首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the unprecedented observational facilities deployed duringthe 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99),we found three distinct turbulent events on the night of 18October 1999. These events resulted from a density current,solitary wave, and internal gravity wave, respectively. Our studyfocuses on the turbulence intermittency generated by the solitarywave and internal gravity wave, and intermittent turbulenceepisodes associated with pressure change and wind direction shiftsadjacent to the ground. Both the solitary and internal gravitywaves propagated horizontally and downward. During the passage ofboth the solitary and internal gravity waves, local thermal andshear instabilities were generated as cold air was pushed abovewarm air and wind gusts reached to the ground. These thermal andshear instabilities triggered turbulent mixing events. Inaddition, strong vertical acceleration associated with thesolitary wave led to large non-hydrostatic pressure perturbationsthat were positively correlated with temperature. The directionaldifference between the propagation of the internal gravity waveand the ambient flow led to lateral rolls. These episodic studiesdemonstrate that non-local disturbances are responsible for localthermal and shear instabilities, leading to intermittentturbulence in nocturnal boundary layers. The origin of thesenon-local disturbances needs to be understood to improve mesoscalenumerical model performance.  相似文献   

2.
Over a range of incidence angles the energy of an internal wave propagating onto a sloping boundary is concentrated in a boundary layer on the slope. As a wave propagates upslope the change in its amplitude and interaction with the downslope flow remaining from previous waves results in the wave breaking and the generation of turbulence and mixing in the boundary layer. Measurements of the overturning and buoyancy scales on the slope show that turbulence is generated and decays during each wave cycle and that much of the energy input to mixing scales is extracted from density inversions generated by the wave-induced mean flow. A comparison with decaying turbulence behind a grid in a stratified water tunnel suggests that the criterion for the extinction of the buoyancy flux is similar in the two cases.  相似文献   

3.
Summary The effects of internal waves on the propagation of acoustic pulses in the lower atmosphere were studied theoretically and by acoustic pulse sounding of the stable atmospheric boundary layer. Due to a control in the experiments of the stratification and time variations of meteorological parameters, such as wind speed, temperature and atmospheric pressure, we were able to observe the influence of the variations of these parameters on a pulse wave form, travel time and time duration. For the travel time and wind speed variations we obtained statistical characteristics (variances, frequency spectra and coherences) in the range of periods from 1 min to 1h and found several dominant periods, which are inherent to the trapped internal waves in the lower atmosphere. Using a nonlinear model of internal wave spectrum in the atmosphere described here we have made the calculations of variances, frequency spectra and structure functions of travel time fluctuations, which allowed us to interpret some of the observed data.  相似文献   

4.
The influence of an accelerating shear flow on the propagation of an internal gravity wave in a continuously stratified fluid is studied by means of two-dimensional numerical simulations. These are motivated by earlier laboratory experiments [Thorpe, S.A. 1978b. On internal gravity waves in an accelerating shear flow, Vol. 88. J. Fluid Mech. pp. 623–639]. In these experiments the mean flow is an accelerated Couette flow and the mean density profile is linear. The laboratory experiments revealed the striking effect of the unsteady shear flow in the evolution of an internal gravity wave leading to the wave focusing in a region where the flow is extremum. This phenomenon is associated with the growth of small scale density fluctuations. As a result density overturns are sometimes observed. This behaviour is well reproduced by the numerical simulations. We provide insights on the flow dynamics in particular on the possible occurrence of wavebreaking. We show that the dynamics is characterized by two competitive mechanisms that is a damping of the wave and a local enhancement of its steepness leading sometimes to density overturns. The budget for the energy of the wave reveals that the initial damping of the wave results from wave-mean flow interactions. These interactions lead to the development of a fine scale vertical density structure which is associated with high vertical shear. We find that in some cases wavebreaking occurs as a result of shear instability. The value of the acceleration of the mean flow is very likely to influence the onset of the instability. The scaling laws of the wave evolution, in particular the rate of decrease of its energy, are determined. From these laws the lifetime of the wave is found as a function of the acceleration of the shear. It may be expected that, in the ocean, this development will result in the largest fluctuations derived from wave-flow interactions occurring where the mean flow in the wave direction is greatest. Waves travelling normal to a two-dimensional shear flow will be unchanged. Waves travelling parallel will be damped. This may have particular application at the continental shelf where flow, mainly parallel to the isobaths, will damp waves travelling along-slope, but allows waves travelling normal to the isobaths (e.g., directly across the shelf-break) to be transmitted without attenuation. Similar effects are expected for the evolution of a high frequency wave interacting with a lower frequency (e.g., near inertial) motion.  相似文献   

