首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water quality in Biscayne Bay has been significantly affected by past and continuing coastal and watershed development. The nutrient concentrations in the Bay have been dramatically changed by the conversion of natural creeks and sheet flow freshwater inputs to rapid and episodic canal inputs from the large and rapidly expanding Miami metropolitan area. This study is an evaluation of nutrient loadings to Biscayne Bay for 1994-2002 from canal, atmospheric, and groundwater sources. Dissolved inorganic nitrogen (DIN, as nitrate, nitrite, and ammonium) and total phosphorus (TP) loadings by the canals were influenced by their geographic locations relative to discharge amount, watershed land use, stormwater runoff, and proximity to landfills. Annual budgets showed that canals contributed the bulk of N loading to the bay as 1687.2 metric ton N yr(-1) (88% total load). Direct atmospheric DIN load for Biscayne Bay was only 231.7 ton N yr(-1), based on surface area. Of the canal DIN load, nitrate+nitrite (NO(x)(-)) loading (1294.5 ton N yr(-1)) made up a much greater proportion than that of ammonium (NH(4)(+), 392.6 ton N yr(-1)). In the urbanized north and central Bay, canal DIN load was evenly split between NO(x)(-) and NH(4)(+). However, in the south, 95% of the DIN load was in the form of NO(x)(-), reflecting the more agricultural land use. Contrary to N, canals contributed the only 66% of P load to the bay (27.5 ton P yr(-1)). Atmospheric TP load was 14 ton Pyr(-1). In the north, canal P load dominated the budget while in the south, atmospheric load was almost double canal load. Groundwater inputs, estimated only for the south Bay, represented an important source of N and P in this zone. Groundwater input of N (141 ton N yr(-1)) was about equal to atmospheric load, while P load (5.9 ton P yr(-1)) was about equal to canal load.  相似文献   

2.
Langevin CD 《Ground water》2003,41(6):758-771
Variable density ground water flow models are rarely used to estimate submarine ground water discharge because of limitations in computer speed, data availability, and availability of a simulation tool that can minimize numerical dispersion. This paper presents an application of the SEAWAT code, which is a combined version of MODFLOW and MT3D, to estimate rates of submarine ground water discharge to a coastal marine estuary. Discharge rates were estimated for Biscayne Bay, Florida, for the period from January 1989 to September 1998 using a three-dimensional, variable density ground water flow and transport model. Hydrologic stresses in the 10-layer model include recharge, evapotranspiration, ground water withdrawals from municipal wellfields, interactions with surface water (canals in urban areas and wetlands in the Everglades), boundary fluxes, and submarine ground water discharge to Biscayne Bay. The model was calibrated by matching ground water levels in monitoring wells, baseflow to canals, and the position of the 1995 salt water intrusion line. Results suggest that fresh submarine ground water discharge to Biscayne Bay may have exceeded surface water discharge during the 1989, 1990, and 1991 dry seasons, but the average discharge for the entire simulation period was only approximately 10% of the surface water discharge to the bay. Results from the model also suggest that tidal canals intercept fresh ground water that might otherwise have discharged directly to Biscayne Bay. This application demonstrates that regional scale variable density models are potentially useful tools for estimating rates of submarine ground water discharge.  相似文献   

3.
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL-1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL-1>TP>0.035 mgL-1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplank-ton might be the vital regulating factor. When TP<0.035 mgL-1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.  相似文献   

4.
邓焕广  张智博  刘涛  殷山红  董杰  张菊  姚昕 《湖泊科学》2019,31(4):1055-1063
为了解城市湖泊不同水生植被区水体温室气体的溶存浓度及其影响因素,于2015年4-11月按每月2次的频率采用顶空平衡法对聊城市铃铛湖典型植被区——菹草区、莲藕区和睡莲区表层水中CO2、CH4和N2O的溶存浓度进行监测,计算水中温室气体的饱和度和排放通量,并测定水温(T)、pH、溶解氧(DO)、叶绿素a及营养盐浓度等理化指标,以探究水体环境因子对温室气体溶存浓度的影响.结果表明,铃铛湖各植被区水体温室气体均处于过饱和状态,是大气温室气体的"源";莲藕区CH4浓度、饱和度和排放通量均显著高于菹草区,而各植被区N2O和CO2均无显著性差异;不同植被区湖水中DO、总氮(TN)、总磷(TP)和硝态氮(NO3--N)浓度具有显著差异,其中DO、TN和NO3--N浓度均表现为菹草区最高,莲藕区最低,而TP浓度则正好相反;各植被区温室气体浓度和水环境参数间的相关分析和多元回归分析的结果表明,水生植物可通过影响水体的理化性质对温室气体的产生和排放产生显著差异影响,在菹草区亚硝态氮(NO2--N)、NO3--N、T和DO是控制水体温室气体浓度的主要因子;睡莲区为TP和pH;莲藕区则为pH、NO2--N和DO.  相似文献   

