首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 706 毫秒
1.
Six northeast Atlantic cores contain planktonic foraminiferal records implying a very abrupt glacial/interglacial surface-ocean warming roughly coincident with the last deglaciation (isotopic termination II) at 127 000 yr B.P. These faunal composition curves have, however, been substantially altered by sediment mixing processes on the sea floor; they are translated downward in the core record and made to look steeper than they actually were. The reason for this abnormally large mixing impact is an interval of sediment with very low to negligible concentrations of all microfossils (surface ocean and bottom living). These low concentrations reflect a several-thousand-year interval of low productivity and little or no life in the overlying surface waters. We interpret this thorough suppression of productivity as a consequence of meltwater and icebergs flooding into the subpolar Atlantic gyre from the surrounding Northern Hemisphere ice sheets during deglaciation. The meltwater influx inhibited warm-season productivity by maintaining a well-stratified low-salinity surface layer; in winter, the low salinity layer froze, stopping nutrientrich deep waters from surfacing in normal cold-season convection. The earth's orbital configuration during this deglaciation created an unusually strong summer insolation maximum and winter insolation minimum in the Northern Hemisphere. Rapid melting and disintegration of the Northern Hemisphere ice sheets induced by strong summer insolation apparently created the meltwater influx; combined with very low winter insolation, the presence of this low-salinity meltwater layer led to unusually extensive sea-ice formation. The existence of a large region of winter sea ice across the subpolar North Atlantic during deglaciation implies a reduced supply of moisture in winter to the wasting Northern Hemisphere ice sheets. This includes the loss of winter moisture both locally from ice-covered northern waters and regionally from low-latitude winter storms no longer penetrating northward. The winter sea-ice cover thus acts as an amplifier providing positive feedback to the insolation-driven deglaciation process.  相似文献   

2.
The response of the Weddell Sea and Antarctic Peninsula to anthropogenic forcing simulated by a global climate model is analyzed. The model, despite its low resolution, is able to capture several aspects of the observed regional pattern of climate change. A strong warming and depletion of the sea ice cover in the western Weddell Sea contrasts with a slight cooling and a sea-ice extension in the eastern Weddell Sea. This simulated long-term climate change is modulated by interdecadal variability but also affected by some abrupt regional changes in the oceanic mixed layer depth. Between 1960 and 2030 a reorganization of the deep convection activity in the Weddell Sea sustains the opposition between the eastern and western Weddell Sea. The deep convection collapses in the western Weddell Sea in the 2030s. The sea ice retreat trend is then followed by an increase of the sea ice cover in the western Weddell Sea. In the eastern Weddell Sea another abrupt collapse of the deep convection activity occurs around 2080. This event is followed by a rapid cooling and sea ice extension during the next 20 years. Most of the surface changes are associated with large-scale atmospheric circulation changes that project on the dominant mode of natural variability but also with oceanic convection and circulation changes.  相似文献   

3.
 During the Younger Dryas (YD) the climate in NW Europe returned to near-glacial conditions. To improve our understanding of climate variability during this cold interval, we compare an AGCM simulation of this climate, performed with the ECHAM model, with temperature reconstructions for NW Europe based on geological and paleoecological records. Maps for the mean winter, summer and annual temperature are presented. The simulated winters are consistent with reconstructions in the northern part of the study area. A strong deviation is noted in Ireland and England, where the simulation is too warm by at least 10 °C. It appears that the N Atlantic was cooler than prescribed in the YD simulation, including a southward expansion of the sea-ice margin. The comparison for the summer shows a too warm continental Europe in the simulation. Supposedly, these anomalously warm conditions are caused by the AGCM’s response to the prescribed increased summer insolation. The region of maximum summer cooling is similar in both the simulation and reconstruction, i.e., S Sweden. We suggest that this is due to the local cooling effect of the Scandinavian ice sheet. Compared to the present climate a considerable increase of the annual temperature range is inferred, especially for regions close to the Atlantic Ocean. Received: 20 November 1996 / Accepted: 8 July 1997  相似文献   

