首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sixty-one still bottled water samples, representing 41 locations, were collected from Hellas for the purpose of studying the geochemistry of ground water. Since, the dominating lithology comprises limestone, dolomitic limestone, marble, and mafic–ultramafic rocks (ophiolites), the dominant major ions in Hellenic bottled waters are Ca2+, Mg2+, CO32− and HCO3, and are, thus, classified in the Ca2+–Mg2+–HCO3 hydrochemical facies. The source aquifers of Hellenic bottled water are apparently continuously replenished by fresh water. Comparison of values of Ca, Mg, K, Na, Cl, HCO3, NO3, SO42−, pH and electrical conductivity, displayed on bottle labels with those of this study, has shown that there is a fairly good correlation between the two data sets, suggesting that the geochemistry of source aquifers is relatively stable over time, at least from 1998 to 2008.  相似文献   

2.
The use of bottled mineral waters use is increasingly becoming popular and the need for better knowledge of their chemical composition is a key issue for defining their quality, particularly for those elements that are not monitored on a regular basis. The link between geology and water chemistry is well known and can lead to extreme differences in element distribution and is an issue that needs to be addressed. Such an opportunity has been provided by a project of the EuroGeoSurvey Geochemistry Expert Group aimed at the characterization of groundwater geochemistry using bottled mineral waters purchased in supermarkets all over Europe. On these waters pH, conductivity and concentrations of 69 elements and ions were measured at the BGR geochemical laboratories. On a total of 1785 “samples”, 158 represent waters bottled in Italy in 126 different sites scattered throughout the country. Most of the purchased mineral water is packaged in PET bottles. In this paper, the dataset concerning Italy has been used to provide an overview on the relationship between natural concentration of the determined chemical elements in groundwater and geo-lithological features. These relationships have been investigated mostly taking into account the surface geology and other information available on water sources. Application of R-Mode factor analysis to the data set allowed the determination of the possible relationship between the distribution of individual elements and lithology or other surface enrichment phenomena. In particular waters draining through volcanic rocks are enriched in elements such as As, B, Br, Cl, Cs, I, K, Li, Na, NO3, PO43−, Rb, Sc, SiO2, Sr, Te, Ti, and V up to 3 orders of magnitude higher than waters draining through other lithologies. REE and Y show significant difference in median concentration due to interaction of waters with plutonic rocks. Many elements have a large spread of concentrations, which reflects natural variations and interaction with particular lithologies. One of the five R-mode factor analysis associations, recognized as being representative of elements analysed shows high nitrate and V loadings along with As, PO43− and Se. The latter association probably reflects a sign of anthropogenic contribution in some aquifers in volcano-sedimentary or silico-clastic deposits and in intensively cultivated areas.  相似文献   

3.
Microbiological studies have always had an important role in the evaluation of drinking water quality. However, since geological processes are the most important factors controlling the source and distribution of chemical elements in natural waters, the importance of geochemical data must not be underestimated. This study presents data on pH, conductivity and concentrations of 69 elements and ions (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, Br, HCO3, Cl, F, NH4+, NO2, NO3, PO43−, SO42−, SiO2) from 186 bottled mineral waters of 158 different Italian name brands. Analyses show a large range in concentrations for most of these elements, with variations up to four orders of magnitude. Our data demonstrate that some elements (such as Be), generally considered unlikely to occur, can instead reach surprisingly high levels in drinking water, and also how packaging can release some trace elements to the bottled water. Data analysis shows that the implementation of an international database of bottled water geochemistry and of potential toxicological effects is of paramount importance to provide a robust data set which would be useful to set international action levels and guidelines to secure bottled water quality, whose consumption has steadily increased in the recent years. A new formula to calculate nitrate and nitrite tolerable concentration levels in waters intended for human consumption is proposed, to take into account that about 5% of dietary nitrate in humans is converted to nitrite.  相似文献   

