首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The wide-band source (WBS) signals measured in the Asian Seas International Acoustics Experiment (ASIAEX) in the East China Sea (ECS) were used to invert for geoacoustic parameters. Sound speed and density were inverted using the matched-field processing method combined with the vertical reflection coefficients and sea-bed attenuation coefficients were inverted from the vertical correlation data. For a half infinite liquid sea-bottom model, the inverted equivalent bottom sound speed is 1610/spl plusmn/12 m/s and the bottom density is 1.86 g/cm/sup 3/. The inverted attenuation coefficients are well described by a nonlinear relationship of the form /spl alpha//sub b/=0.28f/sup 1.58/ dB/m (f is in units of kilohertz) in the frequency range of 100-600 Hz.  相似文献   

2.
During the 1999 sediment acoustics experiment (SAX99), porometric properties were measured and predicted for a well sorted, medium sand using standard laboratory geotechnical methods and image analysis of resin-impregnated sediments. Sediment porosity measured by laboratory water-weight-loss methods (0.372 /spl plusmn/ 0.0073 for mean /spl plusmn/1 standard deviation) is 0.026 lower than determined by microscopic image analysis of resin-impregnated sediments (0.398 /spl plusmn/ 0.029). Values of intrinsic permeability (m/sup 2/) determined from constant-head permeameter measurements (3.29 /spl times/ 10/sup -11/ /spl plusmn/ 0.60 /spl times/ 10/sup -11/) and by microscopic image analysis coupled with effective medium theory modeling (2.78 /spl times/ 10/sup -11/ /spl plusmn/ 1.01 /spl times/ 10/sup -11/) are nearly identical within measurement error. The mean value of tortuosity factor measured from images is 1.49 /spl plusmn/ 0.09, which is in agreement with tortuosity factor determined from electrical resistivity measurements. Slight heterogeneity and anisotropy are apparent in the top three centimeters of sediment as determined by image-based porometric property measurements. However, the overall similarity for both measured and predicted values of porosity and permeability among and within SAX99 sites indicates sediments are primarily homogeneous and isotropic and pore size distributions are fairly uniform. The results indicate that an effective medium theory technique and two-dimensional image analysis accurately predicts bulk permeability in resin-impregnated sands.  相似文献   

3.
The underwater acoustic noise of five representative whale-watching boats used in the waters of west Maui was measured in order to study the effects of boat noise on humpback whales. The first set of measurements were performed on 9 and 10 March, close to the peak of the whale season. The ambient noise was relatively high with the major contribution from many chorusing humpback whales. Measurements of boat sounds were contaminated by this high ambient background noise. A second set of measurements was performed on 28 and 29 April, towards the end of the humpback whale season. In both sets of measurements, two of the boats were inflatables with outboard engines, two were larger coastal boats with twin inboard diesel engines and the fifth was a small water plane area twin hull (SWATH) ship with inter-island cruise capabilities. The inflatable boats with outboard engines produced very complex sounds with many bands of tonal-like components. The boats with inboard engines produced less intense sounds with fewer tonal bands. One-third octave band measurements of ambient noise measured on 9 March indicated a maximum sound pressure level of about 123 dB re 1 microPa at 315 Hz. The maximum sound pressure level of 127 dB at 315 Hz was measured for the SWATH ship. One of the boats with outboard engines produced sounds between 2 and 4 kHz that were about 8-10 dB greater than the level of background humpback whale sounds at the peak of the whale season. We concluded that it is unlikely that the levels of sounds produced by the boats in our study would have any grave effects on the auditory system of humpback whales.  相似文献   