4.
Sea ice induced changes in ocean circulation during the Eemian   总被引:1,自引:1,他引:0  
We argue that Arctic sea ice played an important role during early stages of the last glacial inception. Two simulations of the Institut Pierre Simon Laplace coupled model 4 are analyzed, one for the time of maximum high latitude summer insolation during the last interglacial, the Eemian, and a second one for the subsequent summer insolation minimum, at the last glacial inception. During the inception, increased Arctic freshwater export by sea ice shuts down Labrador Sea convection and weakens overturning circulation and oceanic heat transport by 27 and 15%, respectively. A positive feedback of the Atlantic subpolar gyre enhances the initial freshening by sea ice. The reorganization of the subpolar surface circulation, however, makes the Atlantic inflow more saline and thereby maintains deep convection in the Nordic Seas. These results highlight the importance of an accurate representation of dynamic sea ice for the study of past and future climate changes.  相似文献   

5.
Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.  相似文献   

6.
Modulation of a monsoon under glacial forcing is examined using an atmosphere?Cocean coupled general circulation model (AOGCM) following the specifications established by Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) to understand the air?Csea?Cland interaction under different climate forcing. Several sensitivity experiments are performed in response to individual changes in the continental ice sheet, orbital parameters, and sea surface temperature (SST) in the Last Glacial Maximum (LGM: 21?ka) to evaluate the driving mechanisms for the anomalous seasonal evolution of the monsoon. Comparison of the model results in the LGM with the pre-industrial (PI) simulation shows that the Arabian Sea and Bay of Bengal are characterized by enhancement of pre-monsoon convection despite a drop in the SST encompassing the globe, while the rainfall is considerably suppressed in the subsequent monsoon period. In the LGM winter relative to the PI, anomalies in the meridional temperature gradient (MTG) between the Asian continents minus the tropical oceans become positive and are consistent with the intensified pre-monsoon circulation. The enhanced MTG anomalies can be explained by a decrease in the condensation heating relevant to the suppressed tropical convection as well as positive insolation anomalies in the higher latitude, showing an opposing view to a warmer future climate. It is also evident that a latitudinal gradient in the SST across the equator plays an important role in the enhancement of pre-monsoon rainfall. As for the summer, the sensitivity experiments imply that two ice sheets over the northern hemisphere cools the air temperature over the Asian continent, which is consistent with the reduction of MTG involved in the attenuated monsoon. The surplus pre-monsoon convection causes a decrease in the SST through increased heat loss from the ocean surface; in other words, negative ocean feedback is also responsible for the subsequent weakening of summer convection.  相似文献   

7.
An ocean–atmosphere–sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5–3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (1) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (2) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N and 65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point.  相似文献   

8.
Sea ice plays an important role in the variability of the Labrador Sea especially in its most western part adjacent to an important region of deep convection. Winter-to-winter re-emergence and propagation of both sea-ice concentration (SIC) and sea surface temperature anomalies have been observed following years of high SIC in this region. They have potentially important links to water mass properties and freshwater and heat transports in the subpolar North Atlantic. This article builds on the results of two precursor papers and presents results from a coupled sea-ice–ocean model study of the interannual variability of sea ice in the Labrador Sea. The relationships between SIC and water column properties in the subpolar North Atlantic are assessed. Winters with high SIC and strong surface cooling are found to be conducive to intensified convection. Surface and mid-depth temperature and salinity anomalies are observed in the Labrador Sea and the northwestern North Atlantic during winters with anomalous Labrador Sea SIC. These anomalies are found to propagate along the major circulation patterns in the subpolar North Atlantic and to persist for up to three years.  相似文献   