5.
We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.  相似文献   

6.
Observations are presented for internal gravity waves and their breaking at a height of 23.5 m over the ocean in surface-based inversions which are formed because of the advection of warm air over cold water. The spectral and cospectral analyses of velocity and temperature fluctuations were made to establish the characteristic features of the waves. Flow visualization photographs of smoke released during the breaking of a wave are also presented. Comparison between the turbulent energies present during and after breaking of a wave indicates enormous mixing and dispersion occurring during breaking.This research was performed under Contract No. EY-76-C-02-0016 with the United States Energy Research and Development Administration.  相似文献   

7.
A linearized instability analysis model with five unknowns was proposed to describe disturbance motions under general oceanic background conditions, including large-scale current shear, density stratification, frontal zone, and arbitrary topography. A unified linear theory of wavelike perturbations for surface gravity waves, internal gravity waves and inertial gravity waves was derived for the adiabatic case, and the solution was then found using Fourier integrals. In this theory, we discarded the assumptions widely accepted in the literature concerning derivations of wave motions such as the irrotationality assumption for surface gravity waves, the rigid-lid approximation for internal gravity waves, and the long-wave approximation for inertial gravity waves. Analytical solutions based on this theory indicate that the complex dispersion relationships between frequency and wave-number describing the propagation and development of the three types of wavelike perturbation motions include three components: complex dispersion relationships at the sea surface; vertical invariance of the complex frequency; and expressions of the vertical wave-number (phase). Classical results of both surface waves and internal waves were reproduced from the unified theory under idealized conditions. The unified wave theory can be applied in the dynamical explanation of the generation and propagation properties of internal waves that are visible in the satellite SAR images in the southern part of the China Seas. It can also serve as the theoretical basis for both a numerical internal-wave model and analytical estimation of the ocean fluxes transported by wavelike perturbations.  相似文献   

8.
This article describes a remarkable effect of the horizontal component of the Coriolis vector, which is traditionally neglected in geophysical fluid wave theory, for the generation of inertio-gravity waves caused by flow over topography. Earlier an initial-value approach was used to calculate the evolutions of internal waves generated by atmospheric forcing in the linear Boussinesq model as done by many investigators for the study of near-inertial waves in the ocean. In this study, however, we focused on the mechanism of generating near-inertial waves by a bottom forcing with various periods. It is shown that the non-traditional Coriolis effects can significantly enhance the generation of near-inertial waves. Moreover, the intensity of generated near-inertial waves increases as the period of bottom forcing approaches to the local inertial period, suggesting the importance of tidal flows for generating near-inertial waves in deep ocean near critical latitudes. It is inferred that such near-inertial waves may contribute to a mechanism of deep-ocean mixing.  相似文献   

9.
《大气与海洋》2013,51(4):391-404
Abstract

An experimental study was conducted to investigate the transition of two‐layer stratified flow from the slope of bottom topography to a horizontal channel. Three experiments, with a reduced gravity of g’ = 1.64, 6.47 and 18.0 cm s?2, were performed. Particle image velocimetry and planar laser‐induced fluorescence were used to obtain the measurements of velocity and concentration fields. The flow rate, obtained from the measured velocity field, increases significantly toward the toe of the topography by almost 40% from that at the sill crest due to the interfacial wave activities. In the horizontal channel, however, the flow rate only increases marginally. Estimates of the composite Froude number indicate that the supercritical flow on the slope of the topography goes through the transition to the subcritical flow in the horizontal channel. The transition is mainly due to the increase in the lower‐layer thickness because of increasing interfacial friction caused by the breaking of interfacial waves, and no internal hydraulic jumps are observed. The measured mean concentration field showed the formation of an intermediate layer of medium density, which increased its thickness with g’ and helped to suppress turbulence. Spectral analysis of the density interfacial fluctuations indicated that the interfacial waves that developed on the slope of the topography broke up downstream of the toe into smaller amplitude waves at larger frequencies. The waves at several channel cross‐sections were also examined.  相似文献   