4.
Under certain conditions, Wood's equation can be used to predict sound speed in fluid/solid-grain suspensions if the bulk moduli and densities of the grains and fluid are known. In this paper, that relationship is used to estimate grain-bulk moduli in suspensions where sound speed, fluid density, fluid bulk modulus, grain density, and particle concentrations are known or accurately measured. Measured values of grain-bulk moduli for polystyrene beads suspended in water (mean = 4.15 /spl times/ 10/sup 9/ Pa) and soda-lime glass beads suspended in a "heavy liquid" (mean = 3.8 /spl times/ 10/sup 10/ Pa) are consistent with the values of bulk moduli for polystyrene beads and soda-lime glass beads found in the literature (3.6 to 4.2 /spl times/ 10/sup 9/ Pa and 3.4 to 4.0 /spl times/ 10/sup 10/ Pa, respectively). These measurements thus provide controls, which demonstrate the validity of the suspension technique to estimate values of particle bulk modulus. The values of bulk modulus, measured using the same suspension techniques, for Ottawa sand and quartz sand grains collected from the coastal sediments of the northeast Gulf of Mexico ranged between 3.8 and 4.7 /spl times/ 10/sup 10/ Pa, with 95% confidence limits between 3.0-5.7 /spl times/ 10/sup 10/ Pa. These measured values of bulk modulus are consistent with the range of handbook values for polycrystalline quartz (3.6 to 4.0 /spl times/ 10/sup 10/ Pa). The use of the lower bulk modulus (i.e., 7.0 /spl times/ 10/sup 9/ Pa) recently suggested by Chotiros is therefore inappropriate and traditional handbook values of sediment grain-bulk moduli should be used as inputs for sediment acoustic modeling.  相似文献   

5.
Kinematic global positioning system (GPS) positioning and underwater acoustic ranging can combine to locate an autonomous underwater vehicle (AUV) with an accuracy of /spl plusmn/30cm (2-/spl sigma/) in the global International Terrestrial Reference Frame 2000 (ITRF2000). An array of three precision transponders, separated by approximately 700 m, was established on the seafloor in 300-m-deep waters off San Diego. Each transponder's horizontal position was determined with an accuracy of /spl plusmn/8 cm (2-/spl sigma/) by measuring two-way travel times with microsecond resolution between transponders and a shipboard transducer, positioned to /spl plusmn/10 cm (2-/spl sigma/) in ITRF2000 coordinates with GPS, as the ship circled each seafloor unit. Travel times measured from AUV to ship and from AUV to transponders to ship were differenced and combined with AUV depth from a pressure gauge to estimate ITRF2000 positions of the AUV to /spl plusmn/1 m (2-/spl sigma/). Simulations show that /spl plusmn/30 cm (2-/spl sigma/) absolute positioning of the AUV can be realized by replacing the time-difference approach with directly measured two-way travel times between AUV and seafloor transponders. Submeter absolute positioning of underwater vehicles in water depths up to several thousand meters is practical. The limiting factor is knowledge of near-surface sound speed which degrades the precision to which transponders can be located in the ITRF2000 frame.  相似文献   

6.
An in situ permeameter probe was deployed off Fort Walton Beach, Florida in shallow-water coastal sandy sediment. Stations were occupied in a 600 m /spl times/ 600 m area. Intrinsic permeability in sand at 17 stations varied from 0.3 to 6.1 /spl times/ 10/sup -11/ m/sup 2/ to subbottom depths of 50 cm. Permeability decreased with increasing subbottom depth and minimal compaction. The sediment is a well-sorted, medium quartz sand with a mean grain size of approximately 0.34-0.52 mm and with 5%-8% carbonate shells and shell fragments. The probe was tested in a slightly finer-grained sediment near the main study area and revealed permeabilities of 0.1-3.2 /spl times/ 10/sup -11/ m/sup 2/. The permeabilities measured are reasonable for the observed sandy and slightly finer-grained sediments.  相似文献   

7.
The characteristics of internal waves (IWs) observed during the Asian Sea International Acoustics Experiment 2001 in the East China Sea are presented in this paper. Temperature data from a 17-element thermistor chain exhibit clear IW features in shallow water. Large-amplitude oscillations, up to 35 m, are noted due to the semi-diurnal internal tides. High-frequency (HF) and narrow-bandwidth IW trains around 6 c/h ride on semi-diurnal IWs. The spectrum of vertical displacement of the IWs, calculated from the thermistor chain data, falls as /spl omega//sup -1.6/ in the frequency band of 0.1-4 c/h. For higher frequencies (>6 c/h), the spectrum falls as /spl omega//sup -3.0/. Vertical coherence of the IWs for both semi-diurnal internal tides and HF IWs is analyzed. Comparisons of our observations with other data, obtained from SWARM95, the Barents Sea, and the Gulf of Mexico, display some common characteristics of shallow-water IWs.  相似文献   