9.
Libin Ma  Bin Wang  Jian Cao 《Climate Dynamics》2020,54(9):4075-4093
Deep convection in polar oceans plays a critical role in the variability of global climate. In this study, we investigate potential impacts of atmosphere–sea ice–ocean interaction on deep convection in the Southern Ocean (SO) of a climate system model (CSM) by changing sea ice–ocean stress. Sea ice–ocean stress plays a vital role in the horizontal momentum exchange between sea ice and the ocean, and can be parameterized as a function of the turning angle between sea ice and ocean velocity. Observations have shown that the turning angle is closely linked to the sea-ice intrinsic properties, including speed and roughness, and it varies spatially. However, a fixed turning angle, i.e., zero turning angle, is prescribed in most of the state-of-the-art CSMs. Thus, sensitivities of SO deep convection to zero and non-zero turning angles are discussed in this study. We show that the use of a non-zero turning angle weakens open–ocean deep convection and intensifies continental shelf slope convection. Our analyses reveal that a non-zero turning angle first induces offshore movement of sea ice transporting to the open SO, which leads to sea ice decrease in the SO coastal region and increase in the open SO. In the SO coastal region, the enhanced sea-ice divergence intensifies the formation of denser surface water descending along continental shelf by enhanced salt flux and reduced freshwater flux, combined with enhanced Ekman pumping and weakened stratification, contributing to the occurrence and intensification of continental shelf slope convection. On the other hand, the increased sea ice in the open SO weakens the westerlies, enhances sea-level pressure, and increases freshwater flux, whilst oceanic cyclonic circulation slows down, sea surface temperature and sea surface salinity decrease in the open SO response to the atmospheric changes. Thus, weakened cyclonic circulation, along with enhanced freshwater flux, reduced deep–ocean heat content, and increased stability of sea water, dampens the open–ocean deep convection in the SO, which in turn cools the sea surface temperature, increases sea-level pressure, and finally increases sea-ice concentration, providing a positive feedback. In the CSM, the use of a non-zero turning angle has the capability to reduce the SO warm bias. These results highlight the importance of an accurate representation of sea ice–ocean coupling processes in a CSM.  相似文献   

10.
北极海冰的厚度和面积变化对大气环流影响的数值模拟   总被引:13,自引:2,他引:13  
文中利用中国科学院大气物理研究所设计的两层大气环流模式 ,模拟研究了北极海冰厚度和面积变化对大气环流的影响 ,尤其是对东亚区域气候变化的影响。模式中海冰厚度处理趋于合理分布 ,导致东亚冬、夏季风偏强 ,使冬季西伯利亚高压和冰岛低压的模拟结果更趋合理 ;另一方面 ,海冰厚度变化可以激发出跨越欧亚大陆的行星波传播 ,在低纬度地区 ,该行星波由西太平洋向东太平洋地区传播 ;海冰厚度变化对低纬度地区的对流活动也有影响。冬季北极巴伦支海海冰变化对后期大气环流也有显著的影响。数值模拟结果表明 :冬季巴伦支海海冰偏多 (少 )时 ,春季 (4~ 6月 )北太平洋中部海平面气压升高 (降低 ) ,阿留申低压减弱 (加深 ) ,有利于春季白令海海冰偏少 (多 ) ;而夏季 ,亚洲大陆热低压加深 (减弱 ) ,5 0 0 h Pa西太平洋副热带高压位置偏北 (南 )、强度偏强 (弱 ) ,东亚夏季风易偏强 (弱 )。  相似文献   

11.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

12.
Summary As revealed from the interannual variation of outgoing longwave radiation in the western Pacific, deep cumulus convection along the Meiyü-Baiu front and ITCZ is modulated by the anomalous summer circulation in the following manner: when the sea surface temperatures on the eastern tropical Pacific are anomalously warm (cold), cumulus convection is enhanced (suppressed) along the equator east of 150° E and along the Meiyü-Baiu front, but is suppressed (enhanced) along the equator west of 150° E and along a longitudinal zone (10° N–30° N) extending from the northern section of the South China Sea to the International Dateline. Since tropical deep cumulus convection exhibits a pronounced diurnal variation, the diurnal convection cycle in the western Pacific may undergo an interannual variation coherent with that of deep tropical cumulus convection. This inference is substantiated by our analysis of the diurnal convection cycle for 1980–1993 with 3-hour equivalent black-body temperature observed by the Japanese Geostationary Meteorological Satellite (GMS). As expected, the diurnal convection cycle in the western Pacific is subjected to an interannual variation in accordance with deep cumulus convection along the Meiyü-Baiu front and ITCZ. Except along the equator east of 150° E, the diurnal convection cycle does not exhibit a drastic interannual change in phase.  相似文献   

