首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
A simple turbulent flow model for geophysical flows is presented, which is based on the transport equation for turbulent energy and on algebraic expressions relating the Reynolds stress and turbulent heat flux to the velocity and temperature gradients. The model, which is similar to the 2.5 level closure model of Mellor and Yamada, includes constraints based on the realizability conditions as well as expressions for the length scale which account for the influence of stratification and the Coriolis acceleration. The model is shown to reproduce satisfactorily the main features of existing laboratory measurements of stress-induced and convective turbulent entrainment in stratified flows.  相似文献   

2.
A Boundary-Layer Scaling for Turbulent Katabatic Flow   总被引:1,自引:1,他引:0  
Scaling relationships are proposed for the turbulent katabatic flow of a stably stratified fluid down a homogeneously cooled planar slope—the turbulent analogue of a Prandtl-type slope flow. The \(\Pi \) Theorem predicts that such flows are controlled by three non-dimensional parameters: the slope angle, the Prandtl number, and a Reynolds number defined in terms of the surface thermal forcing (surface buoyancy or surface buoyancy flux), Brunt-Väisälä frequency, slope angle, and molecular viscosity and diffusivity coefficients. However, by exploiting the structure of the governing differential equations in a boundary-layer form, scaled equations are deduced that involve only two non-dimensional parameters: the Prandtl number and a modified Reynolds number. In the proposed scaling framework, the slope angle does not appear as an independent governing parameter, but merely acts as a stretching factor in the scales for the dependent and independent variables, and appears in the Reynolds number. Based on the boundary-layer analysis, we hypothesize that the full katabatic-flow problem is largely controlled by two rather than three parameters. Preliminary tests of the scaling hypothesis using data from direct numerical simulations provide encouraging results.  相似文献   

3.
Assuming that the vertical turbulent heat flux vanishes at extremely stable conditions, one should expect its maximal absolute value to occur somewhere at moderate stability, between a neutral and extremely stable equilibrium. Consequently, in some situations duality of solutions may be encountered (e.g. two different values of temperature difference associated with the same values of heat flux and wind speed). A quantitative analysis of this feature with a local equilibrium Reynolds-stress model is presented. The fixed-wind / fixed-shear maximum has been identified both in the bulk and in single-point flux–gradient relationships (that is, in the vertical temperature gradient and wind-shear parameter domain). The value of the Richardson number corresponding to this maximum is derived from the model equations. To study the possible feedback in strongly stable conditions, weak and intense cooling scenarios have been simulated with a one-dimensional numerical, high-resolution atmospheric boundary-layer model. Despite the rapid cooling, flow decoupling at the surface has not been observed; instead, a stability-limited heat flux is maintained, with a gradual increase of the Richardson number towards the top of the turbulent layer, with some signs of oscillatory behaviour at intermediate heights. Vertical changes of wind shear and the Brunt–Väisälä frequency display a remarkably non-monotonic character, with some signs of a gradually developing instability.  相似文献   

4.
It is well known that the sum of the turbulent sensible and latent heat fluxes as measured by the eddy-covariance method is systematically lower than the available energy (i.e., the net radiation minus the ground heat flux). We examine the separate and joint effects of diurnal and spatial variations of surface temperature on this flux imbalance in a dry convective boundary layer using the Weather Research and Forecasting model. Results show that, over homogeneous surfaces, the flux due to turbulent-organized structures is responsible for the imbalance, whereas over heterogeneous surfaces, the flux due to mesoscale or secondary circulations is the main contributor to the imbalance. Over homogeneous surfaces, the flux imbalance in free convective conditions exhibits a clear diurnal cycle, showing that the flux-imbalance magnitude slowly decreases during the morning period and rapidly increases during the afternoon period. However, in shear convective conditions, the flux-imbalance magnitude is much smaller, but slightly increases with time. The flux imbalance over heterogeneous surfaces exhibits a diurnal cycle under both free and shear convective conditions, which is similar to that over homogeneous surfaces in free convective conditions, and is also consistent with the general trend in the global observations. The rapid increase in the flux-imbalance magnitude during the afternoon period is mainly caused by the afternoon decay of the turbulent kinetic energy (TKE). Interestingly, over heterogeneous surfaces, the flux imbalance is linearly related to the TKE and the difference between the potential temperature and surface temperature, ΔT; the larger the TKE and ΔT values, the smaller the flux-imbalance magnitude.  相似文献   