8.
Compressional speed dispersion exists in all marine sediments. If the dispersion is great enough it may play a significant role in acoustic interaction with the seabed. On the other hand if dispersion is weak, seabed models and databases can be substantially simpler. The ocean acoustics community is divided on this issue, in part because of the lack of observations. One of the experimental challenges has been to measure speed over several decades of frequency using a single technique so that observed speed changes cannot be due to different biases in the techniques. A simple in-situ experimental approach was developed that measures the critical angle as a function of frequency and thus infers the speed dispersion. Measurements on the mid to outer continental shelf (Malta Plateau and the New Jersey Shelf STRATAFORM area) show a weak dispersion over the band from /spl sim/10/sup 2/-10/sup 4/ Hz. This implies (via the Kramers-Kronig relations) that the compressional wave attenuation for these sediments is small and/or approximately linear over this band.  相似文献   

9.
Western Hong Kong is home to two species of marine mammals: Indo-Pacific humpbacked dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides). Both are threatened in many parts of their range in southeast Asia [for example, International Biological Research Institute Reports 9 (1997), 41; Asian Marine Biology 14 (1997) 111]. In 1998, when the new Hong Kong International Airport opened in western Hong Kong, small tankers (about 100 m long, cargo capacity about 6300 metric tons) began delivering fuel to the Aviation Fuel Receiving Facility (AFRF) just off Sha Chau Island, north of the airport. Calibrated sound recordings were taken over a 4-day period from a quiet, anchored boat at distances 80-2000 m from aviation fuel delivery activities at the AFRF. From the recordings, 143 sections were selected for analysis. Narrowband spectral densities on the sound pressures were computed, and one-third octave band levels were derived for center frequencies from 10 to 16,000 Hz. Broadband levels, viz. 10-20,000 Hz. were also computed. The results showed that the Sha Chau area is normally noisy underwater, with the lowest broadband levels measured corresponding to those expected during a storm at sea (sea state 6). This background noise is believed to come largely from heavy vessel traffic in the Urmston Road to the north and east of Sha Chau and from vessels in the Pearl River Estuary to the West. The sound levels from the AFRF tankers are comparable to the levels measured from similar- and smaller-sized supply vessels supporting offshore oil exploration. The strongest sounds recorded were from a tanker leaving the AFRF at distance 100 m from the hydrophone, for which the one-third octave band level at 100 Hz was 141 dB re 1 microPa (spectrum level 127 dB re 1 microPa2/Hz) and the 10-20,000 Hz broadband level was 146 dB. At distances of 100 m or more and frequencies above 300 Hz, the one-third octave band levels were less than 130 dB (spectrum level 111 dB re 1 microPa2/Hz) and decreased with increasing frequency and distance. At distances greater than about 500 m, AFRF-associated sounds were negligible, masked by the generally high noise level of the area and attenuated by poor transmission in the very shallow water (<10 m). Because it is believed that humpbacked dolphins and finless porpoises are not very sensitive to sounds below 300 Hz, the Airport Authority Hong Kong (AA) stipulated that dedicated terminal vessels not radiate underwater sounds at spectrum levels greater than 110 dB re 1 microPa2/Hz at frequencies above 300 Hz and distances greater than 300 m. The spectrum levels at 300 Hz and higher frequencies of sounds from the tankers arriving, departing, or off-loading at AFRF were less than 110 dB re 1 microPa2/Hz even at distances of 200 m or less. The AA stipulation was met. However, it is presently unknown whether the generally strong noise levels of western Hong Kong inhibit acoustically based feeding and communication, or result in increased stress or permanent shifts in hearing thresholds.  相似文献   