4.
Bottled waters are an increasingly significant product in the human diet. In this work, we present a dataset of stable isotope ratios for bottled waters sampled in Greece. A total of 25 domestic brands of bottled still waters, collected on the Greek market in 2009, were analysed for δ18O and δ2H. The measured stable isotope ratios range from − 9.9‰ to − 6.9‰ for δ18O and from − 67.50‰ to − 46.5‰ for δ2H. Comparison of bottled water isotope ratios with natural spring water isotope ratios demonstrates that on average the isotopic composition of bottled water tends to be similar to the composition of naturally available local water sources, showing that bottled water isotope ratios preserve information about the water sources from which they were derived and suggesting that in many cases bottled water should not be considered as an isotopically distinct component of the human diet. This investigation also helped to determine the natural origin of bottled water, and to indicate differences between the natural and production processes. The production process may influence the isotopic composition of waters. No such modification was observed for sampled waters in this study. The isotopic methods applied can be used for the authentication of bottled waters and for use in the regulatory monitoring of water products.  相似文献   

5.
Within the framework of the Pan-European project about the geochemistry of bottled mineral waters in Europe launched in 2007 by the European Geological Surveys (EGS) Geochemistry Expert Group fourteen brands of bottled natural waters from Croatia of both mineral and spring types were evaluated for getting more coherent spatial information about the natural variation of element concentration in bottled waters found at the European market. Results of chemical analysis show that not a single one out of fourteen analyzed bottled waters from Croatia exceeds the Croatian water standards sanctioning thereby their suitability for human consumption. Also, statistical tests performed for 41 analytes (including pH and EC) clearly show that the water chemistry is in a high degree of conformity with regional geology, depending on structural, stratigraphic and, above all, lithological diversity of aquifers. Thus Dinaric and Pannonian parts of Croatia differ largely with regard to their water types: Dinaric region is completely lacking mineral water types while, on the other side, in the Pannonian region even the spring waters show stronger mineralization in comparison with their Dinaric counterparts. Typically, all natural waters from Croatia bear the bicarbonate (HCO3) signature. However, Ca–Mg cation pair combination is characteristic of spring waters while Na–K dominates in the mineral waters.  相似文献   

6.
Twenty-two bottled mineral and spring waters from Norway, Sweden, Finland and Iceland have been analysed for 71 inorganic chemical parameters with low detection limits as a subset of a large European survey of bottled groundwater chemistry (N = 884). The Nordic bottled groundwaters comprise mainly Ca–Na–HCO3–Cl water types, but more distinct Ca–HCO3, Na HCO3 and Na–Cl water types are also offered. The distributions for most elements fall between groundwater from Fennoscandian Quaternary unconsolidated aquifers and groundwater from Norwegian crystalline bedrock boreholes. Treated tap waters have slightly lower median values for many parameters, but elements associated with plumbing have significantly higher concentrations in tap waters than in bottled waters. The small dataset is able to show that excessive fluoride and uranium contents are potential drinking water problems in Fennoscandia. Nitrate and arsenic displayed low to moderate concentrations, but the number of samples from Finland and Northern Sweden was too low to detect that elevated concentrations of arsenic occur in bedrock boreholes in some regions. The data shows clearly that water sold in plastic bottles is contaminated with antimony. Antimony is toxic and suspected to be carcinogenic, but the levels are well below the EU drinking water limit. The study does not provide any health-based arguments for buying bottled mineral and spring waters for those who are served with drinking water from public waterworks. Drinking water from crystalline bedrock aquifers should be analysed. In case of elevated concentrations of fluoride, uranium or arsenic, most bottled waters, but not all, will be better alternatives when treatment of the well water is not practicable.  相似文献   