5.
岳平  张强  牛生杰  成华  王西育 《气象学报》2012,70(1):136-143
土壤热通量在半干旱草原下垫面能量平衡研究中极为重要,土壤热通量估计不够准确是导致地表能量不平衡的一个重要原因。利用2008年6—9月锡林郭勒草原主生长期地表辐射、通量和土壤温度梯度观测资料,研究中纬度半干旱草原下垫面地表能量平衡特征。首先,在分析能量平衡各分量月平均日变化特征的基础上,通过对土壤热流量板观测的5 cm深度土壤热通量(G)的相位前移,研究了土壤热通量相位滞后对地表能量平衡产生的影响;其次,利用谐波分析方法,通过计算地表土壤热通量(Gs),分析了地表到热流量板之间的土壤热量储存对地表能量平衡的影响。结果表明:(1)将土壤热通量相位前移30 min,湍流通量与可利用能量(Rn-G)线性回归的斜率从0.835增加到0.842,地表能量闭合率提高了0.7%,但仍有15.8%的能量不闭合;(2)考虑了地表到热流量板之间的土壤热量储存之后,湍流通量与可利用能量之间的回归斜率达到0.979,能量不闭合程度仅为2.1%。  相似文献   

6.
Ultrasonic wind measurements, sonic temperature and air temperature data at two heights in the advection experiment MORE II were used to establish a complete budget of sensible heat including vertical advection, horizontal advection and horizontal turbulent flux divergence. MORE II took place at the long-term Carbo-Europe IP site in Tharandt, Germany. During the growing period of 2003 three additional towers were established to measure all relevant parameters for an estimation of advective fluxes, primarily of CO2. Additionally, in relation to other advection experiments, a calculation of the horizontal turbulent flux divergence is proposed and the relation of this flux to atmospheric stability and friction velocity is discussed. In order to obtain a complete budget, different scaling heights for horizontal advection and horizontal turbulent flux divergence are tested. It is shown that neglecting advective fluxes may lead to incorrect results. If advective fluxes are taken into account, the sensible heat budget based upon vertical turbulent flux and storage change only, is reduced by approximately 30%. Additional consideration of horizontal turbulent flux divergence would in turn add 5–10% to this sum (i.e., the sum of vertical turbulent flux plus storage change plus horizontal and vertical advection). In comparison with available energy horizontal advection is important at night whilst horizontal turbulent flux divergence is rather insignificant. Obviously, advective fluxes typically improve poor nighttime energy budget closure and might change ecosystem respiration fluxes considerably.  相似文献   

7.
The surface heat flux feedback is estimated in the Atlantic and the North Pacific, using monthly heat flux and sea surface temperature (SST) anomaly data from COADS and the NCEP reanalysis. In the Atlantic, the heat flux feedback is dominated by the turbulent flux. It is negative, mostly ranging between 10 and 35 W m-2 K-1, but larger in the western subtropical gyre and part of the subpolar gyre, and weaker in the tropics. The radiative feedback is generally weak. In the North Pacific, the heat flux feedback is also dominated by the turbulent flux and is negative nearly everywhere, peaking in the subtropics. In both oceans, the turbulent heat flux feedback remains primarily negative in each season, and is stronger in fall and winter; patches of positive feedback can be seen, but often with limited correspondence between COADS and NCEP. The radiative feedback remains weak, and is positive in spring and summer at mid-latitudes. It is also shown that the turbulent heat flux feedback is weaker over large-scale areas, that no positive heat flux feedback sustains the SST anomaly "dipole" in the tropical Atlantic, and that the main SST anomaly mode in the North Pacific is damped by a negative heat flux feedback. The energy exchange with the atmosphere that results from the heat flux feedback can be substantial at mid-latitudes, but does not exceed 7 W m-2 at basin scale.  相似文献   