10.
海洋生物声学的研究,在第二次世界大战后已取得了很大进展,并已在军事和生产上得到应用,取得了效果。海洋动物发声是海洋环境噪声的一个组成部分,也是声纳系统的水下背景干扰源,尤其是在近岸海区,往往不可忽视。所以,研究海洋动物发声,除了在海洋生物学的研究中有明显的重要性外,对进一步了解海洋环境噪声的产生原因、变化规律及其物理机理,以及在声纳设计等方面也是十分重要的。已有报道,人们曾观測到鼓虾、石首鱼类、海胆、殆贝、藤壶、鲸等海洋动物集群发出的声音,往往造成很强的海洋噪声源。这些生物机体噪声通常还具有季节性或周日性的变化。有关海洋生物机体发声的观测和信号分析研究,国外虽有一些报道,但仅限于某些海区。 据不完全统计,我国近岸海区的发声生物在100种以上,其中不少种类具有集群大、发声强的特点。石首鱼科鱼类是我国近岸海区主要的海洋发声鱼类,约占我国海洋发声鱼类总数的三分之一,在渤海、黄海、东海和南海均有分布。其主要发声器官为鳔和邻近的鼓肌,当鼓肌收縮时压迫内脏,使鳔壁共振发出声音。他们在上述某些海区集群发出的声音,有时在海面也能清晰听到。 本文主要对过去多年来我国渤海、黄海、东海近岸海区,某些集群大、发声强、具有代表性的石首科鱼的现场观测资料作了分析和阐述,其中包括集群发声的声学特征,以及随时间、地点的変化。  相似文献   

11.
Definitive studies on the response of marine mammals to anthropogenic sound are hampered by the short surface time and deep-diving lifestyle of many species. A novel archival tag, called the DTAG, has been developed to monitor the behavior of marine mammals, and their response to sound, continuously throughout the dive cycle. The tag contains a large array of solid-state memory and records continuously from a built-in hydrophone and suite of sensors. The sensors sample the orientation of the animal in three dimensions with sufficient speed and resolution to capture individual fluke strokes. Audio and sensor recording is synchronous so the relative timing of sounds and motion can be determined precisely. The DTAG has been attached to more than 30 northern right whales (Eubalaena glacialis) and 20 sperm whales (Physeter macrocephalus) with recording duration of up to 12 h per deployment. Several deployments have included sound playbacks to the tagged whale and a transient response to at least one playback is evident in the tag data.  相似文献   

12.
正弦波交替音对黑鲷音响驯化的实验研究   总被引:1,自引:0,他引:1  
音响驯化作为一种控制鱼群行为的技术,在海洋牧场开发中的应用前景广阔。在室内控温和投饵条件下,用300 Hz和400 Hz正弦波交替音对黑鲷(Sparus macrocephalus)进行音响驯化实验。结果表明,黑鲷对交替音的驯化效果经历了适应期、变化期和维稳期3个阶段;黑鲷的反应时间逐日缩短并逐渐接近对照组,第1~4天黑鲷的反应时间显著高于对照组(P<0.01),第5天开始对刺激产生正反馈,第10天低于对照组并出现实验期最小反应时间;聚集率则逐日增加并从第5天开始显著高于对照组 (P<0.01),第7天后聚集率稳定在100%;驯化后的黑鲷在饥饿状态下对音响刺激的兴奋度比饱食后相对更高。由此可见,300 Hz和400 Hz正弦波交替音对黑鲷的反应和聚集具有明显的效果,交替音可作为黑鲷音响驯化的一种有效手段,结合投饵可以在控制鱼类行为中发挥出更大作用。  相似文献   

13.
To prevent grounding of ships and collisions between ships in shallow coastal waters, an underwater data collection and communication network (ACME) using underwater sounds to encode and transmit data is currently under development. Marine mammals might be affected by ACME sounds since they may use sound of a similar frequency (around 12 kHz) for communication, orientation, and prey location. If marine mammals tend to avoid the vicinity of the acoustic transmitters, they may be kept away from ecologically important areas by ACME sounds. One marine mammal species that may be affected in the North Sea is the harbour seal (Phoca vitulina). No information is available on the effects of ACME-like sounds on harbour seals, so this study was carried out as part of an environmental impact assessment program. Nine captive harbour seals were subjected to four sound types, three of which may be used in the underwater acoustic data communication network. The effect of each sound was judged by comparing the animals' location in a pool during test periods to that during baseline periods, during which no sound was produced. Each of the four sounds could be made into a deterrent by increasing its amplitude. The seals reacted by swimming away from the sound source. The sound pressure level (SPL) at the acoustic discomfort threshold was established for each of the four sounds. The acoustic discomfort threshold is defined as the boundary between the areas that the animals generally occupied during the transmission of the sounds and the areas that they generally did not enter during transmission. The SPLs at the acoustic discomfort thresholds were similar for each of the sounds (107 dB re 1 microPa). Based on this discomfort threshold SPL, discomfort zones at sea for several source levels (130-180 dB re 1 microPa) of the sounds were calculated, using a guideline sound propagation model for shallow water. The discomfort zone is defined as the area around a sound source that harbour seals are expected to avoid. The definition of the discomfort zone is based on behavioural discomfort, and does not necessarily coincide with the physical discomfort zone. Based on these results, source levels can be selected that have an acceptable effect on harbour seals in particular areas. The discomfort zone of a communication sound depends on the sound, the source level, and the propagation characteristics of the area in which the sound system is operational. The source level of the communication system should be adapted to each area (taking into account the width of a sea arm, the local sound propagation, and the importance of an area to the affected species). The discomfort zone should not coincide with ecologically important areas (for instance resting, breeding, suckling, and feeding areas), or routes between these areas.  相似文献   

