首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
We investigate the problem of balancing model complexity and input data requirements in snow hydrology. For this purpose, we analyze the performance of two models of different complexity in estimating variables of interest in snow hydrology applications. These are snow depth, bulk snow density, snow water equivalent and snowmelt run‐off. We quantify the differences between data and model prediction using 18 years of measurements from an experimental site in the French Alps (Col de Porte, 1325 m AMSL). The models involved in this comparison are a one‐layer temperature‐index model (HyS) and a multilayer model (Crocus). Results show that the expected loss in performance in the one‐layer temperature‐index model with respect to the multilayer model is low when considering snow depth, snow water equivalent and bulk snow density. As for run‐off, the comparison returns less clear indications for identification of a balance. In particular, differences between the models' prediction and data with an hourly resolution are higher when considering the Crocus model than the HyS model. However, Crocus is better at reproducing sub‐daily cycles in this variable. In terms of daily run‐off, the multilayer physically based model seems to be a better choice, while results in terms of cumulative run‐off are comparable. The better reproduction of daily and sub‐daily variability of run‐off suggests that use of the multilayer model may be preferable for this purpose. Variation in performance is discussed as a function of both the calibration solution chosen and the time of year. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The spatial distribution of snow water equivalent (SWE) is a key variable in many regional‐scale land surface models. Currently, the assimilation of point‐scale snow sensor data into these models is commonly performed without consideration of the spatial representativeness of the point data with respect to the model grid‐scale SWE. To improve the understanding of the relationship between point‐scale snow measurements and surrounding areas, we characterized the spatial distribution of snow depth and SWE within 1‐, 4‐ and 16‐km2 grids surrounding 15 snow stations (snowpack telemetry and California snow sensors) in California, Colorado, Wyoming, Idaho and Oregon during the 2008 and 2009 snow seasons. More than 30 000 field observations of snowpack properties were used with binary regression tree models to relate SWE at the sensor site to the surrounding area SWE to evaluate the sensor representativeness of larger‐scale conditions. Unlike previous research, we did not find consistent high biases in snow sensor depth values as biases over all sites ranged from 74% overestimates to 77% underestimates. Of the 53 assessments, 27 surveys indicated snow station biases of less than 10% of the surrounding mean observed snow depth. Depth biases were largely dictated by the physiographic relationship between the snow sensor locations and the mean characteristics of the surrounding grid, in particular, elevation, solar radiation index and vegetation density. These scaling relationships may improve snow sensor data assimilation; an example application is illustrated for the National Operational Hydrologic Remote Sensing Center National Snow Analysis SWE product. The snow sensor bias information indicated that the assimilation of point data into the National Operational Hydrologic Remote Sensing Center model was often unnecessary and reduced model accuracy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Snowpack water equivalent (SWE) is a key variable for water resource management in snow-dominated catchments. While it is not feasible to quantify SWE at the catchment scale using either field surveys or remotely sensed data, technologies such as airborne LiDAR (light detection and ranging) support the mapping of snow depth at scales relevant to operational water management. To convert snow depth to water equivalent, models have been developed to predict SWE or snowpack density based on snow depth and additional predictor variables. This study builds upon previous models that relate snowpack density to snow depth by including additional predictor variables to account for (1) long-term climatologies that describe the prevailing conditions influencing regional snowpack properties, and (2) the effect of intra- and inter-year variability in meteorological conditions on densification through a cumulative degree-day index derived from North American Regional Reanalysis products. A non-linear model was fit to 114 506 snow survey measurements spanning 41 years from 1166 snow courses across western North America. Under spatial cross-validation, the predicted densities had a root-mean-square error of 47.1 kg m−3, a mean bias of −0.039 kg m−3, and a Nash-Sutcliffe Efficiency of 0.70. The model developed in this study had similar overall performance compared to a similar regression-based model reported in the literature, but had reduced seasonal biases. When applied to predict SWE from simulated depths with random errors consistent with those obtained from LiDAR or Structure-from-Motion, 50% of the SWE estimates for April and May fell within −45 to 49 mm of the observed SWE, representing prediction errors of −15% to 20%.  相似文献   

4.
