首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cangyuan Pb-Zn-Ag polymetallic deposit is located in the Baoshan Block, southern Sanjiang Orogen. The orebodies are hosted in low-grade metamorphic rocks and skarn in contact with Cenozoic granitic rocks. Studies on fluid inclusions (FIs) of the deposit indicate that the ore-forming fluids are CO2-bearing, NaCl-H2O. The initial fluids evolved from high temperatures (462–498 °C) and high salinities (54.5–58.4 wt% NaCl equiv) during the skarn stage into mesothermal (260–397 °C) and low salinities (1.2–9.5 wt% NaCl equiv) during the sulfide stage. The oxygen and hydrogen isotopic compositions (δ18OH2O: 2.7–8.8‰; δD: −82 to −120‰) suggest that the ore-forming fluids are mixture of magmatic fluids and meteoric water. Sulfur isotopic compositions of the sulfides yield δ34S values of −2.3 to 3.2‰; lead isotopic compositions of ore sulfides are similar to those of granitic rocks, indicating that the sulfur and ore-metals are derived from the granitic magma. We propose that the Cangyuan Pb-Zn-Ag deposit formed from magmatic hydrothermal fluids. These Cenozoic deposits situated in the west of Lanping-Changdu Basin share many similarities with the Cangyuan in isotopic compositions, including the Laochang, Lanuoma and Jinman deposits. This reveals that the Cenozoic granites could have contributed to Pb-Zn-Cu mineralization in the Sanjiang region despite the abundance of Cenozoic Pb-Zn deposits in the region, such as the Jingding Pb-Zn deposit, that is thought to be of basin brine origin.  相似文献   

2.
K-Ar ages of illite alteration associated with Middle Proterozoic Athabasca unconformity-type U deposits in Saskatchewan range from 414 to 1493 Ma. The K-Ar ages correlate with water contents and δD values such that illites with young K-Ar ages have δD values as low as −169 and water contents as high as 7.7 wt.% whereas illites with older ages have δD values near −70 and water contents near 4 wt.%. Water extracted at 400°C from illites with low δD values and high water contents has low δD and δ18O values similar to those of modern meteoric water suggesting that some of the illites associated with the original deposition of the ore underwent varying degrees of retrograde alteration. The alteration is initiated by hydration of sites in the interlayer region of the illite which results in the partial resetting of the K-Ar ages and introduction of excess structural water in the form of interlamellar water. The interlamellar water is enriched in 18O by about 7 per mil relative to the water that physically surrounded the clay particle. Further alteration decreases the δD value and increases the δ18O value of the illite by isotopic exchange between the mineral and the interlamellar water. Although the chemical compositions and XRD patterns of the altered illites indicate that no detectable smectite component is present in the samples, the isotopic results suggest that the altered illites may be an early precursor in the formation of mixed-layer illite/smectite by retrograde alteration of pure illite. The wide variation of δD values of chlorite and kaolinite from these U deposits is analogous to that of the illite suggesting that retrograde alteration of clays by meteoric water can be substantial. The general association of altered clays with areas containing the highest concentrations of U is probably related to localized permeability within the ore zone.  相似文献   

3.
应用氢氧同位素研究矿床成因的一些问题探讨   总被引:10,自引:1,他引:10       下载免费PDF全文
翟建平  胡凯 《地质科学》1996,31(3):229-237
成矿热液的氢、氧同位素组成与其水的类型、水/岩交换的岩石成分和同位素组成、水/岩交换时的温度及水/岩交换程度(W/R比值大小)等诸多因素有关,微生物和有机质也对其有一定的影响。因此,仅通过简单投影的方法将成矿热液的氢、氧同位素值与一些所谓的标准值进行类比,由此就推断出热液中水的来源,这种方法是不可取的;尤其当成矿热液的氢、氧同位素值介于大气降水和岩浆水的值之间时,切忌滥用两种水混合成矿模式,因为实际情况往往并不是这样。本文以胶东乳山金矿床为例,展开了这方面的讨论。  相似文献   