5.
Abstract

Human activities have created high nutrient surpluses in agricultural lands due to the increasing rate of chemical fertilizer application and the increase in livestock production. To analyse the nutrient characteristics and estimate the nutrient load in streams, we conducted extensive field survey and water quality experiments from 2007 to 2008 in Koise River, a major river of the Lake Kasumigaura watershed, Japan. Water quality indicators of total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) were investigated. The nutrient loads of TN, TP and TOC, as well as dissolved total nitrogen, dissolved inorganic nitrogen, dissolved organic nitrogen, particle organic nitrogen, dissolved total phosphorus, dissolved organic carbon and particle organic carbon were also estimated for the Koise River. Seasonal variation of the nutrient concentration from 2007 to 2008 was analysed considering the river discharge variation and agricultural activities. The results showed that the irrigation water from Lake Kasumigaura has the potential ability to decrease the TN concentration and increase the TOC concentration in the Koise River. Significant correlation coefficients between nutrient load and river discharge were found. The monthly pollution loads from different sources were then evaluated based on land cover classification generated from high-resolution Quick Bird remote sensing imagery. This study presents a useful interpretation of water quality data sets with a view to obtaining better information about water quality for more effective management of water resources in river basins.

Editor Z.W. Kundzewicz

Citation He, B., Oki, K., Wang, Y., Oki, T., Yamashiki, Y., Takara, K., Miura, S., Imai, A., Komatsu, K. and Kawasaki, N., 2012. Analysis of stream water quality and estimation of nutrient load with the aid of Quick Bird remote sensing imagery. Hydrological Sciences Journal, 57 (5), 850–860.  相似文献   

6.
夏季短期调水对太湖贡湖湾湖区水质及藻类的影响   总被引:1,自引:0,他引:1  
贡湖湾作为"引江济太"工程长江来水进入太湖的第一站,湖湾水体生态环境的变化是对调水工程净水效果的最好响应,因此本文针对贡湖湾一次夏季短期调水展开调查研究,分别取2013年7月24日(调水前)和2013年8月18日(短期调水后)两次监测水样的水体理化指标和浮游藻类群落数据进行了对比分析,并对浮游藻类群落与环境因子做了相关性分析.结果表明:受来水影响,短期调水后监测区水体的p H略有下降,溶解氧、浊度、硝态氮、总氮、总磷以及高锰酸盐指数等水体理化指标浓度均较调水前有所升高;其中受调水影响最为显著的区域为望虞河的入湖口区、湾心区.两次监测调水前后湖区水体优势藻种属未发生变化,仍以微囊藻为主,但蓝藻种属比例有所下降,绿藻和硅藻等种属比例则有所上升.望虞河入湖口区和贡湖湾湾心区的Shannon-Wiener多样性指数和Pielou均匀度指数受调水的影响升高.同时,浮游藻类群落结构与受水水体理化参数的冗余分析结果表明,此次监测的短期调水后,太湖贡湖湾监测湖区水体p H、溶解氧、硝态氮、总氮、总磷、高锰酸盐指数等环境因子与浮游藻类的群落分布呈显著相关,是影响受水水体中藻类群落的主要环境因子.  相似文献   

