首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   

2.
We show that photochemical processes in the lower half of the troposphere are strongly affected by the presence of liquid water clouds. Especially CH2O, an important intermediate of CH4 (and of other hydrocarbon) oxidation, is subject to enhanced breakdown in the aqueous phase. This reduces the formation of HO x -radicals via photodissociation of CH2O in the gas phase. In the droplets, the hydrated form of CH2O, its oxidation product HCO2 , and H2O2 recycle O2 radicals which, in turn, react with ozone. We show that the latter reaction is a significant sink for O3. Further O3 concentrations are reduced as a result of decreased formation of O3 during periods with clouds. Additionally, NO x , which acts as a catalyst in the photochemical formation of O3, is depleted by clouds during the night via scavenging of N2O5. This significantly reduces NO x -concentrations during subsequent daylight hours, so that less NO x is available for O3 production. Clouds thus directly reduce the concentrations of O3, CH2O, NO x , and HO x . Indirectly, this also affects the budgets of other trace gases, such as H2O2, CO, and H2.  相似文献   

3.
A quality assurance program for the three main field experiments in TFScovering O3, NO, NOx, NOy, CO,O3 LIDARs and meteorological parameters was designed andexecuted. The results are presented and problems encountered during the execution phase are discussed. The need for and the benefit of independent quality assurance activities is demonstrated and documented in detailed meta data files that are part of the final data set.  相似文献   

4.
The applicability of the tungsten oxide denuder tube technique for the measurement of nitric acid in the rural troposphere was investigated. The technique is based on selective chemisorption of HNO3 from the gas stream, thermal desorption, conversion to NO, and analysis by NO–O3 chemiluminescence. Ammonia, which is also collected and desorbed as NH3 and NO, was separated from the HNO3-derived NO by linear temperature-programed thermal desorption. Possible interferences by NO2, HCN, PAN, and n-propyl nitrate (NPN) were tested and found to be significant under conditions found in the lower troposphere. Simultaneous ambient measurements of HNO3 were made with the tungsten oxide denuder tube and nylon filter methods at a rural site in the Colorado mountains (Niwot Ridge, CO). Nitric acid levels measured by the tungsten oxide denuder tube averaged a factor of 3 higher than levels measured by the nylon filter technique. Tests involving the placement of nylon materials in front of the tungsten oxide denuder tube show that there are species, as yet unidentified, present in the atmosphere that interfere with the measurement of HNO3 by the tungsten oxide technique.  相似文献   

5.
Emissions may affect climate indirectly through chemical interactions in the atmosphere, but quantifications of such effects are difficult and uncertain due to incomplete knowledge and inadequate methods. A preliminary assessment of the climatic impact of changes in tropospheric O3 and CH4 in response to various emissions is given. For a 10% increase in the CH4 emissions the relative increase in concentration has been estimated to be 37% larger. The radiative forcing from enhanced levels of tropospheric O3 is estimated to 37% of the forcing from changes in CH4. Inclusion of indirect effects approximately doubles the climatic impact of CH4 emissions. Emissions of NOx increase tropospheric O3, while the levels of CH4 are reduced. For emissions of NOx from aircraft, the positive effects via O3 changes are significantly larger than the negative through changes in CH4. For NOx emitted from surface sources, the effects through changes in O3 and CH4 are estimated to be of similar magnitude and large uncertainty is connected to the sign of the net effect. Emissions of CO have positive indirect effects on climate through enhanced levels of tropospheric o3 and increased lifetime of CH4. These results form the basis for estimates of global warming potentials for sustained step increases in emissions.  相似文献   