4.
《Resource Geology》2018,68(3):303-325
The Lujing uranium deposit, located in the southeastern part of the Nanling metallogenic province, is one of the representative granite‐related hydrothermal uranium deposits in South China. Basic geology, geochemistry, and geochronology of the deposit have been extensively studied. However, there is still a chronic lack of systematic research on the genesis and metallogenic process of the deposit. Thus, we recently carried out an electron microprobe and stable isotopic analysis. The main research results and progresses are as follows: Uranium minerals in this deposit include coffinite, pitchblende, and uranothorite, and small amounts of uranium exist in accessory minerals in the form of isomorphism. Coffinite, which occurs predominantly as the pseudomorphs after pitchblende, also occurs as a primary mineral and is locally formed from the remobilization of uranium from adjacent uranium‐bearing minerals. The mineralizing fluid was originally composed of a magmatic fluid generated by late Yanshanian magmatism. The high As content of pyrite in ores may reflect the addition of meteoric water, or the formation water (or both), to the magmatic hydrothermal system. The δ34S values vary from −14.4‰ to 13.9‰ (mean δ34S = −3.9‰), showing a range that is similar to nearby Cambrian metamorphic strata and Indosinian granites, indicating that these host rocks represent the source of sulfur; however, the possibility of a mantle source cannot be completely ruled out. According to our new isotopic data and recent Pb isotopic data, we conclude that the uranium in ores was derived by leaching dominantly from the uranium‐rich host rocks, especially the Cambrian metamorphic strata. The δ13CPDB values (−8.75‰ to 1.40‰; mean δ13CPDB = −5.41‰) and δ18OSMOW values (5.45–18.62‰; mean δ18O = 13.02‰) of reddish calcite from the ore‐forming stage suggest that the CO2 in the mineralizing fluids was derived predominantly from the mantle, with a small component contributed by marine carbonates. Based on these new data and previous research results, this paper proposes that uranium metallogenesis in the Lujing deposit is closely associated with mafic magmatism resulting from crustal extension during the Cretaceous to Paleogene in South China.  相似文献   

5.
《Geochimica et cosmochimica acta》1999,63(11-12):1787-1804
Rift-related lavas of the North Shore Volcanic Group (NSVG) are intruded by plutonic rocks of the Duluth Complex along the unconformity between the NSVG and the underlying Proterozoic metasedimentary rocks (Animikie Group) and Archean volcano-sedimentary and plutonic rocks. Heat associated with the emplacement of the mafic intrusions generated fluid flow in the overlying plateau lavas. δ18O values for whole rocks from the NSVG and hypabyssal sills range from 5.5 to 17.7‰ and 5.3 to 11.5‰, respectively, and most values are higher than those considered “normal” for basaltic rocks (5.4 to 6.0‰). In general, there is a positive correlation between whole rock δ18O and water content, which suggests that elevated δ18O values are related primarily to secondary mineral growth and isotopic exchange during hydrothermal alteration and metamorphism. δ18OH2O values computed from amygdule-filling minerals such as smectite, chlorite, and epidote found in low- to high-temperature metamorphic zones range from ∼−1 to 6‰ with an average value of ∼3‰. Smectite in the lower-grade zones gives computed δDH2O values between −26 and −83‰, whereas epidote in the higher-grade zones gives δDH2O values of −15 to 6‰. Fluid isotopic compositions computed from epidote and smectite values are suggestive of the involvement of at least two fluids during the early stages of amygdule filling. Fluid δD and δ18O values determined from epidote at the higher metamorphic grades indicate that seawater dominated the deeper portions of the system where greenschist facies assemblages and elevated δ18O values were produced in flow interiors, as well as margins. Smectite isotopic compositions suggest that meteoric water was predominant in the shallower portions of the system. The increase in δ18O values of massive flow interiors with depth is interpreted as a result of rock interaction with a fluid of constant oxygen isotopic composition with increasing temperature. The stable isotopic data are supportive of previous suggestions that seawater was involved in the hydrothermal system associated with the Midcontinent Rift. Although the origin of the seawater remains problematic, it appears that marine incursions may have occurred during the late stages of Portage Lake volcanism, and periodically thereafter.  相似文献   