8.
We advance our prior energy- and flux-budget (EFB) turbulence closure model for stably stratified atmospheric flow and extend it to account for an additional vertical flux of momentum and additional productions of turbulent kinetic energy (TKE), turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). For the stationary, homogeneous regime, the first version of the EFB model disregarding large-scale IGW yielded universal dependencies of the flux Richardson number, turbulent Prandtl number, energy ratios, and normalised vertical fluxes of momentum and heat on the gradient Richardson number, Ri. Due to the large-scale IGW, these dependencies lose their universality. The maximal value of the flux Richardson number (universal constant ≈0.2–0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. For heterogeneous stratification, when internal gravity waves propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. Internal gravity waves also reduce the anisotropy of turbulence: in contrast to the mean wind shear, which generates only horizontal TKE, internal gravity waves generate both horizontal and vertical TKE. Internal gravity waves also increase the share of TPE in the turbulent total energy (TTE = TKE + TPE). A well-known effect of internal gravity waves is their direct contribution to the vertical transport of momentum. Depending on the direction (downward or upward), internal gravity waves either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.  相似文献   

9.
Vertical heat fluxes induced by mesoscale thermally driven circulations maycontribute significantly to the subgrid-scale fluxes in large-scale models (e.g.,general circulation models). However, they are not considered in these modelsyet. To gain insight into the importance and possible parameterisation of themesoscale flux associated with slope winds, an analytical (conceptual) modelis developed to describe the relationship between the mesoscale heat flux andatmospheric and land-surface characteristics. The analytical model allows usto evaluate the mesoscale flux induced by slope winds from only a few profilemeasurements within a domain. To validate the analytical model the resultingheat flux profiles are compared to profiles of highly resolved wind and temperaturefields obtained by simulations with a mesoscale numerical model.With no or moderate synoptic wind the mesoscale heat flux generated by the slopewind circulation may be as large as, or even larger than, the turbulent fluxes at thesame height. At altitudes lower than the crest of the hills the mesoscale flux is alwayspositive (upward). Generally it causes cooling within the boundary layer and heatingabove. Despite the simplifications made to derive the analytical model, it reproducesthe profiles of the mesoscale flux quite well. According to the analytical model, themesoscale heat flux is governed by the temperature deviation at the slope surface, thedepth of the slope-wind layer, the large-scale lapse rate, and the wavelength of thetopographical features.  相似文献   

10.
Hot-wire anemometers were used to measure air temperature and the three velocity components of the wind within and above a maize canopy. From digitized anemometer outputs, correlation coefficients for vertical heat flux and turbulent momentum transfer were calculated. A comparison of these coefficients with profiles of mean wind speed and mean temperature indicates that the main features of the turbulence may be explained in terms of the usual mixing-length theory. Instantaneous records of heat and momentum flux, however, indicate the existence of other competing turbulent mechanisms due to the unsteady, non-equilibrium nature of the turbulent flow. Regimes of flow dominated by mechanical and/or thermal mixing are indicated. Spectral results show that high shear and turbulent intensity levels as well as the presence of the maize leaves and stalks as vortex-shedding surfaces complicate the energy transfer mechanism. An energy balance between radiation and convection reveals that the energy budget is primarily a balance between solar radiation and the flux of latent heat.Contribution of the Sibley School of Mechanical and Aerospace Engineering, Cornell University, in cooperation with the Agricultural Research Service, U.S. Department of Agriculture, Ithaca, N.Y., U.S.A. and the Cornell University Agricultural Experiment Station. Department of Agronomy Series No. 1116.Sibley School of Mechanical and Aerospace Engineering, Cornell University; U.S. Department of Agriculture, Gainesville, Florida Section for Estuary and Fjord Studies, River and Harbour Laboratory, Technical University of Norway, Trondheim, Norway; State Univ. of New York at Buffalo; and U.S. Department of Agriculture and Cornell University; respectively.  相似文献   