Seasonal snow is a globally important water resource that contributes substantially to upland and lowland water resources. As such, there is a need to understand the controls on the spatial and temporal variation in snow distribution. This study meets this research need by investigating the topographic controls on snow depth distribution in the upper Jollie catchment in the Southern Alps of New Zealand. Furthermore, inter‐annual variation in the importance of the topographic controls is examined and linked to variation in the dominant synoptic‐scale weather patterns over a 4‐year period (2007–2010). Through the use of regression trees, the relative importance of the topographic controls on snow depth was shown to vary between the four study years. In particular, elevation explained the greatest amount of variance in 2007 and 2008 and east‐exposure explained the greatest variance in 2009 and 2010. The other wind exposure variables also had a large effect on the snow depth distribution in 2009 and 2010. Differences in the frequency and duration of synoptic weather patterns were physically consistent with the changing importance of these variables. In particular, a higher frequency of troughing events in 2009 and 2010 is thought to be associated with a reduced importance of elevation and greater influence of wind exposure on snow depth in these years. These findings demonstrate the importance of using multi‐year data sets, and of considering topographic and climatic influences, when attempting to model alpine snow distribution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Historically, observing snow depth over large areas has been difficult. When snow depth observations are sparse, regression models can be used to infer the snow depth over a given area. Data sparsity has also left many important questions about such inference unexamined. Improved inference, or estimation, of snow depth and its spatial distribution from a given set of observations can benefit a wide range of applications from water resource management, to ecological studies, to validation of satellite estimates of snow pack. The development of Light Detection and Ranging (LiDAR) technology has provided non‐sparse snow depth measurements, which we use in this study, to address fundamental questions about snow depth inference using both sparse and non‐sparse observations. For example, when are more data needed and when are data redundant? Results apply to both traditional and manual snow depth measurements and to LiDAR observations. Through sampling experiments on high‐resolution LiDAR snow depth observations at six separate 1.17‐km2 sites in the Colorado Rocky Mountains, we provide novel perspectives on a variety of issues affecting the regression estimation of snow depth from sparse observations. We measure the effects of observation count, random selection of observations, quality of predictor variables, and cross‐validation procedures using three skill metrics: percent error in total snow volume, root mean squared error (RMSE), and R2. Extremes of predictor quality are used to understand the range of its effect; how do predictors downloaded from internet perform against more accurate predictors measured by LiDAR? Whereas cross validation remains the only option for validating inference from sparse observations, in our experiments, the full set of LiDAR‐measured snow depths can be considered the ‘true’ spatial distribution and used to understand cross‐validation bias at the spatial scale of inference. We model at the 30‐m resolution of readily available predictors, which is a popular spatial resolution in the literature. Three regression models are also compared, and we briefly examine how sampling design affects model skill. Results quantify the primary dependence of each skill metric on observation count that ranges over three orders of magnitude, doubling at each step from 25 up to 3200. Whereas uncertainty (resulting from random selection of observations) in percent error of true total snow volume is typically well constrained by 100–200 observations, there is considerable uncertainty in the inferred spatial distribution (R2) even at medium observation counts (200–800). We show that percent error in total snow volume is not sensitive to predictor quality, although RMSE and R2 (measures of spatial distribution) often depend critically on it. Inaccuracies of downloaded predictors (most often the vegetation predictors) can easily require a quadrupling of observation count to match RMSE and R2 scores obtained by LiDAR‐measured predictors. Under cross validation, the RMSE and R2 skill measures are consistently biased towards poorer results than their true validations. This is primarily a result of greater variance at the spatial scales of point observations used for cross validation than at the 30‐m resolution of the model. The magnitude of this bias depends on individual site characteristics, observation count (for our experimental design), and sampling design. Sampling designs that maximize independent information maximize cross‐validation bias but also maximize true R2. The bagging tree model is found to generally outperform the other regression models in the study on several criteria. Finally, we discuss and recommend use of LiDAR in conjunction with regression modelling to advance understanding of snow depth spatial distribution at spatial scales of thousands of square kilometres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This study analyzes spatial variability of snow depth and density from measurements made in February and April of 2010 and 2011 in three 1–2 km2 areas within a valley of the central Spanish Pyrenees. Snow density was correlated with snow depth and different terrain characteristics. Regression models were used to predict the spatial variability of snow density, and to assess how the error in computed densities might influence estimates of snow water equivalent (SWE).The variability in snow depth was much greater than that of snow density. The average snow density was much greater in April than in February. The correlations between snow depth and density were generally statistically significant but typically not very high, and their magnitudes and signs were highly variable among sites and surveys. The correlation with other topographic variables showed the same variability in magnitude and sign, and consequently the resulting regression models were very inconsistent, and in general explained little of the variance. Antecedent climatic and snow conditions prior to each survey help highlight the main causes of the contrasting relation shown between snow depth, density and terrain. As a consequence of the moderate spatial variability of snow density relative to snow depth, the absolute error in the SWE estimated from computed densities using the regression models was generally less than 15%. The error was similar to that obtained by relating snow density measurements directly to adjacent snow depths.  相似文献   

7.