6.
The Middle–Lower Yangtze River Valley is one of the most important metallogenic belts in China, hosting numerous Cu–Fe–Au–Mo deposits. The Taochong deposit is located in the northern part of the Fanchang iron ore district of the Middle–Lower Yangtze River metallogenic belt. The Fe-orebody is hosted by Middle Carboniferous to Lower Permian limestones. Skarns and Fe-orebodies occur as tabular bodies along interlayer-gliding faults, at some distance from the inferred granitic intrusions. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity—the skarn, iron oxide (main mineralization stage), and carbonate stages—all contributed to the formation of the Taochong iron deposit. The skarn stage is characterized by the formation of garnet and pyroxene, with high-temperature, hypersaline hydrothermal fluids with isotopic compositions similar to those of typical magmatic fluids. These fluids were probably generated by the separation of brine from a silicate melt instead of the product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by actinolite, chlorite, quartz, calcite and hematite. The hydrothermal fluids at this stage are represented by saline fluid inclusions that coexist with vapor-rich inclusions with anomalously low δD values (− 66‰ to − 94‰). The decrease in ore fluid δ18Owater with time and decreasing depth is consistent with the decreases in fluid salinity and temperature. The fluid δD values also show a decreasing trend with decreasing depth. Both fluid inclusion and stable isotopic data suggest that the ore fluid during the main period of mineralization was evolved by the boiling of various mixtures of magmatic brine and meteoric water. This process was probably induced by a drop in pressure from lithostatic to hydrostatic. The carbonate stage is represented by calcite veins that cut across the skarn and orebody, locally producing a dense stockwork. This observation indicates the veins formed during the waning stages of hydrothermal activity. The fluids from this stage are mainly represented by a variety of low-salinity fluid inclusions, as well as fewer high-salinity inclusions. These particular fluids have the lowest δ18Owater values (− 2.2‰ to 0.4‰) and a wide of range of δD values (− 40‰ to − 81‰), which indicate that they were originated from a mixture of residual fluids from the oxide stage, various amounts of meteoric water, and possibly condensed vapor. Low-temperature boiling probably occurred during this stage.We also discuss the reasons behind the anomalously low δD values in fluid inclusion water extracted by thermal decrepitation from quartz at high temperatures, and suggest that calcite data provide a possible benchmark for adjusting low δD values found in quartz intergrown with calcite.  相似文献   

7.
《Resource Geology》2018,68(3):227-243
As a newly discovered medium‐sized deposit (proven Pb + Zn resources of 0.23 Mt, 9.43% Pb and 8.73% Zn), the Dongzhongla skarn Pb–Zn deposit is located in the northern margin of the eastern Gangdese, central Lhasa block. Based on the geological conditions in this deposit of ore‐forming fluids, H, O, C, S, Pb, Sr, and noble gas isotopic compositions were analyzed. Results show that δ18OSMOW of quartz and calcite ranged from −9.85 to 4.17‰, and δDSMOW ranged from −124.7 to −99.6‰ (where SMOW is the standard mean ocean water), indicating magma fluids mixed with meteoric water in ore‐forming fluids. The δ13CPDB and δ18OSMOW values of calcite range from −1.4 to −1.1‰ and from 5.3 to 15.90‰, respectively, show compositions consistent with the carbonate limestone in the surrounding rocks, implying that the carbon was primarily sourced from the dissolution of carbonate strata in the Luobadui Formation. The ore δ34S composition varied in a narrow range of 2.8 to 5.7‰, mostly between 4‰ and 5‰. The total sulfur isotopic value δ34S was 4.7‰ with characteristics of magmatic sulfur. The 3He/4He values of pyrite and galena ranged from 0.101 to 5.7 Ra, lower than those of mantle‐derived fluids (6 ± 1 Ra), but higher than those of the crust (0.01–0.05 Ra), and therefore classified as a crust–mantle mixed source. The Pb isotopic composition for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ores were in the ranges of 18.628–18.746, 15.698–15.802, and 39.077–39.430, respectively, consistent with the Pb isotopic composition of magmatic rocks in the deposit, classified as upper‐crust lead. The ore lead was likely sourced partially from the crustal basement of the Lhasa Terrane. The initial (87Sr/86Sr)i value from five sulfide samples ranged from 0.71732 to 0.72767, and associated ore‐forming fluids were mainly sourced from the partial melting of the upper‐crust materials. Pb isotopic compositions of ore sulfides from the Dongzhongla deposit are similar to that of the Yuiguila and Mengya'a deposit, indicating that they have similar sources of metal‐rich ore‐forming solution. According to basic skarn mineralogy, the economic metals, and the origin of the ore‐forming fluids, the Dongzhongla deposit was classified as a skarn‐type Pb–Zn deposit.  相似文献   