10.
利用波作用理论对台风莫拉克登陆期间的降水进行诊断分析。结果表明:波作用密度异常能在一定程度上指示暴雨雨区发展移动,其异常值的空间分布能够反映雨区上空动力场和热力场的典型垂直结构特征。台风内中尺度波动与暴雨落区宏观上具有一定联系。为了详细研究台风内部的波动特征,利用WRF(Weather Research and Forecasting model)模式模拟的高分辨率资料对台风登陆过程中波动特征进行分析,低波数波动的传播主导强对流的非对称分布,2波在登陆初期对对流分布起着关键作用,中尺度波动中同时存在涡旋罗斯贝波以及重力惯性波的特征,对登陆期间涡旋混合的现象有重要作用。  相似文献   

11.
During internal wave investigations in summer on the Pacific shelf of Kamchatka, internal wave depressions were recorded as having either a steepened forward face or a steepened back face. It was established that these changes in profile are correlated with tidal phase. Waves with a steepened leading face were most common during flood tide and those with a steepened back face dominated during ebb tide. Significant properties of the observed internal waves were revealed: the higher the amplitude of the waves, the less the steepening of the face, and the waves spreading during ebb tide have higher amplitude than those in flood tide.  相似文献   

12.
A method is presented to determine the quadratic nonlinearity parameter and amplitude of low-frequency internal gravity waves in the coastal zone of a fringing sea, based upon their propagation rate dependence on local value of pycnocline vertical displacement produced by the waves. To test the method, the internal wave field observations in the coastal zone of the Sea of Japan are used. The testing results show that the internal wave parameters calculated using the proposed method and the experimental data are in a good agreement with those calculated from theoretical formulas.  相似文献   

13.
Three-dimensional flow of a linearly stratified Boussinesq fluid is studied numerically. The flow is assumed to be confined in a rectangular channel and internal waves are excited by bottom topography. Near resonance of the first vertical internal wave mode, it was found that the reflection of the internal wave at the sidewall is ‘abnormal’ in the sense that the reflection angle is larger than the incident angle and a third wave perpendicular to the sidewall is generated. The waves become straight crested (two-dimensional) as this third wave becomes longer. The whole mechanism is similar to the ‘Mach reflection’ observed in the general stratified fluid in which the usual solitary waves are generated. In the case of the linearly stratified Boussinesq fluid, the abnormal reflection occurs even though the wave near the sidewall has a sinusoidal profile and not a sech2 profile. This suggests that the abnormal reflections similar to Mach reflection always occur when the wave amplitude is large enough, irrespective of the wave profile.  相似文献   

14.
Abstract

Current meters and a thermistor chain deployed in the proximity of a drill‐ship over the continental shelf off Baffin Island revealed the presence of large amplitude internal waves. This paper reviews the properties of the internal waves, observed to propagate away from the coast and to coincide with the local low water phase of the tide at the drill‐ship. The observations are considered in terms of internal solitary wave models. A detailed comparison is presented of wave properties with a long‐wave model incorporating continuous stratification and shear.  相似文献   