6.
Effects of tropical deforestation on global and regional atmospheric chemistry   总被引:10,自引:0,他引:10  
A major portion of tropospheric photochemistry occurs in the tropics. Deforestation, colonization, and development of tropical rain forest areas could provoke significant changes in emissions of radiatively and photochemically active trace gases. A brief review of studies on trace-gas emissions in pristine and disturbed tropical habitats is followed by an effort to model regional tropospheric chemistry under undisturbed and polluted conditions. Model results suggest that changing emissions could stimulate photochemistry leading to enhanced ozone production and greater mineral acidity in rainfall in colonized agricultural regions. Model results agree with measurements made during the NASA ABLE missions. Under agricultural/pastoral development scenarios, tropical rain forest regions could export greater levels of N2O, CH4, CO, and photochemical precursors of NO y and O3 to the global atmosphere with implications for climatic warming.  相似文献   

7.
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO y ), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO y was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO y was seen. In particular, north of 25° N, ozone and NO y mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO y and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there.  相似文献   

8.
Eddy correlation measurements of NO vertical flux were made periodically from October 1983 through June 1984 at a height of eight meters above grass in northeastern Illinois, U.S.A. From 207 data points, each representing a 25 min average, 19 daytime cases and 8 nighttime cases were selected on the basis of steady, nonadvective atmospheric conditions. Each case was represented by a set of data constituting a 3 to 5 hr average. Concentrations of O3, NO, and NO y (from which NO2 was inferred) and local atmospheric and surface conditions also were measured, to provide the information necessary to assess the relative importance of surface deposition, surface emission, and air chemistry on the observed NO flux. On the basis of a linear regression analysis applied with independent variables representing physical, chemical, and biological processes, surface uptake of NO was very small for data primarily collected in the daytime during spring, and measured deposition velocities at a height of 8 m were very small, much smaller than expected for NO2. For the same time period, the surface emission rates of elemental nitrogen in NO were in the range of 1.4 to 4.2 ng m-2 s-1 for moist, unsaturated soils at temperatures near 15° C. These emissions were partially masked in the measured fluxes by rapid in-air chemical reactions involving O3 and NO2. The effects of rapid in-air chemical reactions involving O3 were to decrease the (upward) flux of NO with height. While the information collected at night was too limited to strongly support hypotheses concerning emissions and deposition, a pathway for NO production by reactions involving NO3 and related compounds was indicated. For daytime conditions, this production pathway is not evident, probably because of the relatively strong effects of photochemical reactions involving NO, NO2, and O3.Formerly with the Chemical Technology Division of Argonne National Laboratory and currently affiliated with Bio-Rad Laboratories, Digilab Division, Minneapolis, MN, U.S.A.  相似文献   

9.
In situ measurements of [OH], [HO2] (square brackets denote species concentrations), and other chemical species were made in the tropical upper troposphere (TUT). [OH] showed a robust correlation with solar zenith angle. Beyond this dependence, however, [OH] did not correlate to its primary source, the product of [O3] and [H2O] ([O3]?[H2O]), or its sink [NOy]. This suggests that [OH] is heavily buffered in the TUT. One important exception to this result is found in regions with very low [O3], [NO], and [NOy]. Under these conditions, [OH] is highly suppressed, pointing to the critical role of NO in sustaining OH in the TUT and the possibility of low [OH] over the western Pacific warm pool due to strong marine convections bringing NO-poor air to the TUT. In contrast to [OH], [HOx] ([OH] + [HO2]) correlated reasonably well with [O3]?[H2O]/[NOy], suggesting that [O3]?[H2O] and [NOy] are the significant source and sink, respectively, of [HOx].  相似文献   

10.
Using long path UV absorption spectroscopy we have measured OH concentrations close to the earth's surface. The OH values observed at two locations in Germany during 1980 through 1983 range from 0.7×106 to 3.2×106 cm-3. Simultaneously we measured the concentrations of O3, H2O, NO, NO2, CH4, CO, and the light non methane hydrocarbons. We also determined the photolysis rates of O3 and NO2. This allows calculations of OH using a zero dimensional time depdendent model. The modelled OH concentrations significantly exceed the measured values for low NO x concentrations. It is argued that additional, so far unidentified. HO x loss reactions must be responsible for that discrepancy.  相似文献   