8.
In the Mesozoic–Cenozoic continental deposits of the Tian Shan area, two main levels containing pedogenic carbonates have been identified on both the southern and northern foothills of the range: one in the Upper Jurassic series and one in the Upper Cretaceous–Lower Palaeocene series. In order to reconstruct the palaeoenvironmental and palaeotopographic characteristics of the Tian Shan area during these two periods, we measured the oxygen and carbon isotope composition of these pedogenic carbonates (calcrete and nodules). The stable isotope compositions are homogeneous: most δ18O values are between 21 and 25‰ and most δ13C values are between −4 and −6‰. No distinction can be made between the calcrete and nodule isotopic compositions. The constancy of isotopic values across the Tian Shan is evidence of a development of these calcification features in similar palaeoenvironmental conditions. The main inference is that no significant relief existed in that area at the Cretaceous−Palaeogene boundary, implying that most of the present relief developed later, during the Cenozoic. In addition to the pedogenic carbonates, few beds of limestones interstratified in the Jurassic series of the southern foothills display oxygen and carbon isotope compositions typical of lacustrine carbonates, ruling out brackish water incursion at that period in the region.  相似文献   

9.
We studied calcite and rhodochrosite from exploratory drill cores (TH‐4 and TH‐6) near the Toyoha deposit, southwestern Hokkaido, Japan, from the aspect of stable isotope geochemistry, together with measuring the homogenization temperatures of fluid inclusions. The alteration observed in the drill cores is classified into four zones: ore mineralized zone, mixed‐layer minerals zone, kaolin minerals zone, and propylitic zone. Calcite is widespread in all the zones except for the kaolin minerals zone. The occurrence of rhodochrosite is restricted in the ore mineralized zone associated with Fe, Mn‐rich chlorite and sulfides, the mineral assemblage of which is basically equivalent to that in the Toyoha veins. The measured δ18OSMOW and δ13CPDB values of calcite scatter in the relatively narrow ranges from ?2 to 5‰ and from ?9 to ?5‰, respectively; those of rhodochrosite from 3 to 9‰ and from ?9 to ?5‰, excluding some data with large deviations. The variation of the isotopic compositions with temperature and depth could be explained by a mixing process between a heated surface meteoric water (100°C δ18O =?12‰, δ13C =?10‰) and a deep high temperature water (300°C, δ18O =?5‰, δ13C =?4‰). Boiling was less effective in isotopic fractionation than that of mixing. The plots of δ18O and δ13C indicate that the carbonates precipitated from H2CO3‐dominated fluids under the conditions of pH = 6–7 and T = 200–300°C. The sequential precipitation from calcite to rhodochrosite in a vein brought about the disequilibrium isotopic fractionation between the two minerals. The hydrothermal fluids circulated during the precipitation of carbonates in TH‐4 and TH‐6 are similar in origin to the ore‐forming fluids pertaining to the formation of veins in the Toyoha deposit.  相似文献   

10.
The calcite fossils of the Derbyhaven Beds, Isle of Man, have δ13C values (+ 1·8 PDB) similar to modern, shallow-water marine skeletons, but the δ18O values (?6·1 PDB) are much lighter than modern skeletons. The light oxygen values indicate either re-equilibration with isotopically light water before cementation started, or Carboniferous sea water with δ18O of ?6‰. Aragonite dissolution was followed by precipitation of zoned calcite cement. In this cement, up to six intracrystalline zones, recognized in stained thin sections, show isotopic variation. Carbon varies from + 3-8 to + 1-2‰. and oxygen from ? 2-6 to ? 12-4‰. with decreasing age of the cement. This trend is attributed to increasing temperature and to isotopic evolution of the pore waters during burial. The zoned calcite is sequentially followed by dolomite and kaolinite cements which continue the trend towards light isotopic values. This trend is continued with younger, fault-controlled dolomite, and is terminated by vein-filling calcite and dolomite. The younger calcite, interpreted as a near-surface precipitate from meteoric waters, is unrelated to the older sequence of carbonates and has distinctly different carbon isotope ratios: δ13C ? 6-8‰.  相似文献   