13.
The individual contributions of insolation and greenhouse gases (GHG) to the interglacial climates of the past 800,000?years are quantified through simulations with a model of intermediate complexity LOVECLIM and using the factor separation technique. The interglacials are compared in terms of their forcings and responses of surface air temperature, vegetation and sea ice. The results show that the relative magnitude of the simulated interglacials is in reasonable agreement with proxy data. GHG plays a dominant role on the variations of the annual mean temperature of both the Globe and the southern high latitudes, whereas, insolation plays a dominant role on the variations of tree fraction, precipitation and of the northern high latitude temperature and sea ice. The Mid-Brunhes Event (MBE) appears to be significant only in GHG and climate variables dominated by it. The results also show that the relative importance of GHG and insolation on the warmth intensity varies from one interglacial to another. For the warmest (MIS-9 and MIS-5) and coolest (MIS-17 and MIS-13) interglacials, GHG and insolation reinforce each other. MIS-11 (MIS-15) is a warm (cool) interglacial due to its high (low) GHG concentration, its insolation contributing to a cooling (warming). MIS-7, although with high GHG concentrations, can not be classified as a warm interglacial due to it large insolation-induced cooling. Related to these two forcings, MIS-19 appears to be the best analogue for MIS-1. In the response to insolation, the annual mean temperatures averaged over the globe and over southern high latitudes are highly linearly correlated with obliquity. However, precession becomes important in the temperature of the northern high latitudes and controls the tree fraction globally. Over the polar oceans, the response during the local winters, although the available energy is small, is larger than during the local summers due to the summer remnant effect. The sensitivity to double CO2 is the highest for the coolest interglacial.  相似文献   

14.
During the last glacial, major abrupt climate events known as Heinrich events left distinct fingerprints of ice rafted detritus, and are thus associated with iceberg armadas; the release of many icebergs into the North Atlantic Ocean. We simulated the impact of a large armada of icebergs on glacial climate in a coupled atmosphere–ocean model. In our model, dynamic-thermodynamic icebergs influence the climate through two direct effects. First, melting of the icebergs causes freshening of the upper ocean, and second, the latent heat used in the phase-transition of ice to water results in cooling of the iceberg surroundings. This cooling effect of icebergs is generally neglected in models. We investigated the role of the latent heat by performing a sensitivity experiment in which the cooling effect is switched off. At the peak of the simulated Heinrich event, icebergs lacking the latent heat flux are much less efficient in shutting down the meridional overturning circulation than icebergs that include both the freshening and the cooling effects. The cause of this intriguing result must be sought in the involvement of a secondary mechanism: facilitation of sea-ice formation, which can disturb deep water production at key convection sites, with consequences for the thermohaline circulation. We performed additional sensitivity experiments, designed to explore the effect of the more plausible distribution of the dynamic icebergs’ melting fluxes compared to a classic hosing approach with homogeneous spreading of the melt fluxes over a section in the mid-latitude North Atlantic (NA) Ocean. The early response of the climate system is much stronger in the iceberg experiments than in the hosing experiments, which must be a distribution-effect: the dynamically distributed icebergs quickly affect western NADW formation, which synergizes with direct sea-ice facilitation, causing an earlier sea-ice expansion and climatic response. Furthermore, compared to dynamic-thermodynamic icebergs, a homogeneous hosing overestimates the fresh water flux in the Eastern Ruddiman belt, causing a fresh anomaly in the Eastern North Atlantic, leading to a delayed recovery of the circulation after the event.  相似文献   

15.
Based on the NCEP/NCAR reanalysis data and Chinese observational data during 1961–2013, atmospheric circulation patterns over East Asia in summer and their connection with precipitation and surface air temperature in eastern China as well as associated external forcing are investigated. Three patterns of the atmospheric circulation are identified, all with quasi-barotropic structures: (1) the East Asia/Pacific (EAP) pattern, (2) the Baikal Lake/Okhotsk Sea (BLOS) pattern, and (3) the eastern China/northern Okhotsk Sea (ECNOS) pattern. The positive EAP pattern significantly increases precipitation over the Yangtze River valley and favors cooling north of the Yangtze River and warming south of the Yangtze River in summer. The warm sea surface temperature anomalies over the tropical Indian Ocean suppress convection over the northwestern subtropical Pacific through the Ekman divergence induced by a Kelvin wave and excite the EAP pattern. The positive BLOS pattern is associated with below-average precipitation south of the Yangtze River and robust cooling over northeastern China. This pattern is triggered by anomalous spring sea ice concentration in the northern Barents Sea. The anomalous sea ice concentration contributes to a Rossby wave activity flux originating from the Greenland Sea, which propagates eastward to North Pacific. The positive ECNOS pattern leads to below-average precipitation and significant warming over northeastern China in summer. The reduced soil moisture associated with the earlier spring snowmelt enhances surface warming over Mongolia and northeastern China and the later spring snowmelt leads to surface cooling over Far East in summer, both of which are responsible for the formation of the ECNOS pattern.  相似文献   