15.
The purpose of this paper is to analyze diapycnal mixing induced by the breaking of an internal gravity wave — the primary wave — either standing or propagating. To achieve this aim we apply two different methods. The first method consists of a direct estimate of vertical eddy diffusion from particle dispersion while the second method relies upon potential energy budgets [Winters, K.B., Lombard, P.N., Riley, J.J., D’Asaro, E.A., 1995. J. Fluid Mech. 289, 115–128; Winters, K.B., D’Asaro, E.A., 1996. J. Fluid Mech. 317, 179–193]. The primary wave we consider is of small amplitude and is statically stable, a case for which the breaking process involves two-dimensional instabilities. The dynamics of the waves have been previously analyzed by means of two-dimensional direct numerical simulations [Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1995. J. Fluid Mech. 285, 265–301; Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1996. Dyn. Atmos. Oceans 29, 41–63; Koudella, C., Staquet, C., 1998. In: Davis, P. (Ed.), Proceedings of the IMA Conference on Mixing and Dispersion on Stably-stratified Flows, Dundee, September 1996. IMA Publication]. High resolution three-dimensional calculations of the same wave are also reported here [Koudella, C., 1999].A local estimate of mixing is first inferred from the time evolution of sets of particles released in the flow during the breaking regime. We show that, after an early evolution dominated by shear effects, a diffusion law is reached and the dispersion coefficient is fairly independent of the initial seeding location of the particles in the flow.The eddy diffusion coefficient, K, is then estimated from the diapycnal diffusive flux. A good agreement with the value inferred from particle dispersion is obtained. This finding is of particular interest regarding the interpretation of in situ estimates of K inferred either from tracer dispersion or from microstructure measurements. Computation of the Cox number, equal to the ratio of eddy diffusivity to molecular diffusivity, shows that the Cox number varies within the interval [9, 262], which corresponds to the range of vertical eddy diffusivity measured in the interior of the ocean. The Cox number is found to depend on the turbulent Froude number squared.We show eventually that mixing results in a weak distortion of the initial density profile and we relate this result to observations made at small scale in the ocean.Comparisons between the analysis of the two-dimensional and high resolution (2563) three-dimensional direct numerical simulations of the primary wave were also conducted. We show that the energetics and the amount of mixing are very close when the primary wave is of small amplitude. This results from the fact that, for a statically stable wave, the dynamics of the initially two-dimensional primary wave remains mostly two-dimensional even after the onset of wavebreaking.  相似文献   

16.
The atmospheric surface layer over sea has a density stratification which varies with moisture content and air/sea temperature difference. This influences the growth of water waves. To study the effect quantitatively, the Reynolds equations are solved numerically. For given wind speed and surface roughness, wave growth is found to be more rapid in unstably stratified conditions than in stable conditions. This is due to an increase in turbulence, primarily caused by an increase of mixing length.Under the assumption of a Charnock relation between surface roughness and friction velocity, it is found that for large inverse wave age (u */c>0.07), the effect of stratification on wave growth is weell described by Monin-Obukhov scaling of the friction velocity. For smaller values ofu */c, Monin-Obukhov scaling overpredicts.The effect on duration-limited wave growth is studied with the third-generation WAM surface wave model driven by 10 m winds. Effects of stratification on the significant wave height are found to be of the order of 10%. The results are comparable to those of a recent reanalysis of field measurements, although the measured stratification effect is somewhat stronger. Implementation of a stratification-dependent growth in wave models is recommended, as it can lead to small but significant improvements in wave forecasts when accurate air and sea temperatures are available.  相似文献   

17.
An ensemble of random-phase internal gravity waves is considered in the dynamical framework of the Euler–Boussinesq equations. For flows with zero mean potential vorticity, a kinetic equation for the mean spectral energy density of the waves is obtained under hypothesis of Gaussian statistics with zero correlation length. Stationary scaling solutions of this equation are found for almost vertically propagating waves. The resulting spectra are anisotropic in vertical and horizontal wave numbers. For flows with small but non-zero mean potential vorticity, under the same statistical hypothesis applied to the wave part of the flow, it is shown that the vortex part and the wave part decouple. The vortex part obeys a limiting slow dynamics equation exhibiting vertical collapse and layering which may contaminate the wave-part spectra. Relation of these results to the in situ atmospheric measurements and previous work on oceanic gravity waves is discussed.  相似文献   