11.
Ground-based FTIR measurements have been performed in the Arctic summer in July 1993 and June 1994 at 79° N to study the zenith column densities of several trace gases in the undisturbed Arctic summer atmosphere. Zenith column densities of H2O, N2O, HNO3, NO2, NO, ClONO2, ClO, HCl, HF, COF2, OCS, SF6, HCN, CH4, C2H6, C2H2, CO, O3, CFC-12, CFC-22, and CO2 were retrieved by line-by-line calculations. The results are compared with winter and springtime observations measured at the same site, with column densities obtained in the Antarctic summer atmosphere, and with measurements at midlatitudes. For HCl the spectra give lower total zenith columns than expected, but the ratio HF/HCl agrees well with midlatitude literature data. Measurements of ClONO2 give low total columns in agreement with observations at midlatitudes. In the undisturbed atmosphere HCl was found to be in excess of ClONO2. The total columns of HNO3, N2O and the sum of NO and NO2 agree with summer observations in Antarctica. Results for the tropospheric trace gas C2H6 are higher by 250% when compared with Antarctic observations. Contrary to N2O and CH4 the seasonal cycle of C2H6 and C2H2 give much higher total columns in winter/spring compared to the summer observations. This is assigned to transport of polluted airmasses from mid-latitudes into the Arctic.  相似文献   

12.
Simultaneous measurements of peroxy and nitrate radicals at Schauinsland   总被引:3,自引:0,他引:3  
We present simultaneous field measurements of NO3 and peroxy radicals made at night in a forested area (Schauinsland, Black Forest, 48° N, 8° N, 1150 ASL), together with measurements of CO, O3, NO x , NO y , and hydrocarbons, as well as meteorological parameters. NO2, NO3, HO2, and (RO2) radicals are detected with matrix isolation/electron spin resonance (MIESR). NO3 and HO2 were found to be present in the range of 0–10 ppt, whilst organic peroxy radicals reached concentrations of 40 ppt. NO3, RO2, and HO2 exhibited strong variations, in contrast to the almost constant values of the longer lived trace gases. The data suggest anticorrelation between NO3 and RO2 radical concentrations at night.The measured trace gas set allows the calculation of NO3 and peroxy radical concentrations, using a chemical box model. From these simulations, it is concluded that the observed anthropogenic hydrocarbons are not sufficient to explain the observed RO2 concentrations. The chemical budget of both NO3 and RO2 radicals can be understood if emissions of monoterpenes are included. The measured HO2 can only be explained by the model, when NO concentrations at night of around 5 ppt are assumed to be present. The presence of HO2 radicals implies the presence of hydroxyl radicals at night in concentrations of up to 105 cm–3.  相似文献   

13.
Abstract

We describe a one‐dimensional (1‐D) numerical model developed to simulate the chemistry of minor constituents in the stratosphere. The model incorporates most of the chemical species presently found in the upper atmosphere and has been used to investigate the effect of increasing chlorofluorocarbon (CFC) emissions on ozone (O3).

Our calculations confirm previous results that O3 depletions in the 20–25 km region, the region of the O3 maximum, are very sensitive to the relative abundances of Clx and NOy in the lower stratosphere for high Clx amounts. The individual abundances of lower stratospheric Clx and NOy amounts are very sensitive to upper tropospheric mixing ratios, which, in turn, are determined largely by surface input fluxes and heterogeneous loss processes. Thus the behaviour of column O3 depletions at high Clx levels is greatly affected, albeit indirectly, by tropospheric processes. For high Clx levels the Ox flux from the stratosphere to the troposphere is dramatically reduced, leading to a large reduction in tropospheric O3. Some of the variation between different published 1‐D model results is most likely due to this critical dependence of O3 depletion on NOy‐Clx ratios.