7.
8.
The inorganic chemistry of 85 samples of bottled natural mineral waters and spring waters has been investigated from 67 sources across the British Isles (England, Wales, Scotland, Northern Ireland, Republic of Ireland). Sources include boreholes, springs and wells. Waters are from a diverse range of aquifer lithologies and are disproportionately derived from comparatively minor aquifers, the most represented being Lower Palaeozoic (10 sources), Devonian Sandstone (10 sources) and Carboniferous Limestone (9 sources). The waters show correspondingly variable major-ion compositions, ranging from Ca–HCO3, through mixed-cation–mixed-anion to Na–HCO3 types. Concentrations of total dissolved solids are mostly low to very low (range 58–800 mg/L). All samples analysed in the study had concentrations of inorganic constituents well within the limits for compliance with European and national standards for bottled waters. Concentrations of NO3–N reached up to half the limit of 11.3 mg/L, although 62% of samples had concentrations <1 mg/L. Concentrations of Ba were high (up to 1010 μg/L) in two spring water samples. Such concentrations would have been non-compliant had they been classed as natural mineral waters, although no limit exists for Ba in European bottled spring water. In addition, though no European limit exists for U in bottled water, should a limit commensurate with the current WHO provisional guideline value for U in drinking water (15 μg/L) be introduced in the future, a small number of groundwater sources would have concentrations close to this value. Two sources had groundwater U concentrations > 10 μg/L, both being from the Welsh Devonian Sandstone. The highest observed U concentration was 13.6 μg/L.  相似文献   

9.
Bottled drinking water constitutes a significant part of total water consumption in developed countries and national and EU legislation regulates their market production. In the framework of an international project carried out by the EuroGeoSurveys Geochemistry Expert Group 36 bottled waters were obtained from public markets in Hungary in order to determine their hydrogeochemical composition. The objective of this study is to investigate the possible relationship between groundwater aquifer lithology and the processed and marketed bottled waters, and to develop a classification of bottled waters, based on their dissolved mineral content. Analytical results of this study are compared with the composition shown on bottle labels, and with archive hydrochemical data from the producing wells. Results show that, while processing of original groundwater, such as oxygen addition, iron or hydrogen-sulphide removal can significantly alter water composition, bottled water composition can be used for selection of sites for detailed hydrogeochemical and hydrogeological characterization. A simple and useful classification of bottled water quality is also presented that is based on natural groups of sampled waters derived by means of statistical data analysis methods.  相似文献   

10.
Highly mineralized waters of different chemical types and origin occur in the flysch formations and their bedrocks in the western part of the Polish Carpathians. The marine sedimentation water of the flysch formations is not preserved, as the most mineralized and the heaviest isotopic values of flysch waters are characterized by δ18O and δ2H values in the ranges of 5–7‰ and −(20–30)‰, respectively. Their origin is related to the dehydration of clay minerals during burial diagenesis, with molecules of marine water completely removed by molecules of released bound water. They are relatively enriched in Na+ in respect to the marine water, supposedly due to the release of Na+ during the illitization of smectites and preferable incorporation of other cations from the primary brine into newly formed minerals. In some parts of younger formations, i.e. in the Badenian sediments, brines occur with isotopic composition close to SMOW and Cl contents greatly exceeding the typical marine value of about 19.6 g/L, supposedly due to ultrafiltration. Most probably, the marine water of the flysch formations was similarly enriched chemically in its initial burial stages. Final Cl contents in diagenetic waters depend on different Cl contents in the primary brines and on relationships between diagenetic and further ultrafiltration processes. In some areas, diagenetic waters migrate to the surface along fault zones and mix with young local meteoric waters becoming diluted, with the isotope composition scattering along typical mixing lines. In areas with independent CO2 flow from great depths, they form chloride CO2-rich waters. Common CO2-rich waters are formed in areas without near-surface occurrences of diagenetic waters. They change from the HCO3–Ca type for modern waters to HCO3–Mg–Ca, HCO3–Na–Ca and other types with elevated TDS, Mg2+ and/or Na contents for old waters reaching even those of glacial age. Bedrocks of the flysch are represented by Mesozoic and Paleozoic mudstones, sandstones and carbonates, and in some areas by Badenian sediments. Brines of the Mesozoic and Paleozoic bedrocks are usually significantly enriched in Ca2+ and Mg2+ in comparison with the Badenian brines. By analogy to the deepest brines in the adjacent Upper Silesian Coal Basin, they are supposed to originate from paleometeoric waters of a hot climate.  相似文献   