11.
The analysis presented in this paper aims at a better understanding of the potential role of radiative temperature, as measured by a radiometer over crops, in sensible heat flux calculation. Defining radiative temperature as the mean temperature of the surfaces viewed by the radiometer (leaves and soil surface) and assuming that an Ohm's law type formula can be used to express sensible heat flux as a function of the difference between air temperature and radiative temperature, the aerodynamic resistance which divides this temperature difference has been analytically defined. The parameters which appear in the resistance expression depend essentially on wind velocity and canopy structure but also on the inclination angle of the radiometer. Finally an experimental verification is presented with data obtained over a potato crop.  相似文献   

12.
Profile and eddy-correlation (heights of 4 and 10 m) measurements performed on the Pasterze glacier (Austria) are used to study the characteristics of the stable boundary layer under conditions of katabatic and large-scale forcing. We consider cases where large-scale forcing results in a downslope (or following) ambient wind. The analysis of averaged spectra and cospectra reveals low frequency perturbations that have a large influence on the variances of temperature and horizontal wind components and also alter the cospectra of momentum and sensible heat flux. Only the spectrum of the vertical wind speed is comparable to universal spectra. The low frequency perturbations occur as brief intermittent events and result in downward entrainment of ambient air thereby producing enhanced downward sensible heat fluxes and downward as well as upward momentum fluxes with various magnitudes and timescales. After the variances were high pass filtered, the normalised standard deviations of wind speed and temperature compare favourably to findings in the literature within the range 0>z/L>0.5. For larger z/L they deviate as a result of an increased influence from low frequency perturbations and thus non-stationarity. In line with this, the turbulent kinetic energy budget (at 4 m height) indicates that production (shear) is in balance with destruction (buoyancy and dissipation) within the range 0>z/L>0.3. Non-dimensional gradients of wind speed within the range 0>z/L>0.3 have a slope of about 3.5. The scatter for the dimensionless temperature gradient is quite large, and the slope is comparable to that for wind speed gradients. For z/L>0.3 the imbalance in the turbulent kinetic energy budget grows and non-dimensional gradients for wind speed and temperature deviate considerably from accepted values as a result of increased non-stationarity. Average roughness lengths for momentum and sensible heat flux derived from wind speed and temperature profiles are respectively 1 × 10-3 m and 6 × 10-5 m, consistent with the literature. The ratio (z0h/z0m) compares to those predicted by surface renewal models. A variation of this ratio with the roughness Reynolds number is not indicated by our data.  相似文献   

13.
Soil heat flux is important for surface energy balance (SEB), and inaccurate estimation of soil heat flux often leads to surface energy imbalance. In this paper, by using observations of surface radiation fluxes and soil temperature gradients at a semi-arid grassland in Xilingguole, Inner Mongolia, China from June to September 2008, the characters of the SEB for the semi-arid grassland were analyzed. Firstly, monthly averaged diurnal variations of SEB components were revealed. A 30-min forward phase displacement of soil heat flux (G) observed by a fluxplate at the depth of 5-cm below the soil surface was conducted and its effect on the SEB was studied. Secondly, the surface soil heat flux (G s) was computed by using harmonic analysis and the effect of the soil heat storage between the surface and the fluxplate on the SEB was examined. The results show that with the 30-min forward phase displacement of observed G, the slope of the ordinary linear regression (OLR) of turbulent fluxes (H+LE) against available energy (R n-G) increased from 0.835 to 0.842, i.e., the closure ratio of SEB increased by 0.7%, yet energy imclosure of 15.8% still existed in the SEB. When G s, instead of G was used in the SEB equation, the slope of corresponding OLR of (H+LE) against (R n-G s) reached 0.979, thereby the imclosure ratio of SEB was reduced to only 2.1%.  相似文献   