11.
Upper Visean limestones in the Campine Basin of northern Belgium are intensively fractured. The largest and most common fractures are cemented by non-ferroan, dull brown-orange luminescent blocky calcite. First melting temperatures of fluid inclusions in these calcites are around -57°C, suggesting that precipitation of the cements occurred from NaCl-CaCl2-MgCl2 fluids. The final melting temperatures (Tmice) are between -5 and -33°C. The broad range in the Tmice data can be explained by the mixing of high salinity fluids with meteoric waters, but other hypotheses may also be valid. Homogenization temperatures from blocky calcite cements in the shelf limestones are interpreted to have formed between 45 and 75°C. In carbonates which were deposited close to and at the shelf margin, precipitation temperatures were possibly in the range 70-85°C and 72-93°C, respectively. On the shelf, the calcites have a δ18O around -9.3‰ PDB and they are interpreted to have grown in a fluid with a δ18O between −3.5 and +1.0‰ SMOW. At the shelf margin, blocky calcites (δ18O∼ - 13.5‰ PDB) could have precipitated from a fluid with a δ18O betweenn -4.0 and -1.1‰ SMOW. The highest oxygen isotopic compositions are comparable to those of Late Carboniferous marine fluids (δ18O= - 1‰ SMOW). The lowest values are more positive than a previously reported composition for Carboniferous meteoric waters (δ18O= -7‰ SMOW). Precipitation is likely to have occurred in marine-derived fluids, which mixed with meteoric waters sourced from near the Brabant Massif. Fluids with a similar negative oxygen isotopic composition and high salinity are actually present in Palaeozoic formations. The higher temperature range in the limestones near the shelf margin is explained by the upward migration of fluids from the ‘basinal’ area along fractures and faults into the shelf.  相似文献   

12.
The Bairendaba vein-type Ag–Pb–Zn deposit, hosted in a Carboniferous quartz diorite, is one of the largest polymetallic deposits in the southern Great Xing'an Range. Reserves exceeding 8000 tonnes of Ag and 3 million tonnes of Pb?+?Zn with grades of 30 g/t and 4.5% have been estimated. We identify three distinct mineralization stages in this deposit: a barren pre-ore stage (stage 1), a main-ore stage with economic Ag–Pb–Zn mineralization (stage 2), and a post-ore stage with barren mineralization (stage 3). Stage 1 is characterized by abundant arsenopyrite?+?quartz and minor pyrite. Stage 2 is represented by abundant Fe–Zn–Pb–Ag sulphides and is further subdivided into three substages comprising the calcite–polymetallic sulphide stage (substage 1), the fluorite–polymetallic sulphide stage (substage 2), and the quartz–polymetallic sulphide stage (substage 3). Stage 3 involves an assemblage dominated by calcite with variable pyrite, galena, quartz, fluorite, illite, and chlorite. Fluid inclusion analysis and mineral thermometry indicate that the three stages of mineralization were formed at temperatures of 320–350°C, 200–340°C, and 180–240°C, respectively. Stage 1 early mineralization is characterized by low-salinity fluids (5.86–8.81 wt.% NaCl equiv.) with an isotopic signature of magmatic origin (δ18Ofluid = 10.45–10.65‰). The main ore minerals of stage 2 precipitated from aqueous–carbonic fluids (4.34–8.81 wt.% NaCl equiv.). The calculated and measured oxygen and hydrogen isotopic compositions of the ore-forming aqueous fluids (δ18Ofluid = 3.31–8.59‰, δDfluid?=??132.00‰ to??104.00‰) indicate that they were derived from a magmatic source and mixed with meteoric water. Measured and calculated sulphur isotope compositions of hydrothermal fluids (δ34S∑S?=??1.2–3.8‰) indicate that the ore sulphur was derived mainly from a magmatic source. The calculated carbon isotope compositions of hydrothermal fluids (δ13Cfluid?=??26.52‰ to??25.82‰) suggest a possible contribution of carbon sourced from the basement gneisses. The stage 3 late mineralization is dominated (1.40–8.81 wt.% NaCl equiv.) by aqueous fluids. The fluids show lower δ18Ofluid (?16.06‰ to??0.70‰) and higher δDfluid (?90.10‰ to??74.50‰) values, indicating a heated meteoric water signature. The calculated carbon isotope compositions (δ13Cfluid?=??12.82‰ to??6.62‰) of the hydrothermal fluids in stage 3 also suggest a possible contribution of gneiss-sourced carbon. The isotopic compositions and fluid chemistry indicate that the ore mineralization in the Bairendaba deposit was related to Early Cretaceous magmatism.  相似文献   