11.
Many waters sampled in Yellowstone National Park, both high-temperature (30–94 °C) and low-temperature (0–30 °C), are acid–sulfate type with pH values of 1–5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH < 2.7. Field pH measurements were predominantly used because the charge imbalance was <±10%. When the charge imbalance was generally >±10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values <3. The highest SO4 concentrations, in the thousands of mg/L, result from evaporative concentration at elevated temperatures as shown by the consistently high δ18O values (−10‰ to −3‰) and a δD vs. δ18O slope of 3, reflecting kinetic fractionation. Low SO4 concentrations (<100 mg/L) for thermal waters (>350 mg/L Cl) decrease as the Cl concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid–sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone’s acid waters but have not been observed in acid rock drainage of the same pH.  相似文献   

12.
A total of 1785 European bottled water samples were analyzed using standard laboratory methods. The bottled water samples were purchased in 2008 at supermarkets throughout 40 European countries. The samples were analyzed for 71 chemical parameters (As, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, Br, HCO3, Cl, F, NH4+, NO2, NO3, PO43−, SO42−, SiO2, pH, and EC) by quadrupole inductively coupled emission spectroscopy (ICP-QMS, trace elements), inductively coupled plasma atomic emission spectroscopy (ICP-AES, major elements), ion chromatography (IC, anions), atomic fluorescence spectrometry (AFS, Hg), titration (alkalinity), photometric methods (NH4+), potentiometric methods (pH), and conductometric methods (specific electrical conductivity, EC). A very strict quality control procedure was followed by analysing blanks, international reference materials, an internal project standard, and duplicate analyses, as well as by analysing 23 elements by both ICP-QMS and ICP-AES. Analysis of marketed bottled water from springs, wells or boreholes, apart from the evaluation of its quality with respect to inorganic elements, it may provide a cheap alternative to obtain a first impression about groundwater chemistry at the European scale.  相似文献   

13.
The western Tianshan range is a major Cenozoic orogenic belt in central Asia exposing predominantly Paleozoic rocks including granite. Ongoing deformation is reflected by very rugged topography with peaks over 7000 m high. Active tectonic deformation is tied to an E–W trending fracture and fault system that sections the mountain chain into geologically diverse blocks that extend parallel to the orogen. In the Muzhaerte valley upwelling hot water follows such a fault system in the Muza granite. About 20 L min−1 Na–SO4–Cl water with a temperature of 55 °C having a total mineralization of about 1 g L−1 discharge from the hot spring. The water is used in a local spa that is frequented by the people of the upper Ili river area. Its waters are used for balneological purposes and the spa serves as a therapeutic institution. The major element composition of the hot water is dominated by Na and by SO4 and Cl, Ca is a minor component. Dissolved silica (1.04 mmol L−1) corresponds to a quartz-saturation temperature of 116 °C and a corresponding depth of the source of the water of about 4600 m. This temperature is consistent with Na/K and Na/Li geothermometry. The water is saturated with respect to fluorite and contains 7.5 mg L−1 F as a consequence of the low Ca-concentration. The water is undersaturated with respect to the primary minerals of the reservoir granite at reservoir temperature causing continued irreversible dissolution of granite. The waters are oversaturated with respect to Ca–zeolite minerals (such as stilbite and mesolite), and it is expected that zeolites precipitate in the fracture pore space and in alteration zones replacing primary granite.  相似文献   