14.
The Near-Calm Stable Boundary Layer   总被引:3,自引:3,他引:0  
For the near-calm stable boundary layer, nominally 2-m mean wind speed <0.5 ms−1, the time-average turbulent flux is dominated by infrequent mixing events. These events are related to accelerations associated with wave-like motions and other more complex small-scale motions. In this regime, the relationship between the fluxes and the weak mean flow breaks down. Such near-calm conditions are common at some sites. For very weak winds and strong stratification, the characteristics of the fluctuating quantities change slowly with increasing scale and the separation between the turbulence and non-turbulent motions can become ambiguous. Therefore, a new analysis strategy is developed based on the scale dependence of selected flow characteristics, such as the ratio of the fluctuating potential energy to the kinetic energy. In contrast to more developed turbulence, correlations between fluctuating quantities are small, and a significant heat flux is sometimes carried by very weak vertical motions with large temperature fluctuations. The relation of the flux events to small-scale increases of wind speed is examined. Large remaining uncertainties are noted.  相似文献   

15.
We measured the surface energy budget of an Alpine grassland in highly complex terrain to explore possibilities and limitations for application of the eddy-covariance technique, also for CO2 flux measurements, at such non-ideal locations. This paper focuses on the influence of complex terrain on the turbulent energy measurements of a characteristic high Alpine grassland on Crap Alv (Alp Weissenstein) in the Swiss Alps during the growing season 2006. Measurements were carried out on a topographic terrace with a slope of 25 inclination. Flux data quality is assessed via the closure of the energy budget and the quality flag method used within the CarboEurope project. During 93% of the time the wind direction was along the main valley axis (43% upvalley and 50% downvalley directions). During the transition times of the typical twice daily wind direction changes in a mountain valley the fraction of high and good quality flux data reached a minimum of ≈50%, whereas during the early afternoon ≈70% of all records yielded good to highest quality (CarboEurope flags 0 and 1). The overall energy budget closure was 74 ± 2%. An angular correction for the shortwave energy input to the slope improved the energy budget closure slightly to 82 ± 2% for afternoon conditions. In the daily total, the measured turbulent energy fluxes are only underestimated by around 8% of net radiation. In summary, our results suggest that it is possible to yield realistic energy flux measurements under such conditions. We thus argue that the Crap Alv site and similar topographically complex locations with short-statured vegetation should be well suited also for CO2 flux measurements.  相似文献   

16.
It has been proved that there exists a cross coupling between vertical heat turbulent transport and vertical velocity by using linear thermodynamics. This result asserts that the vertical component of heat turbulent transport flux is composed of both the transport of the vertical potential temperature gradient and the coupling transport of the vertical velocity. In this paper, the coupling effect of vertical velocity on vertical heat turbulent transportation is validated by using observed data from the atmospheric boundary layer to determine cross coupling coefficients, and a series of significant properties of turbulent transportation are opened out. These properties indicate that the cross coupling coefficient is a logarithm function of the dimensionless vertical velocity and dimensionless height, and is not only related to the friction velocity u*, but also to the coupling roughness height zW0 and the coupling temperature TW0 of the vertical velocity. In addition, the function relations suggest that only when the vertical velocity magnitude conforms to the limitation |W/u*|≠1, and is above the level zW0, then the vertical velocity leads to the cross coupling effect on the vertical heat turbulent transport flux. The cross coupling theory and experimental results provide a challenge to the traditional turbulent K closure theory and the Monin-Obukhov similarity theory.  相似文献   