Snow availability in Alpine catchments plays an important role in water resources management. In this paper, we propose a method for an optimal estimation of snow depth (areal extension and thickness) in Alpine systems from point data and satellite observations by using significant explanatory variables deduced from a digital terrain model. It is intended to be a parsimonious approach that may complement physical‐based methodologies. Different techniques (multiple regression, multicriteria analysis, and kriging) are integrated to address the following issues: We identify the explanatory variables that could be helpful on the basis of a critical review of the scientific literature. We study the relationship between ground observations and explanatory variables using a systematic procedure for a complete multiple regression analysis. Multiple regression models are calibrated combining all suggested model structures and explanatory variables. We also propose an evaluation of the models (using indices to analyze the goodness of fit) and select the best approaches (models and variables) on the basis of multicriteria analysis. Estimation of the snow depth is performed with the selected regression models. The residual estimation is improved by applying kriging in cases with spatial correlation. The final estimate is obtained by combining regression and kriging results, and constraining the snow domain in accordance with satellite data. The method is illustrated using the case study of the Sierra Nevada mountain range (Southern Spain). A cross‐validation experiment has confirmed the efficiency of the proposed procedure. Finally, although it is not the scope of this work, the snow depth is used to asses a first estimation of snow water equivalent resources.  相似文献   

8.
9.
Spatio‐temporal variation of snow depth in the Tarim River basin has been studied by the empirical orthogonal function (EOF) based on the data collected by special sensor microwave/imager (SSM/I) and scanning multichannel microwave radiometer (SMMR) during the period from 1979 to 2005. The long‐term trend of snow depth and runoff was presented using the Mann‐Kendall non‐parametric test, and the effects of the variations of snow depth and climatic factors on runoff were analysed and discussed by means of the regression analysis. The results suggested that the snow depth variation on the entire basin was characterised by four patterns: all consistency, north–south contrast, north‐middle‐south contrast and complex. The first pattern accounting 39·13% of the total variance was dominant. The entire basin was mainly affected by one large‐scale weather system. However, the spatial and temporal differences also existed among the different regions in the basin. The significant snow depth changes occurred mainly in the Aksu River basin with the below‐normal snow depth anomalies in the 1980s and the above‐normal snow depth anomalies in the 1990s. The long‐term trend of snow depth was significant in the northwestern, western and southern parts of the basin, whereas the long‐term trend of runoff was significant in the northwestern and northeastern parts. The regression analysis revealed that the runoff of the rivers replenished by snow melt water and rainfall was related primarily to the summer precipitation, followed by the summer temperature or the maximum snow depth in the cold season. Our results suggest that snow is not the principal factor that contributes to the runoff increase in headstreams, although there was a slow increase in snow depth. It is the climatic factors that are responsible for the steady and continuous water increase in the headstreams. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Comprehensive snow depth data, collected using georadar and hand probing, were used for statistical analyses of snow depths inside 1 km grid cells. The sub‐grid cell spatial scale was 100 m. Statistical distribution functions were found to have varying parameters, and an attempt was made to connect these statistical parameters to different terrain variables. The results showed that the two parameters mean and standard deviation of snow depth were significantly related to the sub‐grid terrain characteristics. Linear regression models could explain up to 50% of the variation for both of the snowcover parameters mentioned. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
A method for using remotely sensed snow cover information in updating a hydrological model is developed, based on Bayes' theorem. A snow cover mass balance model structure adapted to such use of satellite data is specified, using a parametric snow depletion curve in each spatial unit to describe the subunit variability in snow storage. The snow depletion curve relates the accumulated melt depth to snow‐covered area, accumulated snowmelt runoff volume, and remaining snow water equivalent. The parametric formulation enables updating of the complete snow depletion curve, including mass balance, by satellite data on snow coverage. Each spatial unit (i.e. grid cell) in the model maintains a specific depletion curve state that is updated independently. The uncertainty associated with the variables involved is formulated in terms of a joint distribution, from which the joint expectancy (mean value) represents