14.
Sixteen bottled waters of various Sicilian brands, 11 natural mineral waters and five normal drinking waters, were analyzed for major and trace inorganic components by ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The bottled waters represent a variety of water types with significantly different compositions in terms of salinity, major components and trace elements. Chemically, they range from Ca–HCO3 and Ca–SO4 to Na–HCO3 types. Total dissolved solids ranges from 54 to 433 mg/L, total hardness from 25 to 238 mg/L CaCO3, and measured Na content from 5.7 to 57 mg/L. According to total dissolved ions, all the bottled waters were classified as oligomineral (50 < TDS < 500 mg/L). All the bottled waters analyzed here had elemental concentrations which did not exceed the guideline and directive values, although a high concentration of Al was noted for one bottled water (O7, central Sicily) and high Rb and V in a bottled water (O1) from the Etna volcanic area. With regard to trace elements, the chemical quality of bottled waters was assessed by a metal index (MI). Chemical characteristics were compared with 10 tap water samples from private houses or public places, representative of the public water supply in Palermo, the largest and most densely populated city in Sicily. The municipal waters analyzed, belonging to HCO3-alkaline earth and Cl–SO4-alkaline earth waters, showed concentrations of chemical inorganic components well within drinking water limits. The data also indicated that the water supplied by the municipal authority is of fair quality, although fairly hard and high in Na concentration. Several considerations indicate that there is no sufficient reason to prefer bottled waters to tap waters.  相似文献   

15.
Group B metals, such as Hg, Cu, Ag, Pb and Cd bind strongly to reduced inorganic and organic S(II−) ligands. These S(II−) ligands, stable in oxic waters for significant periods of time, occur at the <1–100 s nM concentrations. It is hypothesized that S(II−) ligands are stabilized as Cu–S molecules associated with organic matter by multi-ligand binding or in nano-pore encapsulations in organic matter. S(II−) ligands are estimated by two methods: purge/trap analysis as Cr-reducible sulfide (CRS), and strong ligand (SLT) from a competitive ligand titration with Ag(I). The CRS/SLT ratio is nearly one for selected samples. CRS correlates reasonably well (r2 ∼ 0.5) with organic C with a slope of 14.6 nM per mg C. The conditional binding constant of Ag–SL is 11.3 for effluent associated with waste-water and decreases for river waters from about 12–8.8 as the strong sites are occupied with Ag(I).  相似文献   

16.
The high As and F groundwaters from Datong Basin are mostly soda waters with a Na/(Cl+SO4) (meq) ratio greater than unity, As and F up to 1550 μg/L and 10.4 mg/L, respectively, and with pH between 7.6 and 9.1. Geochemical modeling indicates that the waters are oversaturated with respect to calcite and clay minerals such as kaolinite, and undersaturated with respect to primary rock-forming minerals such as anorthite and albite. The water chemistry also is affected by evapotranspiration. The degree of evaporative enrichment is up to 85 in terms of Cl. Results of the hydrogeochemical studies indicate that the occurrence of soda water at Datong is the result of incongruent dissolution of aluminosilicates at one stage of their interaction with groundwater when the water is oversaturated with respect to calcite and evapotranspiration-related salt accumulation is not too strong. Studying the genesis of soda waters provides new insights into mechanism of As and F enrichment in the aquifer system. Due to CaF2 solubility control and OH–F exchange reactions, F can be enriched in soda water. And the high pH condition of soda water favors As desorption from oxyhydroxide surfaces, thereby increasing the concentration of As in the aqueous phase.  相似文献   

17.
Strontium isotopes and other geochemical signatures are used to determine the relationships between CO2-rich thermal (Chaves: 76 °C) and mineral (Vilarelho da Raia, Vidago and Pedras Salgadas: 17 °C) waters discharging along one of the major NNE–SSW trending faults in the northern part of mainland Portugal. The regional geology consists of Hercynian granites (syn-tectonic-310 Ma and post-tectonic-290 Ma) intruding Silurian metasediments (quartzites, phyllites and carbonaceous slates). Thermal and mineral waters have 87Sr/86Sr isotopic ratios between 0.716713 and 0.728035. 87Sr/86Sr vs. 1/Sr define three end-members (Vilarelho da Raia/Chaves, Vidago and Pedras Salgadas thermal and mineral waters) trending from rainfall composition towards that of the CO2-rich thermal and mineral waters, indicating different underground flow paths. Local granitic rocks have 87Sr/86Sr ratios of 0.735697–0.789683. There is no indication that equilibrium was reached between the CO2-rich thermal and mineral waters and the granitic rocks. The mean 87Sr/86Sr ratio of the thermal and mineral waters (0.722419) is similar to the Sr isotopic ratios of the plagioclases of the granitic rocks (0.71261–0.72087). The spatial distribution of Sr isotope and geochemical signatures of waters and the host rocks suggests that the thermal and mineral waters circulate in similar but not the same hydrogeological system. Results from this study could be used to evaluate the applicability of this isotope approach in other hydrogeologic investigations.  相似文献   