18.
Internal waves propagating in a larger-scale shear flow slowly change their amplitudes and wavenumbers. For moderate shear flows the secular effect of these changes reduces to a diffusion of wave action in wavenumber space. The diffusion coefficients are derived under the assumption that relaxation processes exist within the internal wave field. Associated with the diffusion of wave action is an energy transfer between the mean flow and the wave field. The wavenumber—frequency dependence of this energy transfer is evaluated for the Garrett and Munk (1975) spectral model. For this spectrum the transfer shows a characteristic +—+ signature with a weak source of internal wave energy at near-inertial frequencies, a weak sink at medium frequencies, and a strong source at high frequencies. The integrated energy transfer is from the mean flow to the internal wave field.  相似文献   

19.
Temporally-growing frontal meandering and occasional eddy-shedding is observed in the Brazil Current (BC) as it flows adjacent to the Brazilian Coast. No study of the dynamics of this phenomenon has been conducted to date in the region between 22° S and 25°S. Within this latitude range, the flow over the intermediate continental slope is marked by a current inversion at a depth that is associated with the Intermediate Western Boundary Current (IWBC). A time series analysis of 10-current-meter mooring data was used to describe a mean vertical profile for the BC-IWBC jet and a typical meander vertical structure. The latter was obtained by an empirical orthogonal function (EOF) analysis that showed a single mode explaining 82% of the total variance. This mode structure decayed sharply with depth, revealing that the meandering is much more vigorous within the BC domain than it is in the IWBC region. As the spectral analysis of the mode amplitude time series revealed no significant periods, we searched for dominant wavelengths. This search was done via a spatial EOF analysis on 51 thermal front patterns derived from digitized AVHRR images. Four modes were statistically significant at the 95% confidence level. Modes 3 and 4, which together explained 18% of the total variance, are associated with 266 and 338-km vorticity waves, respectively. With this new information derived from the data, the [Johns, W.E., 1988. One-dimensional baroclinically unstable waves on the Gulf Stream potential vorticity gradient near Cape Hatteras. Dyn. Atmos. Oceans 11, 323–350] one-dimensional quasi-geostrophic model was applied to the interpolated mean BC-IWBC jet. The results indicated that the BC system is indeed baroclinically unstable and that the wavelengths depicted in the thermal front analysis are associated with the most unstable waves produced by the model. Growth rates were about 0.06 (0.05) days−1for the 266-km (338-km) wave. Moreover, phase speeds for these waves were low compared to the surface BC velocity and may account for remarks in the literature about growing standing or stationary meanders off southeast Brazil. The theoretical vertical structure modes associated with these waves resembled very closely to the one obtained for the current-meter mooring EOF analysis. We interpret this agreement as a confirmation that baroclinic instability is an important mechanism in meander growth in the BC system.  相似文献   

20.
Tidal processes are examined that control the water exchange between two basins of the Trondheimsfjord through a narrow channel with sills. For this purpose, a non-hydrostatic numerical model based on the laterally averaged Reynolds equations in the Boussinesq approximation was developed. The model takes into account the real vertical fluid stratification, variable bottom topography and variable cross-section of the fjord. Numerical experiments were performed to investigate tidally generated internal waves and their influence on the water exchange.The model produces both baroclinic tides and tidally generated lee waves. It was found that, for the Skarnsund strait which connects the Middle Fjord and the Beitstadfjord, the internal tides generated over the Skarnsund sills are very weak. Their amplitudes do not exceed 1 m.The intense short internal waves, which are identified as unsteady lee waves, comprise the basic input of the total internal wave field. These waves are generated by tidal currents at sill breaks, are trapped by topography in the generation area and grow by continuing feedback into large-amplitude waves. As the tidal flow slackens, they move upstream as freely propagating waves.As essentially nonlinear responses, the lee waves cause a nonlinear water transport. The detailed analysis of the residual currents produced by unsteady lee waves (which are propagating in both directions from the Scarnsund sills) has shown, in particular, that the residual currents can reach values as high as 0.27 m s−1.It was also found that such currents exert a considerable effect on the water exchange through the Skarnsund strait between the adjacent basins. This mechanism can play an important role in water renewal and formation of the Beitasdfjord waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号