7.
人工介质对富营养化水体中氮磷营养物质去除特性研究   总被引:3,自引:2,他引:1  
采用人工介质富集微生物对太湖梅梁湾水源水中氮磷营养物质的去除特性进行了试验研究.中试结果表明:随着介质密度和水力停留时间的增加,对氮磷营养物质的去除率均有提高.介质密度为26.8%、水力停留时间为5d时,人工介质对TN、TP、氨氮、亚硝态氮的去除率分别为26.6%、72.1%、43.2%、79.4%,可见人工介质对富营养化水体中氮磷营养物质有较好的去除效果.增加水流速度消除了池内的溶解氧和氧化还原电位的分层现象,提高了NH4 -N和NO2--N的去除效果,没有降低TP、PO43--P、DTP的去除效果,说明沉淀作用并不是去除水体中氮磷营养物质的主要途径.人工介质表面富集了大量的微生物,通过硝化-反硝化作用是富营养化水体水质改善的主要途径.  相似文献   

8.
自2007年太湖蓝藻水华引起无锡供水危机后,在太湖流域及湖区开展了一系列综合治理措施以改善太湖水环境质量.本研究在太湖梅梁湾和贡湖湾各设置3个采样点,自2010年4月起每月2次监测太湖水质.结合水文气象数据及无锡市环境监测站和太湖局的同期数据,明确太湖自2010年以来,水质整体良好,总氮浓度在波动中呈现下降的趋势,总磷浓度在2014年前也是在波动中呈现下降的趋势,但在2015和2016年有所回升,回升比例约为15%~20%.2015和2016年总磷浓度出现回升的主要原因是这2年的2次大洪水过程携带大量N、P进入太湖湖区,洪水消退过程中,N大多以溶解态排泄出湖区,而P则由于大多数以颗粒态存在,逐渐沉积到湖泊中,随着微囊藻生长消耗水体溶解态P以及水体pH和溶解氧的变化逐渐释放到太湖水体中.  相似文献   

9.
The spatial and temporal patterns of water quality in Kuwait Bay have been investigated using data from six stations between 2009 and 2011. The results showed that most of water quality parameters such as phosphorus (PO4), nitrate (NO3), dissolved oxygen (DO), and Total Suspended Solids (TSS) fluctuated over time and space. Based on Water Quality Index (WQI) data, six stations were significantly clustered into two main classes using cluster analysis, one group located in western side of the Bay, and other in eastern side. Three principal components are responsible for water quality variations in the Bay. The first component included DO and pH. The second included PO4, TSS and NO3, and the last component contained seawater temperature and turbidity. The spatial and temporal patterns of water quality in Kuwait Bay are mainly controlled by seasonal variations and discharges from point sources of pollution along Kuwait Bay’s coast as well as from Shatt Al-Arab River.  相似文献   

10.
以太湖梅梁湾1992-1999年的连续监测资料为基础,运用多元逐步回归统计方法,选择水温等15项环境理化因素与藻类叶绿素a、藻类总生物量和微囊藻生物量等3项生物因素进行逐步回归分析,找出与生物因素显著相关的环境因子,建立多元逐步回归方程,预测梅梁湾藻类生物量的变化情况,初步进行了梅梁湾蓝藻水华的预测预报,结果显示,水温和总磷为梅梁湾藻类总生物量的显著相关因子,水温、硝态氮和总氮为微囊藻一物量的显著相关因子。  相似文献   

11.
太湖水质的动态变化及影响因子的多元分析   总被引:27,自引:11,他引:16  
利用1991~1992年监测资料,分析了太湖梅梁湾和局面西太湖水域水质的动态变化。用主成分分析方法揭示出各因子间的相互关系。结果表明,水质主要因子有明显的时空变化特征,沿南北方向从湾内向湾外,TP、TN、COD、Chl-a和电导率明显递减,且TP和TN含量季节变化,冬季高于夏季,梁溪河口更是如此,Chl-a含量与TP、TN含量密切相关,其变化基本与水温同步,时间上略后滞。主成分分析说明,TP、TN  相似文献   