18.
An investigation of the thermal waters in the Ústí nad Labem area in the northeastern part of the Eger Rift has been carried out, with the principal objective of determining their origin. Waters from geothermal reservoirs in the aquifers of the Bohemian Cretaceous Basin (BCB) from depths of 240 to 616 m are exploited here. For comparison, thermal waters of the adjacent Teplice Spa area were also incorporated into the study. Results based on water chemistry and isotopes indicate mixing of groundwater from aquifers of the BCB with groundwater derived from underlying crystalline rocks of the Erzgebirge Mts. Unlike thermal waters in Dě?ín, which are of Ca–HCO3 type, there are two types of thermal waters in Ústí nad Labem, Na–HCO3–Cl–SO4 type with high TDS values and Na–Ca–HCO3–SO4 type with low TDS values. Carbon isotope data, speciation calculations, and inverse geochemical modeling suggest a significant input of endogenous CO2 at Ústí nad Labem in the case of high TDS groundwaters. Besides CO2 input, both silicate dissolution and cation exchange coupled with dissolution of carbonates may explain the origin of high TDS thermal waters equally well. This is a consequence of similar δ13C and 14C values in endogenous CO2 and carbonates (both sources have 14C of 0 pmc, endogenous CO2 δ13C around −3‰, carbonates in the range from −5‰ to +3‰ V-PDB). The source of Cl seems to be relict brine formed in Tertiary lakes, which infiltrated into the deep rift zone and is being flushed out. The difference between high and low TDS groundwaters in Ústí nad Labem is caused by location of the high mineralization groundwater wells in CO2 emanation centers linked to channel-like conduits. This results in high dissolution rates of minerals and in different δ13C(DIC) and 14C(DIC) fingerprints. A combined δ34S and δ18O study of dissolved SO4 indicates multiple SO4 sources, involving SO4 from relict brines and oxidation of H2S. The study clearly demonstrates potential problems encountered at sites with multiple sources of C, where several evolutionary groundwater scenarios are possible.  相似文献   

19.
Considering its area, Portugal is one of the world's richest countries in mineral and spring waters. There are 33 different types of bottled water, 18 of which are classified as natural mineral water and the remaining as spring water. The majority of these waters are of low mineralisation in comparison to most European bottled waters.  相似文献   

20.
The use of radioactive isotopes plays a very important role in dating groundwater, providing an apparent age of the systems in the framework of the aquifers conceptual modelling making available important features about the water fluxes, such as recharge, horizontal flow rates and discharge. In this paper, special emphasis has been put on isotopic constraints in the use of δ13C and 14C content as a dating tool in some hot (76 °C) and cold (17 °C) CO2-rich mineral waters discharging in the Vilarelho da Raia–Pedras Salgadas region (N-Portugal). The radiocarbon content determined in these CO2-rich mineral waters (14C activity from 4.3 up to 9.9 pmc) is incompatible with the systematic presence of 3H (from 1.7 to 7.9 TU). The δ13C values of the studied CO2-rich mineral waters indicate that the total C in the recharge waters is being masked by larger quantities of CO2 (14C-free) introduced from deep-seated (upper mantle) sources. This paper demonstrates that a good knowledge of mineral water systems is essential to allow hydrologists to make sound conclusions on the use of C isotopic data in each particular situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号