the model state. The Bayesian updating modifies the prior (pre‐update) joint distribution into a posterior, and the posterior joint expectancy replaces the prior as the current model state. Three updating experiments are run in a 2400 km2 mountainous region in Jotunheimen, central Norway (61°N, 9°E) using two Landsat 7 ETM+ images separately and together. At 1 km grid scale in this alpine terrain, three parameters are needed in the snow depletion curve. Despite the small amount of measured information compared with the dimensionality of the updated parameter vector, updating reduces uncertainty substantially for some state variables and parameters. Parameter adjustments resulting from using each image separately differ, but are positively correlated. For all variables, uncertainty reduction is larger with two images used in conjunction than with any single image. Where the observation is in strong conflict with the prior estimate, increased uncertainty may occur, indicating that prior uncertainty may have been underestimated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
T. Jonas  C. Marty  J. Magnusson   《Journal of Hydrology》2009,378(1-2):161-167
The snow water equivalent (SWE) characterizes the hydrological significance of snow cover. However, measuring SWE is time-consuming, thus alternative methods of determining SWE may be useful. SWE can be calculated from snow depth if the bulk snow density is known. Thus, a reliable estimation method of snow densities could (a) potentially save a lot of effort by, at least partly, sampling snow depth instead of SWE, and would (b) allow snow hydrological evaluations, when only snow depth data are available. To generate a useful parameterization of the bulk density a large dataset was analyzed covering snow densities and depths measured biweekly over five decades at 37 sites throughout the Swiss Alps. Four factors were identified to affect the bulk snow density: season, snow depth, site altitude, and site location. These factors constitute a convenient set of input variables for a snow density model developed in this study. The accuracy of estimating SWE using our model is shown to be equivalent to the variability of repeated SWE measurements at one site. The technique may therefore allow a more efficient but indirect sampling of the SWE without necessarily affecting the data quality.  相似文献   

13.
Taking the Northern Xinjiang region as an example, we develop a snow depth model by using the Advanced Microwave Scanning Radiometer‐Earth Observing System (AMSR‐E) horizontal and vertical polarization brightness temperature difference data of 18 and 36 GHz bands and in situ snow depth measurements from 20 climatic stations during the snow seasons November–March) of 2002–2005. This article proposes a method to produce new 5‐day snow cover and snow depth images, using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover products and AMSR‐E snow water equivalent and daily brightness temperature products. The results indicate that (1) the brightness temperature difference (Tb18h–Tb36h) provides the most accurate and precise prediction of snow depth; (2) the snow, land and overall classification accuracies of the new images are separately 89.2%, 77.7% and 87.2% and are much better than those of AMSR‐E or MODIS products (in all weather conditions) alone; (3) the snow classification accuracy increases as snow depth increases; and (4) snow accuracies for different land cover types vary as 88%, 92.3%, 79.7% and 80.1% for cropland, grassland, shrub, and urban and built‐up, respectively. We conclude that the new 5‐day snow cover–snow depth images can provide both accurate cloud‐free snow cover extent and the snow depth dynamics, which would lay a scientific basis for water management and prevention of snow‐related disasters in this dry and cold pastoral area. After validations of the algorithms over other regions with different snow and climate conditions, this method would also be used for monitoring snow cover and snow depth elsewhere in the world. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The spatio‐temporal distribution of snow in a catchment during ablation reflects changes in the total amount of snow water equivalent and is thus a key parameter for the estimation of melt water run‐off. This study explores possible rules behind the spatial variability of snow depth during the ablation season in a small Alpine catchment with complex topography. The snow depth observations are based on more than 160 000 terrestrial laser scanner data points with a spatial resolution of 1 m, which were obtained from 11 scanning campaigns of two consecutive ablation seasons. The analysis suggests that for estimating cumulative snow melt dynamics from the catchment investigated, assessing the initial snow distribution prior to the melt season is more important than addressing spatial differences in the melt behaviour. Snow volume and snow‐covered area could be predicted well using a conceptual melt model assuming spatially uniform melt rates. However, accurate results were only obtained if the model was initialized with a pre‐melt snow distribution that reflected measured mean and standard deviation. Using stratified melt rates on the other hand did not improve the model results. At least for sites with similar meteorological and topographical conditions, the model approach presented here comprises an efficient way to estimate snow depletion dynamics, especially if persistent snow accumulation pattern between years facilitate the characterization of the initial snow distribution prior to the melt. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We report a methodology for reconstructing the daily snow depth distribution at high spatial resolution in a small Pyrenean catchment using time‐lapse photographs and snow depletion rates derived from an on‐site measuring meteorological station. The results were compared with the observed snow depth distribution, determined on a number of separate occasions using a terrestrial laser scanner (TLS). The time‐lapse photographs were projected onto a digital elevation model of the study site, and converted into snow presence/absence information. The melt‐out date (MOD; first occurrence of melt out after peak snow accumulation) was obtained from the projected photograph series. Commencing the backward reconstruction for each grid cell at the MOD, the method uses simulated snow depth depletion rates using a temperature index approach, which are extrapolated to the grid cells of the domain to arrive at the snow distribution of the previous day. Two variants of the reconstruction techniques were applied (1) using a spatially constant degree day factor (DDF) for calculating the daily expected snow depth depletion rate, and (2) allowing a spatially distributed DDF calculated from two consecutive TLS acquisitions compared to the snow depth depletion rate observed at the meteorological station. Validation revealed that both methods performed well (average R2 = 0.68; standard RMSE = 0.58), with better results obtained from the spatially distributed approach. Nevertheless, the spatially corrected DDF reconstruction, which requires TLS data, suggests that the constant DDF approach is an efficient, and for most applications sufficiently accurate and easily reproducible method. The results highlight the usefulness of time‐lapse photography for not only determining the snow covered area, but also for estimating the spatial distribution of snow depth. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Tundra snow cover is important to monitor as it influences local, regional, and global‐scale surface water balance, energy fluxes, as well as ecosystem and permafrost dynamics. Observations are already showing a decrease in spring snow cover duration at high latitudes, but the impact of changing winter season temperature and precipitation on variables such as snow water equivalent (SWE) is less clear. A multi‐year project was initiated in 2004 with the objective to quantify tundra snow cover properties over multiple years at a scale appropriate for comparison with satellite passive microwave remote sensing data and regional climate and hydrological models. Data collected over seven late winter field campaigns (2004 to 2010) show the patterns of snow depth and SWE are strongly influenced by terrain characteristics. Despite the spatial heterogeneity of snow cover, several inter‐annual consistencies were identified. A regional average density of 0.293 g/cm3 was derived and shown to have little difference with individual site densities when deriving SWE from snow depth measurements. The inter‐annual patterns of SWE show that despite variability in meteorological forcing, there were many consistent ratios between the SWE on flat tundra and the SWE on lakes, plateaus, and slopes. A summary of representative inter‐annual snow stratigraphy from different terrain categories is also presented. © 2013 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The effect of forest litter on snow surface albedo has been subject to limited study, mainly in the hardwood‐dominated forests of the northeastern United States. Given the recent pine beetle infestation in Western North America and associated increases in litter production, this study examines the effects of forest litter on snow surface albedo in the coniferous forests of south‐central British Columbia. Measured changes in canopy transmittance provide an indication of canopy loss or total litterfall over the winter of 2007–2008. Relationships between percent litter cover, an index of albedo, snow depth, and snow ablation during the 2008 melt season are compared between a mature, young, and clearcut coniferous stand. Results indicate a strong feedback effect between canopy loss and subsequent enhanced shortwave transmittance, and litter accumulation on the snow surface from that canopy loss. However, this relationship is confounded by other variables concurrently affecting albedo. While results suggest that a relatively small percent litter cover can have a significant effect on albedo and ablation, further research is underway to extract the litter signal from that of other factors affecting albedo, particularly snow depth. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A 10‐km gridded snow water equivalent (SWE) dataset is developed over the Saint‐Maurice River basin region in southern Québec from kriging of observed snow survey data for evaluation of SWE products. The gridded SWE dataset covers 1980–2014 and is based on manual gravimetric snow surveys carried out on February 1, March 1, March 15, April 1, and April 15 of each snow season, which captures the annual maximum SWE (SWEM) with a mean interpolation error of ±19%. The dataset is used to evaluate SWEM from a range of sources including satellite retrievals, reanalyses, Canadian regional climate models, and the Canadian Meteorological Centre operational snow depth analysis. We also evaluate a number of solid precipitation datasets to determine their contribution to systematic errors in estimated SWEM. None of the evaluated datasets is able to provide estimates of SWEM that are within operational requirements of ±15% error, and insufficient solid precipitation is determined to be one of the main reasons. The Climate System Forecast Reanalysis is the only dataset where snowfall is sufficiently large to generate SWEM values comparable to observations. Inconsistencies in precipitation are also found to have a strong impact on year‐to‐year variability in SWEM dataset performance and spread. Version 3.6.1 of the Canadian Land Surface Scheme land surface scheme driven with ERA‐Interim output downscaled by Version 5.0.1 of the Canadian Regional Climate Model was the best physically based model at explaining the observed spatial and temporal variability in SWEM (root‐mean‐square error [RMSE] = 33%) and has potential for lower error with adjusted precipitation. Operational snow products relying on the real‐time snow depth observing network performed poorly due to a lack of real‐time data and the strong local scale variability of point snow depth observations. The results underscore the need for more effort to be invested in improving solid precipitation estimates for use in snow hydrology applications.  相似文献   

19.
It is well known that snow plays an important role in land surface energy balance; however, modelling the subgrid variability of snow is still a challenge in large‐scale hydrological and land surface models. High‐resolution snow depth data and statistical methods can reveal some characteristics of the subgrid variability of snow depth, which can be useful in developing models for representing such subgrid variability. In this study, snow depth was measured by airborne Lidar at 0.5‐m resolution over two mountainous areas in south‐western Wyoming, Snowy Range and Laramie Range. To characterize subgrid snow depth spatial distribution, measured snow depth data of these two areas were meshed into 284 grids of 1‐km × 1‐km. Also, nine representative grids of 1‐km × 1‐km were selected for detailed analyses on the geostatistical structure and probability density function of snow depth. It was verified that land cover is one of the important factors controlling spatial variability of snow depth at the 1‐km scale. Probability density functions of snow depth tend to be Gaussian distributions in the forest areas. However, they are eventually skewed as non‐Gaussian distribution, largely due to the no‐snow areas effect, mainly caused by snow redistribution and snow melt. Our findings show the characteristics of subgrid variability of snow depth and clarify the potential factors that need to be considered in modelling subgrid variability of snow depth.  相似文献   

20.
In this paper, we addressed a sensitivity analysis of the snow module of the GEOtop2.0 model at point and catchment scale in a small high‐elevation catchment in the Eastern Italian Alps (catchment size: 61 km2). Simulated snow depth and snow water equivalent at the point scale were compared with measured data at four locations from 2009 to 2013. At the catchment scale, simulated snow‐covered area (SCA) was compared with binary snow cover maps derived from moderate‐resolution imaging spectroradiometer (MODIS) and Landsat satellite imagery. Sensitivity analyses were used to assess the effect of different model parameterizations on model performance at both scales and the effect of different thresholds of simulated snow depth on the agreement with MODIS data. Our results at point scale indicated that modifying only the “snow correction factor” resulted in substantial improvements of the snow model and effectively compensated inaccurate winter precipitation by enhancing snow accumulation. SCA inaccuracies at catchment scale during accumulation and melt period were affected little by different snow depth thresholds when using calibrated winter precipitation from point scale. However, inaccuracies were strongly controlled by topographic characteristics and model parameterizations driving snow albedo (“snow ageing coefficient” and “extinction of snow albedo”) during accumulation and melt period. Although highest accuracies (overall accuracy = 1 in 86% of the catchment area) were observed during winter, lower accuracies (overall accuracy < 0.7) occurred during the early accumulation and melt period (in 29% and 23%, respectively), mostly present in areas with grassland and forest, slopes of 20–40°, areas exposed NW or areas with a topographic roughness index of ?0.25 to 0 m. These findings may give recommendations for defining more effective model parameterization strategies and guide future work, in which simulated and MODIS SCA may be combined to generate improved products for SCA monitoring in Alpine catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号