minor coarse-grained, mingled/mixed intermediate type, and Group (3) a rare fine-grained basalt. The ignimbrite consists of the Group 1 type and is divided into three members: a lower and middle member, which is high-silica, crystal-poor (<10 vol.%) rhyolite, and the upper member, which is low-silica and slightly more crystal-rich (up to 21 vol.%). Cognate, crystal-rich (up to 50 vol.%) basalt to intermediate pumice occurs on top of lag breccias and within lithic-rich pyroclastic density current deposits along the caldera margin (Groups 2 and 3). Several lines of evidence indicate that the intermediate clasts represent the cumulate complement to the melt-rich rhyolite: (1) continuity in the compositions of plagioclase, orthopyroxene, hornblende, and oxides and normal zoning of individual phenocrysts; (2) the silicic glass from the intermediate magma (interstitial melt) overlaps compositionally with the bulk rock rhyolite and glass; (3) high Zr and a slight positive Eu anomaly in the intermediate magma relative to quenched enclaves from other intermediate TVZ eruptions indicates zircon and plagioclase accumulation, respectively; (4) an increase in the Cl contents in glass from the least evolved to most evolved is consistent with the concentration of volatiles during magma evolution. Most of the compositional variations in the low- to high-silica rhyolites can be accounted for by continued Rayleigh fractionation (up to 15%), following melt extraction from the underlying mush, under varying fO2fH2O conditions to form a slightly compositionally zoned rhyolitic cap. This link to the varying fO2fH2O conditions is evidenced by the strong correlation between key geochemical parameters (e.g. Dy, Y), that qualitatively reflect fH2O conditions (presence or absence of hornblende/biotite), and fO2 estimated from Fe–Ti oxide equilibrium. Magma mingling/mixing between the basalt–andesite and the main slightly compositionally zoned rhyolitic magma occurred during caldera-collapse, modifying the least-evolved rhyolite at the lower portion of the reservoir and effectively destroying any pre-eruptive gradients.  相似文献   

16.
The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72?84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57?78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.  相似文献   

17.
Major and trace element data for a sequence of peralkaline silicic lavas and pyroclastic flows, exposed in the caldera wall of the Paisano volcano, west Texas, document systematic fractional crystallization during magmatic evolution and an open system, magma mixing event in the upper parts of the sequence. Stratigraphically lowest flows are comendite and comenditic quartz trachyte lavas and ash flow tufts. Overlying these units is a trachyte with compositional, textural and mineralogical features indicating that it is the product of magma-mixing; similar flows occur in other parts of the volcano at the same stratigraphic level. This composite trachyte is considered to be a mixture of mugearitic or mafic trachytic magma, derived from a similar source region which yielded the earlier caldera wall flows. Trace element concentrations of the post-trachyte comenditic quartz trachyte lavas suggest they were erupted from a chamber whose magma was diluted by an influx of mugearitic or mafic trachytic magma during a magma mixing event.Rayleigh fractionation calculations show that the comendites and comenditic quartz trachytes can be derived from a parental mugearite magma by 88% to 93% fractionation of dominantly plagioclase and alkali feldspar, with lesser amounts of clinopyroxene, magnetite and apatite. Zircon was not a significant fractionating phase. The composition, mineralogy and depth of the source region(s) which generated these magmas cannot be constrained from the present data set.  相似文献   

18.
爆炸式喷发过程中,火山碎屑物气孔记录了挥发分出溶、膨胀和合并等信息,其大小、形态、数量密度、空间分布等局域特征是推断火山喷发动力条件的重要参考。文章基于天池火山三期喷发(50 000年前大喷发的黄色浮岩、千年大喷发的灰白色浮岩和1668年八卦庙期喷发的黑色浮岩)野外地质工作,以非线性火山喷发动力学为指导,开展了火山通道内气泡生长的流体动力学研究,揭示出岩浆流体黏性力和界面张力的共同作用对于岩浆减压和气泡生长过程的约束。在浮岩气孔结构的定量化分析基础上,进一步研究了天池火山三期喷发的浮岩气孔参数,通过气泡生长流体动力学方程得到了千年大喷发灰白色浮岩毛细管数Ca值为253, 明显高于50 000年前大喷发黄色浮岩(Ca值为94)和八卦庙期喷发黑色浮岩(Ca值为111),表明了千年大喷发曾发生过明显的成分变化,推测可能与幔源基性岩浆注入有关;而50 000年前大喷发黄色浮岩气孔不规则形态参数(1-Ω)值为0.098,大于后两期喷发(分别为0.052和0.064),可能意味着天池火山系统动力学平衡的弛豫周期变小或浮岩气泡生长受动力学、流变学改造过程减弱,这可为进一步研究天池火山活动规律提供参考。三期浮岩毛细管数Ca量级为102,气孔不规则形态参数(1-Ω)量级为10-1,从动力学上首次证实了天池火山属于普林尼型或超普林尼型喷发。  相似文献   

19.
Magma mixing can occur in a fluid manner to produce banded pumice or in a brittle manner to form enclaves. We propose that the critical control on mixing style is a competition between developing networks of crystals in the intruding magma that impart a strength to the magma and melting and disrupting those networks in the host. X-ray computed tomography analysis demonstrates that banded pumice from the 1915 Mt. Lassen eruption lacks crystal networks. In contrast, rhyodacite hosts with mafic enclaves from Chaos Crags contain well-developed networks of large crystals. We present a one-dimensional conductive cooling model that predicts mixing style, either ductile or brittle, as a function of magma compositions, temperatures, and the size of the intruding dike. Our model relies on three assumptions: (1) Mixing is initiated by the injection of a hot dike into a cooler magma body with a yield strength; (2) when magma crystallinity exceeds a critical value, 13 vol% plagioclase, the magma develops a yield strength; and (3) when total crystallinity exceeds 40 vol%, the magma has a penetrative crystal network and is effectively solid. Importantly, because the two magmas are of different compositions, their crystallinities and viscosities do not have the same variations with temperature. As the intruding magma cools, it crystallizes from the outside in, while simultaneously, host magma temperature near the intruder rises. Mixing of the two magmas begins when the host magma is heated sufficiently to (1) disrupt the crystal network and (2) initiate convection. If the shear stress exerted by the convecting host magma on the dike is greater than the yield strength of the dike margin (and dike crystallinity does not exceed 40 %), then fluid mixing occurs, otherwise enclaves form by brittle deformation of the dike. Application of the model to magma compositions representative of Lassen and Chaos Crags shows that emplacement of dikes <1 m thick should produce enclaves, whereas thicker dikes should generate fluid mixing and form banded pumice within days to weeks of emplacement. Similar relationships apply to other modeled magmatic systems, including Pinatubo, Unzen, and Ksudach/Shtuybel’ volcanoes. For all studied systems, the absolute size of the intruding dike, not just its proportion relative to the host, influences mixing style.  相似文献   

20.
Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750–800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800–850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos-Kos stage. The recent eruptions of the high-SiO2 rhyolite on Yali Island, which are low temperature and hydrous phases (sanidine, quartz, biotite), suggest that another large, potentially explosive magma chamber is presently building under the Kos-Nisyros volcanic center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号