16.
The seasonal cycle of water masses and sea ice in the Hudson Bay marine system is examined using a three-dimensional coastal ice-ocean model, with 10 km horizontal resolution and realistic tidal, atmospheric, hydrologic and oceanic forcing. The model includes a level 2.5 turbulent kinetic energy equation, multi-category elastic-viscous-plastic sea-ice rheology, and two layer sea ice with a single snow layer. Results from a two-year long model simulation between August 1996 and July 1998 are analyzed and compared with various observations. The results demonstrate a consistent seasonal cycle in atmosphere-ocean exchanges and the formation and circulation of water masses and sea ice. The model reproduces the summer and winter surface mixed layers, the general cyclonic circulation including the strong coastal current in eastern Hudson Bay, and the inflow of oceanic waters into Hudson Bay. The maximum sea-ice growth rates are found in western Foxe Basin, and in a relatively large and persistent polynya in northwestern Hudson Bay. Sea-ice advection and ridging are more important than local thermodynamic growth in the regions of maximum sea-ice cover concentration and thickness that are found in eastern Foxe Basin and southern Hudson Bay. The estimate of freshwater transport to the Labrador Sea confirms a broad maximum during wintertime that is associated with the previous summers freshwater moving through Hudson Strait from southern Hudson Bay. Tidally driven mixing is shown to have a strong effect on the modeled ice-ocean circulation.  相似文献   

17.
Northern Hemisphere summer cooling through the Holocene is largely driven by the steady decrease in summer insolation tied to the precession of the equinoxes. However, centennial-scale climate departures, such as the Little Ice Age, must be caused by other forcings, most likely explosive volcanism and changes in solar irradiance. Stratospheric volcanic aerosols have the stronger forcing, but their short residence time likely precludes a lasting climate impact from a single eruption. Decadally paced explosive volcanism may produce a greater climate impact because the long response time of ocean surface waters allows for a cumulative decrease in sea-surface temperatures that exceeds that of any single eruption. Here we use a global climate model to evaluate the potential long-term climate impacts from four decadally paced large tropical eruptions. Direct forcing results in a rapid expansion of Arctic Ocean sea ice that persists throughout the eruption period. The expanded sea ice increases the flux of sea ice exported to the northern North Atlantic long enough that it reduces the convective warming of surface waters in the subpolar North Atlantic. In two of our four simulations the cooler surface waters being advected into the Arctic Ocean reduced the rate of basal sea-ice melt in the Atlantic sector of the Arctic Ocean, allowing sea ice to remain in an expanded state for?>?100 model years after volcanic aerosols were removed from the stratosphere. In these simulations the coupled sea ice-ocean mechanism maintains the strong positive feedbacks of an expanded Arctic Ocean sea ice cover, allowing the initial cooling related to the direct effect of volcanic aerosols to be perpetuated, potentially resulting in a centennial-scale or longer change of state in Arctic climate. The fact that the sea ice-ocean mechanism was not established in two of our four simulations suggests that a long-term sea ice response to volcanic forcing is sensitive to the stability of the seawater column, wind, and ocean currents in the North Atlantic during the eruptions.  相似文献   