Model simulations of time‐dependent CFC effects on ozone indicate that if CFCs were to remain at constant 1980 emission rates while N2O increased at 0.25% a?1 and CH4 increased at 1% a?1, we could expect a 2.2% decrease in total column O3 (relative to the 1980 atmosphere) by the year 2000. However, if CFC emission rates were to increase by 3% a?1 (current estimates are 5–6% a?1), we would predict a depletion of 2.7% by the year 2000. The calculations for times beyond the year 2000 suggest that the effects on total O3 will begin to accelerate. If methyl chloroform emissions are added at 7% a?1 (current estimates are 7–9% a?1) to the above CFC‐N2O‐CH4 scenario we calculate total O3 depletions by the year 2000 that are 41% larger than those calculated without. This suggests that if the emissions of methyl chloroform continue to increase at their present rate then methyl chloroform could have a significant effect upon total O3.  相似文献   

14.
15.
Rate constants for the gas-phase reactions of OH radicals, NO3 radicals and O3 with the C7-carbonyl compounds 4-methylenehex-5-enal [CH2=CHC(=CH2)CH2CH2CHO], (3Z)- and (3E)-4-methylhexa-3,5-dienal [CH2=CHC(CH3)=CHCH2CHO] and 4-methylcyclohex-3-en-1-one, which are products of the atmospheric degradations of myrcene, Z- and E-ocimene and terpinolene, respectively, have been measured at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained (in cm3 molecule–1 s–1 units) were: for 4-methylenehex-5-enal, (1.55 ± 0.15) × 10–10, (4.75 ± 0.35) × 10–13 and (1.46 ± 0.12) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3Z)-4-methylhexa-3,5-dienal: (1.61 ± 0.35) × 10–10, (2.17 ± 0.30) × 10–12, and (4.13 ± 0.81) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3E)-4-methylhexa-3,5-dienal: (2.52 ± 0.65) × 10–10, (1.75 ± 0.27) × 10–12, and (5.36 ± 0.28) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; and for 4-methylcyclohex-3-en-1-one: (1.10 ± 0.19) × 10–10, (1.81 ± 0.35) × 10–12, and (6.98 ± 0.40) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively. These carbonyl compounds are all reactive in the troposphere, with daytime reaction with the OH radical and nighttime reaction with the NO3 radical being predicted to dominate as loss processes and with estimated lifetimes of about an hour or less.  相似文献   

16.
Improvements of the matrix isolation/electron spin resonance technique for the measurement of NO2, NO3, and RO2 radicals in the atmosphere are described. The use of D2O instead of H2O as the matrix yields a better spectral resolution and, as a consequence, larger a signal-to-noise ratio as well as better identification of the different species. Reference spectra of the different radicals in H2O and D2O matrices are compared. While a large degree of correlation exists amongst the spectra of the different (unsubstituted and substituted) alkylperoxy radicals, the spectra of HO2, CH3C(O)O2, and NO3 show significant differences that allow their distinction in atmospheric samples.A numerical procedure for the analysis of the composite ESR spectra obtained from atmospheric samples was developed. Subtraction of the dominant NO2 signal is performed by matching a reference NO2 spectrum with respect to amplitude, spectral position, and line width to the sample spectrum. The manipulations are performed with the virtually noise-free reference spectrum and are based on physical information. The residual spectrum is then analyzed for RO2 (and/or NO3) by simultaneously fitting up to six different reference spectra.The method was applied to laboratory samples as well as to atmospheric samples in order to demonstrate the ability of retrieving small amounts of HO2 in the presence of large amounts of NO2 and other peroxy radicals. The new algorithm allowed, for the first time, the identification of the HO2 and CH3C(O)O2 radical in tropospheric air at concentrations ranging up to 40 ppt.  相似文献   

17.
During 18–23 July 1990, 31 smoke samples were collected from an aircraft flying at low altitudes through the plumes of tropical savanna fires in the Northern Territory, Australia. The excess (above background) mixing ratios of 17 different trace gases including CO2, CO, CH4, several non-methane hydrocarbons (NMHC), CH3CHO, NO x (– NO + NO2), NH3, N2O, HCN and total unspeciated NMHC and sulphur were measured. Emissionratios relative to excess CO2 and CO, and emissionfactors relative to the fuel carbon, nitrogen or sulphur content are determined for each measured species. The emission ratios and factors determined here for carbon-based gases, NO x , and N2O are in good agreement with those reported from other biomass burning studies. The ammonia data represent the first such measurements from savanna fires, and indicate that NH3 emissions are more than half the strength of NO x emissions. The emissions of NO x , NH3, N2O and HCN together represent only 27% of the volatilised fuel N, and are primarily NO x (16%) and NH3 (9%). Similarly, only 56% of the volatilised fuel S is accounted for by our measurements of total unspeciated sulphur.  相似文献   