13.
REE-fluorocarbonates as major REE minerals in the Bayan Obo deposit,the largest REE deposit in the world,were analyzed for their stable isotopic compositions,The δ^13 C and δ^18 O values of huanghoite,cebaite and bastnaesite from late-stage veins vary in the ranges of 7.8--4.0‰ and 6.7-9.4‰,respectively,These data are relatively similar to those of bastnaesites from banded ores:δ^13C-5.6--5.2‰ andδ^18O3.6-5.5‰.The REE fluorocarbonates from both late-staege veins and banded ores are characterized by lower δ^13 C and δ^18O values,especially the δ^18O values of bastnaesites from banded ores.Compared with them,the disseminated bastnaesits the dolomite-type ores possess rather highδ^13 C and δ^18O values,i.e.,-2.1-0.4‰ and 8.6-12.9‰ respectively.The high values are typical of the sedimentary host dolomite rocks as well as of the dolomite-type-ores.The carbon and oxygen isotopic characteristics of REE fluorocarbonate minerals provide new evidence for the hypothesis on the origin of Bayan Obo deposit-epigenetic hydrothermal metasomatism.  相似文献   

14.
Carbonate cements in late Dinantian (Asbian and Brigantian) limestones of the Derbyshire carbonate platform record a diagenetic history starting with early vadose meteoric cementation and finishing with burial and localized mineral and oil emplacement. The sequence is documented using cement petrography, cathodoluminescence, trace element geochemistry and C and O isotopes. The earliest cements (Pre-Zone 1) are locally developed non-luminescent brown sparry calcite below intrastratal palaeokarsts and calcretes. They contain negligible Fe, Mn and Sr but up to 1000 ppm Mg. Their isotopic compositions centre around δ18O =?8.5‰, δ13C=?5.0‰. Calcretes contain less 13C. Subsequent cements are widespread as inclusion-free, low-Mg, low-Fe crinoid overgrowths and are described as having a‘dead-bright-dull’cathodoluminescence. The‘dead’cements (Zone 1) are mostly non-luminescent but contain dissolution hiatuses overlain by finely detailed bright subzones that correlate over several kilometres. Across‘dead'/bright subzones there is a clear trend in Mg (500–900 ppm), Mn (100–450 ppm) and Fe (80-230 ppm). Zone 1 cements have isotopic compositions centred around δ18O =?8.0‰ and δ13C=?2.5‰. Zone 2 cement is bright, thin and complexly subzoned. It is geochemically similar to bright subzones of Zone 1 cements. Dull Zone 3 cement pre-dates pressure dissolution and fills 70% or more of the pore space. It generally contains little Mn, Fe and Sr but can have more than 1000 ppm Mg, increasing stratigraphically upwards. The δ18O compositions range from ?5.5 to ?15‰ and the δ13C range is ?1 to + 3.20/00. Zone 4 fills veins and stylolite seams in addition to pores. It is synchronous with Pb, Ba, F ore mineralization and oil migration. Zone 4 is ferroan with around 500 ppm Fe, up to 2500 ppm Mg and up to 1500 ppm Mn. Isotopic compositions range widely; δ15O =?2.7 to ?9‰ and δ13C=?3.8 to+2.50‰. Unaltered marine brachiopods suggest a Dinantian seawater composition around δ15O = 0‰ (SMOW), but vital isotopic effects probably mask the original δ13C (PDB) value. Pre-Zone 1 calcites are meteoric vadose cements with light soil-derived δ13C and light meteoric δ18O. An unusually fractionated‘pluvial’δ15O(SMOW) value of around — 6‰ is indicated for local Dinantian meteoric water. Calcrete δ18O values are heavier through evaporation. Zone 1 textures and geochemistry indicate a meteoric phreatic environment. Fe and Mn trends in the bright subzones indicate stagnation, and precipitation occurred in increments from widespread cyclically developed shallow meteoric water bodies. Meteoric alteration of the rock body was pervasive by the end of Zone 1 with a general resetting of isotopic values. Zone 3 is volumetrically important and external sources of water and carbonate are required. Emplacement was during the Namurian-early Westphalian by meteoric water sourced at a karst landscape on the uplifted eastern edge of the Derbyshire-East Midland shelf. The light δ18O values mainly reflect burial temperatures and an unusually high local heat flow, but an input of highly fractionated hinterland-derived meteoric water at the unconformity is also likely. Relatively heavy δ13C values reflect the less-altered state of the source carbonate and aquifer. Zone 4 is partly vein fed and spans burial down to 2000 m and the onset of tectonism. Light organic-matter-derived δ13C and heavy δ18O values suggest basin-derived formation water. Combined with textural evidence of geopressures, this relates to local high-temperature ore mineralization and oil migration. Low water-to-rock ratios with host-rock buffering probably affected the final isotopic compositions of Zone 4, masking extremes both of temperature and organic-matter-derived CO2.  相似文献   