14.
The shallow refracted path through sea floor sediments plays a significant role in the transmission of acoustic energy at low frequencies. For bottom grazing angles of 90/spl deg/ to 25/spl deg/, low-frequency acoustic energy was observed to come from reflected paths. For bottom grazing angles of 25/spl deg/ to 10/spl deg/ the dominant source of low-frequency acoustic energy is from shallow refracted paths through the sediments. At angles less than 10/spl deg/, low-frequency acoustic energy is received from both the refracted and the reflected paths. The refracted path is possible because of the positive gradient within the sediment. The sudden emergence of the refracted arrival is related to the overall sound path length in the sediment and sediment absorption of sound. Since sediment absorption is directly proportional to frequency, only low-frequency energy is transmitted via this path. The refracted path may well exist where unconsolidated sediments of at least a few hundred feet are present.  相似文献   

15.
The marine aquaculture industry suffers losses due to pinniped attacks which damage net enclosures and fish stocks. Acoustic harassment devices (AHDs) emit loud sounds which are intended to deter pinnipeds from approaching aquaculture enclosures. At present, many AHDs emit sounds in the 8-20 kHz frequency range. It is not known whether sounds of higher frequencies have a deterrent effect on seals. Therefore five captive harbour seals (Phoca vitulina) were subjected to four series of tone pulses together spanning a broad frequency range (8, 16, 32 and 45 kHz). Pulse duration was 250 ms and pulse interval was 5s. Each of the four sounds was made deterrent by increasing the amplitude. The seals reacted by swimming away from the sounds. The displacement effect of each sound was judged by comparing the animals' surface positions, and number of surfacings, during ten 45 min baseline periods with ten 45 min test periods per frequency (one frequency per day in rotation, 40 sessions in total). The seals were displaced by all four frequencies throughout the 40 trial days. The seals came to the surface more often when the test tones were produced than in the baseline periods. The initial displacement distances did not change over the 40 test days. This suggests that operating AHDs for only short periods will be more effective and less likely to result in habituation by the seals than operating them continuously. The discomfort threshold sound pressure level (SPL) was established for each of the four pulse frequencies. The acoustic discomfort threshold SPL is defined as the boundary SPL between the area that the animals generally occupied during the transmission of the sounds and the area that they generally did not enter during sound transmission. The discomfort threshold SPL may depend on the context.  相似文献   

16.
Short acoustical signals like those caused by explosions will in a waveguide split into mode arrivals. If the distance is long enough, they can at the receiver be resolved in time with appropriate narrowband filters. They can simultaneously be resolved in vertical angle (incidence-) with an endfire array and a beamformer. Combined in a beam-time diagram the arrivals will line up along a straight line. The slope of this line is invariant with frequency, mode indexes, source and receiver depths. It can conveniently be linked to the so-called waveguide invariant /spl beta/. An alternative approach to /spl beta/ is to compute it from the bathymetric profile. This is valid for range variable waveguides under adiabatic conditions, constant water sound speed over a harder bottom, and small grazing angles. Together these two approaches to /spl beta/ can be combined in a formula, where direct range determination is the end product. The applicability of the method is demonstrated on data from an experiment at sea. An 820-m array with 10 hydrophones was deployed at the bottom in 320-m water depth. For two endfire runs in opposite directions, small explosive charges out to 115 km were used as sound sources. Typical range estimation errors were 5-10%.  相似文献   