18.
This paper investigates the possible implications for the earth-system of a melting of the Greenland ice-sheet. Such a melting is a possible result of increased high latitude temperatures due to increasing anthropogenic greenhouse gas emissions. Using an atmosphere-ocean general circulation model (AOGCM), we investigate the effects of the removal of the ice sheet on atmospheric temperatures, circulation, and precipitation. We find that locally over Greenland, there is a warming associated directly with the altitude change in winter, and the altitude and albedo change in summer. Outside of Greenland, the largest signal is a cooling over the Barents sea in winter. We attribute this cooling to a decrease in poleward heat transport in the region due to changes to the time mean circulation and eddies, and interaction with sea-ice. The simulated climate is used to force a vegetation model and an ice-sheet model. We find that the Greenland climate in the absence of an ice sheet supports the growth of trees in southern Greenland, and grass in central Greenland. We find that the ice sheet is likely to regrow following a melting of the Greenland ice sheet, the subsequent rebound of its bedrock, and a return to present day atmospheric CO2 concentrations. This regrowth is due to the high altitude bedrock in eastern Greenland which allows the growth of glaciers which develop into an ice sheet.  相似文献   

19.
A regional sea-ice?Cocean model was used to investigate the response of sea ice and oceanic heat storage in the Hudson Bay system to a climate-warming scenario. Projections of air temperature (for the years 2041?C2070; effective CO2 concentration of 707?C950?ppmv) obtained from the Canadian Regional Climate Model (CRCM 4.2.3), driven by the third-generation coupled global climate model (CGCM 3) for lateral atmospheric and land and ocean surface boundaries, were used to drive a single sensitivity experiment with the delta-change approach. The projected change in air temperature varies from 0.8°C (summer) to 10°C (winter), with a mean warming of 3.9°C. The hydrologic forcing in the warmer climate scenario was identical to the one used for the present climate simulation. Under this warmer climate scenario, the sea-ice season is reduced by 7?C9?weeks. The highest change in summer sea-surface temperature, up to 5°C, is found in southeastern Hudson Bay, along the Nunavik coast and in James Bay. In central Hudson Bay, sea-surface temperature increases by over 3°C. Analysis of the heat content stored in the water column revealed an accumulation of additional heat, exceeding 3?MJ?m?3, trapped along the eastern shore of James and Hudson bays during winter. Despite the stratification due to meltwater and river runoff during summer, the shallow coastal regions demonstrate a higher capacity of heat storage. The maximum volume of dense water produced at the end of winter was halved under the climate-warming perturbation. The maximum volume of sea ice is reduced by 31% (592?km3) while the difference in the maximum cover is only 2.6% (32,350?km2). Overall, the depletion of sea-ice thickness in Hudson Bay follows a southeast?Cnorthwest gradient. Sea-ice thickness in Hudson Strait and Ungava Bay is 50% thinner than in present climate conditions during wintertime. The model indicates that the greatest changes in both sea-ice climate and heat content would occur in southeastern Hudson Bay, James Bay, and Hudson Strait.  相似文献   

20.
The role of winter sea-ice in the Labrador Sea as a precursor for precipitation anomalies over southeastern North America and Western Europe in the following spring is investigated. In general terms, as the sea ice increases, the precipitation also increases. In more detail, however, analyses indicate that both the winter sea-ice and the sea surface temperature(SST)anomalies related to increases in winter sea-ice in the Labrador Sea can persist into the following spring. These features play a forcing role in the spring atmosphere, which may be the physical mechanism behind the observational relationship between the winter sea-ice and spring precipitation anomalies. The oceanic forcings in spring include Arctic sea-ice anomalies and SST anomalies in the tropical Pacific and high-latitude North Atlantic. Multi-model Coupled Model Intercomparison Project Phase 5 and Atmospheric Model Intercomparison Project simulation results show that the atmospheric circulation response to the combination of sea-ice and SST is similar to that observed, which suggests that the oceanic forcings are indeed the physical reason for the enhanced spring precipitation. Sensitivity experiments conducted using an atmospheric general circulation model indicate that the increases in precipitation over southeastern North America are mainly attributable to the effect of the SST anomalies, while the increases over Western Europe are mainly due to the sea-ice anomalies. Although model simulations reveal that the SST anomalies play the primary role in the precipitation anomalies over southeastern North America, the observational statistical analyses indicate that the area of sea-ice in the Labrador Sea seems to be the precursor that best predicts the spring precipitation anomaly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号