15.
Hydrogen and oxygen isotopic compositions of cherts (δD for hydroxyl hydrogen in the chert, δ18O for the total oxygen) have been determined for a suite of samples from the central and western United States. When plotted on a δD-δ18O diagram, Phanerozoic cherts define domains parallel to the meteoric water line which are different for different periods of geologic time. The elongation parallel to the meteoric water line suggests that meteoric waters were involved in the formation of many cherts.The existence of different chert δ-values for different geologic times indicates that once the granular microcrystalline quartz of cherts crystallizes its isotopic composition is preserved with time. An explanation for the change with time of the isotopic composition of cherts involving large changes with time in the isotopic composition of ocean water is unlikely since δ18O of the ocean would have had to decrease by about 3‰between Carboniferous and Triassic time and then increase about 5%.` from Triassic to Cretaceous time. Such isotopic changes cannot be accounted for by extensive glaciation, sedimentation of hydrous minerals, or input of water from the mantle into the oceans.The variation with time of the chert δ-values can be satisfactorily explained in terms of past climatic temperature fluctuations if the chert-water isotope fractionation with temperature is approximated by 1000 lnα = 3.09 × 106T?2 – 3.29. Crystallization temperatures so inferred suggest that the average climatic temperatures for the central and western U.S. decreased from about 34 to 20°C through the Paleozoic, increased to 35–40°C in the Triassic, and then decreased through the Mesozoic to Tertiary values of about 17°C. A few data for the Precambrian suggest the possibility that Earth surface temperatures may have reached about 52°C at 1.3 b.y. and about 70°C at 3 b.y.  相似文献   

16.
The Kanggur gold deposit is located in the southern margin of the Central Asia Orogenic Belt and in the western segment of the Kanggur–Huangshan ductile shear belt in Eastern Tianshan, northwestern China. The orebodies of this deposit are hosted in the Lower Carboniferous volcanic rocks of the Aqishan Formation and mainly consist of andesite, dacite and pyroclastic rocks. The SHRIMP zircon U–Pb age data of the andesite indicate that the volcanism in the Kanggur area might have occurred at ca. 339 Ma in the Early Carboniferous, and that the mineralization age of the Kanggur gold deposit was later than the age of volcanic rocks in the area. Geochemically, the andesite rocks of the Aqishan Formation belong to low-tholeiite and calc-alkaline series and display relative depletions in high field strength elements (HFSEs; i.e. Nb, Ta and Ti). The δ18Ow and δDw values vary from − 9.1‰ to + 3.8‰ and − 66.0‰ to − 33.9‰, respectively, indicating that the ore-forming fluids were mixtures of metamorphic and meteoric waters. The δ30Si values of 13 quartz samples range from − 0.3‰ to + 0.1‰ with an average of − 0.15‰, and the δ34S values of 18 sulphide samples range from − 0.9‰ to + 2.2‰ with an average of + 0.54‰. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of 10 sulphide samples range from 18.166 to 18.880, 15.553 to 15.635 and 38.050 to 38.813, respectively, showing similarities to orogenic Pb; these values are consistent with those of the andesite from the Kanggur area, suggesting a common lead source. All of the silicon, sulphur and lead isotopic systems indicate that the ore-forming fluids and materials were mainly derived from the Aqishan Formation, and that the host volcanic rocks of the Aqishan Formation probably played a significant role in the Kanggur gold mineralization. Integrating the data obtained from studies on geology, geochronology, petro-geochemistry and H–O–Si–S–Pb isotope systematics, we suggest that the Kanggur gold deposit is an orogenic-type deposit formed in Eastern Tianshan orogenic belt during the Permian post-collisional tectonism.  相似文献   

17.
Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of ?7.8‰ and ?53.0‰ for δ18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from ?10.6‰ to ?6.0‰ with an average of ?8.4‰ for δ18O and from ?85‰ to ?46‰ with an average of ?63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from ?11.6‰ to ?8.8‰ with an average of ?10.2‰ for δ18O and from ?89‰ to ?63‰ with an average of ?76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of 14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.  相似文献   