17.
Methods are studied which permit one to evaluate turbulent fluxes from the results of spectral measurements in turbulent laboratory flows and an unstable atmospheric surface layer. The well known dissipation method of flux measurements, which uses spectral data related to the inertial range, is reanalyzed. New theoretical ideas and the latest experimental data are used to specify this method in cases of moderately and very strongly unstable thermal stratifications.Moreover, it is also explained how to estimate momentum and heat fluxes from data in the low frequency parts of the velocity and temperature spectra in the low frequency ranges beyond the lower limit of the inertial range. This permits one to estimate fluxes using rather simple and cheap instruments (e.g., Pilot-tubes and thermocouples in laboratory flows or cup anemometers and crude resistance thermometers in meteorological studies). The equations for flux determination are based in such cases on the recent models by Kader (1987, 1988) and Kader and Yaglom (1990, 1991) of spectral shapes at mesoscale wave numbers; these models agree quite satisfactorily with many (though not all) data of direct spectral measurements. It is shown that estimated momentum and heat fluxes in the laboratory and in an unstably stratified atmospheric surface layer obtained by the method suggested in this paper agree satisfactorily with direct flux measurements.  相似文献   

18.
This contribution investigates the nature of turbulent kinetic energy (TKE) in a steep and narrow Alpine valley under fair-weather summertime conditions. The Riviera Valley in southern Switzerland was chosen for a detailed case study, in which the evaluation of aircraft data (obtained from the MAP-Riviera field campaign) is combined with the application of high-resolution (350-m horizontal grid spacing) large-eddy simulations using the numerical model ARPS. The simulations verify what has already been observed on the basis of measurements: TKE profiles scale surprisingly well if the convective velocity scale w * is obtained from the sun-exposed eastern slope rather than from the surface directly beneath the profiles considered. ARPS is then used to evaluate the TKE-budget equation, showing that, despite sunny conditions, wind shear is the dominant production mechanism. Therefore, the surface heat flux (and thus w *) on the eastern slope does not determine the TKE evolution directly but rather, as we believe, indirectly via the interaction of thermally-driven cross-valley and along-valley flows. Excellent correlation between w * and the up-valley wind speed solidifies this hypothesis.  相似文献   

19.
冯健武  刘辉志  邹捍  李爱国 《高原气象》2007,26(6):1244-1253
利用2006年5~6月和2007年5~6月中国科学院HEST大气科学实验在珠峰绒布寺河谷野外观测期间获得的观测资料,分析了珠峰地区河谷近地层风向、风速、温度、湿度和CO2的日变化特征,讨论了珠峰北坡冰川风和山谷风的特点以及高原地表辐射、地表反照率和近地层湍流通量的变化特征.结果表明:在复杂地形和特殊下垫面影响下,珠峰绒布河谷地区近地面层各个气象要素和湍流通量日变化特征显著,并且明显存在冰川风和山谷风复合的局地环流,冰川风对该地区地气间物质能量交换起着重要作用.  相似文献   

20.
陆气相互作用对中尺度对流系统影响的研究进展   总被引:1,自引:1,他引:0  
单机坤  沈学顺  李维京 《气象》2013,39(11):1413-1421
文章回顾了大气对地表性质的敏感性研究,以及陆气相互作用对中尺度天气过程的影响,说明了地表性质与积云对流及对流降水之间的联系。地表性质的改变对行星边界层的热通量、水汽通量、对流有效位能产生影响,并通过湍流的垂直输送,进而影响到其上大气的性质。陆气之间存在着复杂的、非线性的相互作用。性质不均匀的下垫面造成地表向大气感热通量和潜热通量的差异,从而在近地层大气中形成温度和气压梯度,产生局地环流,在条件适合的情况下可以形成对流,并产生降水,而降水的不均匀分布,又维持了下垫面的不均匀性。土壤湿度对对流的影响受到多个因素的制约,其中天气尺度过程的影响是很显著的;由非均匀的下垫面所产生的局地环流能够触发积云对流。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号