17.
We calibrated a sound velocimeter to a precision of plusmn0.034 m/s using Del Grosso's sound-speed equation for seawater at temperatures of 2, 7.2, 11.7, and 18degC in a tank of seawater of salinity 33.95 at one atmosphere. The sound velocimeter measures the time-of-flight of a 4-MHz acoustic pulse over a 20-cm path by adjusting the carrier frequency within a 70-kHz band until the pulse and its echo are inphase. We used the adjustable carrier frequency to determine the internal timing characteristics of the sound velocimeter to nanosecond precision. Similarly, sound-speed measurements at four different temperatures determined the acoustic pathlength to micrometer precision. The velocimeter was deployed in the ocean from the surface to 4500 dbar alongside conductivity, temperature, and pressure sensors (CTD). We demonstrated agreement of plusmn0.05 m/s (three parts in 105) with CTD-derived sound speed using Del Grosso's seawater equation from 500 to 4500 dbar after removing a bias and a trend  相似文献   

18.
Solutions were computed for the vertical ambient sea noise field directionality at five sites in the Western North Atlantic Ocean using data from a 26-hydrophone element array with a 358.4-foot aperture at a center depth of 1,000 feet. Results show that the low-frequency noise below 100 Hz is concentrated near the horizontal (50 to 93 percent of the noise power between /spl plusmn/15/spl deg/ of horizontal) and is apparently dependent on bottom loss and shipping density. The results in the band 200 to 380 Hz are a combination of sea state and shipping noise dependent. A noise field solution technique was developed involving noise cross spectral matrix inversions. This technique overcomes some of the drawbacks of previous techniques such as least mean square estimation and successive approximations.  相似文献   

19.
Acoustic data collected on the R/V Cory Chouest in February and March 1996 during an active operation of the U.S. Navy's surveillance-towed-array-sensor-system low-frequency-active (LFA) sonar were analyzed for blue whale (Balaenoptera musculus) and fin whale (B. physalus) sounds. Operational monitoring and mitigation protocols were implemented throughout the exercise to reduce the chances of an acoustic impact on marine mammals and sea turtles. The operational schedule did not include intentional "control" periods without transmissions but did include periods when the LFA sonar was not operating for other reasons (e.g., repairs). There were insufficient detections of blue whales for further analysis. Fin whale acoustic detection probabilities were calculated from the postprocessed data. A local-linear-regression analysis was used to compare fin whale detection probabilities from 2065 11-min intervals under conditions when the LFA sonar was and was not transmitting. There was an indication of a slightly higher probability of detecting fin whale sounds during periods when there were no LFA transmissions than during periods with transmissions. This may be the result of the following: 1) Reduced vocal activity by whales in response to LFA transmissions; 2) the effect of the mitigation protocols; or 3) some combination of 1) and 2). The data presently available do not allow one to distinguish definitively between these explanations, mainly because there were not enough data recorded for periods without LFA transmissions.  相似文献   

20.
近海海上风电场水下噪声传播模型适用性研究   总被引:1,自引:0,他引:1  
章蔚  杨红  丁骏  吉新磊 《海洋科学》2017,41(7):78-86
通过现场采集近海海上风电场工程区运营期风机水下噪声和背景噪声数据,计算了噪声信号的倍频带声压级,功率谱级和峰值声压级,确定了海上风电场水下噪声总声源级为148.3 d B,以此开展近海海上风电工程风机水下噪声频域特性、功率密度谱特性等研究。在此基础上使用Kraken简正波模型和Bellhop射线模型对风电场运营期风机水下噪声在水平与垂直方向上的传播进行模拟,模拟了噪声在不同频带内的衰减程度,结果显示模型模拟结果在不同频率下的衰减趋势有着很大差异,产生了明显的多途干涉现象,通过实测数据对建立的噪声传播模型进行验证,发现Kraken简正波模型在500 Hz以下,Bellhop射线模型在500 Hz以上适合模拟实际水下噪声传播情形,同时海区本身背景噪声的存在会对预测的准确性产生影响。这些结论可用于进一步对近海海上风电场水下噪声传播的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号