18.
Peroxyacetyl nitrate (PAN,CH3C(O)O2NO2) has been measured inthe polluted boundary layer and free troposphere by thermal conversion tonitrogen dioxide (NO2) followed by detection of thedecomposition product with a Scintrex LMA-3 NO2-luminolinstrument. Following laboratory tests of the efficiency of PAN conversionand investigations of possible interferences, the technique was evaluated atthe West Beckham TOR (Tropospheric Ozone Research) Station near the northNorfolk coast in Eastern England between September 1989 and August 1990. PANmeasured by the new technique was reasonably well correlated with PANrecorded using electron capture gas chromatography (EC/GC). PAN was alsowell correlated with ozone (O3) in the summer months. Springand autumn episodes of simultaneously high concentrations of PAN andO3 were examined in conjunction with air parcelback-trajectories and synoptic- and local-scale meteorology in a study ofthe sources of photooxidants on the east coast of England. Spring-timemeasurements of PAN made in the free troposphere in a light aircraft ataltitudes up to 3.1 km showed the presence of 0.54 and 0.26 ppbv PAN inpolar maritime and mid-latitude oceanic air masses, respectively. Thetechnique is particularly suited to airborne applications because potentialinterferences are minimised and the frequency of measurements is higher thangenerally achieved with EC/GC methods.  相似文献   

19.
Air pollutant emission rates and concentrations in medieval churches   总被引:1,自引:0,他引:1  
A series of indoor air quality parameters were determined in two medieval churches, in Cyprus (temperature, relative humidity, total and UV solar radiation, CO2 indoors and O3, NO, NO2 *, HNO3 *, HCl, HCOOH, CH3COOH indoors and outdoors). These data were used as input in a validated indoor air quality model to predict indoor air pollutant source strengths and species concentrations that resulted from dark or photochemical reactions. The NO and NO2 emission rates due to the burning of incense or candles were estimated. Model results revealed that heterogeneous NO formation takes place simultaneously with the heterogeneous HONO formation. Also, model application has shown that indoor NOx emissions resulted in decreased free radical concentrations, in contrast to the organic compound emissions, which increased free radical concentrations. This effect of indoor emissions on indoor radicals can partly explain the indoor enhancement/depression of indoor gaseous acid formation.  相似文献   

20.
Generally, it is assumed that UV-light, high temperature or reactive molecules like O3 and OH are needed to activate gas reactions in air. In consequence, the catalytic activity on natural materials such as sand and soil on the earth's surface is assumed to be insignificant. We have measured O2-dissociation rates on natural quartz sand at 40˚C and compared these with O2-dissociation rates near 500˚C on materials with well-known catalytic activity. In terms of probabilities for dissociation of impinging O2-molecules the measured rates are in the 10−12–10−4 range. We have also measured dissociation rates of H2 and N2, water-formation from H2 and O2 mixtures, exchange of N between N2, NO x and a breakdown of HNO3, NO2 and CH4 on natural quartz sand at 40˚C. The measured rates together with an effective global land area have been used to estimate the impact of thermodynamically driven reactions on the earth's surface on the global atmospheric budgets of H2, NO2 and CH4. The experimental data on natural quartz sand together with data from equilibrium calculations of air suggest that an expected increase in anthropogenic supply of air pollutants, such as NO x or other “reactive” nitrogen compounds, hydrogen and methane, will be counter-acted by catalysis on the earth's surface. On the other hand, at Polar Regions and boreal forests where the “reactive” nitrogen concentration is below equilibrium, the same catalytic effect activates formation of bio-available nitrogen compounds from N2, O2 and H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号