18.
The Early Cretaceous Shihu gold deposit is located in the northern segment of the Taihang Tectonic belt, which extends across the central part of the North China Craton. The deposit is hosted predominantly by the Archean metamorphic crystalline units, and is spatially and temporally related to quartz diorite porphyry present extensively throughout the gold deposit. We studied the geology, geochronology and stable isotopic geochemistry. Zircon U–Pb LA–ICP–MS ages of the quartz diorite porphyry at deposit range from 134 ± 1 to 131 ± 2 Ma, which are coeval and probably genetically related to the mineralization. The majority of the sulfides of the gold deposit have δ34S values ranging from ?1 to 2‰, which suggest an homogeneous magmatic source. In addition, the isotopic compositions of δ18Ofluid and δ18Dfluid vary from 2.1 to 7.0‰ and ?93 to ?65‰, respectively, suggesting that the magmatic fluids mingled with meteoric water. The Pb isotopic analyses reveal that both the ore‐forming materials and the quartz diorite porphyry originated from the lower crust and may have been mixed with mantle material. The 87Sr/86Sri and 143Nd/144Nd (143Nd/144Nd)i ratios for the quartz diorite porphyry demonstrate that there was mixing of two end‐member (crust and the mantle) isotopic compositions. These results suggest that the ore‐forming fluids and materials were derived from lower‐crustal melting induced by mantle processes. Processes associated with the formation of the Shihu gold deposit differ significantly from those that characterize orogenic gold deposits, and instead are representative of formation in an intracontinental tectonic environment.  相似文献   

19.
UWE BRAND 《Sedimentology》1982,29(1):139-147
The aragonitic molluscs and lime-mud of the Pennsylvanian Buckhorn asphalt (Deese Group) of southern Oklahoma precipitated calcium carbonate in oxygen and carbon isotopic equilibrium with ambient sea-water. In addition, δ18O values indicate that the pelecypods precipitated their shells during the warmer months of the year. The coiled nautiloids probably precipitated their shells in the warm surface water and throughout the year. For the orthocone nautiloids, the δ18O values suggest that they precipitated their shells in deeper/cooler water. The low-Mg calcite brachiopods of the Mississippian Lake Valley Formation of New Mexico precipitated shells in oxygen and carbon isotopic equilibrium with ambient sea-water. The δ18O and δ13C values of the Buckhorn and Lake Valley faunas, in conjunction with other published results, suggest that Carboniferous sea-water was, on a average, depleted in δ18O by 1·5 ± 2‰, PDB, relative to Recent sea-water. However, the δ13C value of +2.6 ± 2‰, PDB, for average Carboniferous sea-water is similar to that of Recent ocean water. Early diagenetic alteration of metastable carbonates probably occurs in a meteoric-sea-water mixing zone. In this zone the oxygen and carbon isotopic compositions of these components are increased by about 2-4‰, PDB over their marine composition.  相似文献   

20.
浙东南石平川钼矿床地质特征、成矿时代及成因   总被引:3,自引:0,他引:3  
石平川钼矿床位于浙东南政和—大埔断裂与长乐—南澳断裂之间的火山坳陷带相对隆起区,空间上和成因上均与燕山晚期侵入的钾长花岗岩体关系密切,矿体受断裂构造控制。矿化类型为石英脉型,围岩蚀变主要为绢云母化、黄铁矿化,次为碳酸盐化。石英流体包裹体Rb-Sr等时线年龄为(87±1)Ma[锶初始值I(Sr)=0.713 36],形成时间为晚白垩世。成矿期流体包裹体研究表明其均一温度为114.4~325.8℃,集中于170.2~227.0℃。氢氧同位素研究表明,成矿流体的δ(D)为-52.8‰~-64.9‰,δ(18O)为-3.85‰~-7.27‰,反映成矿流体来自混合的岩浆水与大气降水。黄铁矿的硫同位素研究表明δ(34S)为+3.14‰~+4.19‰,表现为岩浆硫特征。辉钼矿Re的质量分数为15.05×10-6~37.65×10-6,与其他钼矿床中辉钼矿Re质量分数的对比结果显示,成矿物质来源于下地壳。以上研究表明石平川钼矿床属中低温岩浆期后热液充填石英脉型钼矿床。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号