12.
鲫(Carassius auratus)是我国各类淡水水体的优势鱼类之一.作为底栖杂食性鱼类,一方面,鲫可以通过排泄和扰动沉积物影响湖泊营养和光照水平,通过"上行效应"促进浮游植物生长;另一方面,鲫也可以捕食浮游动物,通过"下行控制"影响藻类生长以及营养盐循环.对于浅水湖泊,两种途径对于生态系统影响的相对重要性仍有待研究.本研究设计了一个两因素户外中宇宙实验,通过在沉积物表面添加隔网的方式,比较两种情况下(能、否接触沉积物),鲫对水体浊度、营养盐和浮游生物生物量的影响.实验在16个大型钢化玻璃桶(400 L)中进行,持续36 d(2019年8月6日—9月11日).研究结果表明:1)在能接触沉积物的条件下,鲫显著促进了沉积物再悬浮,表现为水体的总悬浮物(TSS)和无机悬浮物(ISS)浓度大幅升高;水体的光衰减系数(Kd)增加,总氮(TN)和总磷(TP)浓度明显升高; 2)在不能接触沉积物的条件下,鲫对水体悬浮物(TSS和ISS)浓度和Kd的影响不明显,但是显著降低了水体TN和TP浓度; 3)在两种情况下,鲫对浮游植物叶绿素a浓度以及浮游动物生物量的影响均不显著.本研究表明鲫只有在能够接触沉积物的条件下,才会显著提高水体浊度和营养水平.因此,在缺乏沉水植被的浅水湖泊中,鲫扰动沉积物产生的"上行效应"可能是其对生态系统产生负面影响的主要途径.  相似文献   

13.
The effects of surface water flow system changes caused by constructing water‐conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre‐development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water‐conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water‐conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high‐recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system.  相似文献   

14.
三峡大坝上下游水质时空变化特征   总被引:6,自引:2,他引:4  
为探索三峡大坝上下游(坝上99.9 km、坝下63.0 km、全长162.9 km)水质时空变化特征,运用主成分分析和方差分析对2016年近坝段水质时空变化特征进行了分析.主成分分析表明,水文因子流量(Q)、气温(T)、水位(Z)和水质因子(水温(WT)、pH、电导率(EC)、溶解氧(DO)、悬浮物(SS)、高锰酸盐指数(CODMn)、硫酸盐(SO42-)、氟化物(F-)、总硬度(T-Hard)、硝态氮(NO3--N)、总氮(TN)和硒(Se))的变化主导着研究区域水质变化;各采样点主成分得分和双因素方差分析结果显示研究区域水质因子时间变化主要呈现出季节和不同水库运行时期的差异.消落期(2-5月),T-Hard、F-、SO42-和EC是影响河流水质变化的主导因子;汛期(7-8月),Q、SS、CODMn、NO3--N、TN和Se是影响河流水质变化的主导因子;T和WT主导着汛末(9月)河流水质变化,并引起了DO等理化特性的变化;高水位运行期(12月),Cl-是影响河流水质变化的主导因子.现阶段,DO、有机污染物(CODMn)、无机盐(SO42-和F-)、营养盐类(NO3--N和TN)、类金属元素(Se)和水体的矿化程度(T-Hard)的变化主导着区域水质的变化,是三峡大坝近坝段水域水质的控制因子.方差分析表明,河流的理化特性(DO、pH和SS)、营养盐组分构成(NH3-N和NO3--N)、无机盐类(EC和Cl-)、石油类有机污染物及粪大肠菌群(FC)等指标在坝上与坝下断面存在显著性差异.气温、水温、降雨、含沙量的季节性影响因素和水库调度运行模式是影响近坝段水质时间差异的主要因子;空间差异主要受城区污染排放和三峡水库调度引起的坝上和坝下水文和水动力学条件差异影响.因此控制研究区域因人类活动等造成的外源性污染,并针对不同类污染物质的季节变化特征实施合理的水库运行方式是近坝段水质提升的关键.  相似文献   

15.
The total pollution load management system (TPLMS) was first applied in 2007 to the highly developed Masan Bay watershed, Korea. To evaluate the effect of TPLMS on water quality improvement, we analyzed the water qualities in rivers and bay during 2005-2010, targeting chemical oxygen demand (COD), suspended sediment (SS), total nitrogen (TN), and total phosphorus (TP) loads. Land-based pollutant loading all decreased during this period, with a significant reduction in COD and SS loads (p<0.01). The COD reduction in seawater, following the TPLMS implementation, was also significant (p<0.01). Time-lagged responses in COD and Chl-a supported an estimated seawater residence time of ~1 month. Land-based nutrient loads were also significantly reduced for TN (p<0.01) and TP (p<0.05), however, significant reductions were not observed in the bay, indicating potential alternative nutrient inputs from non-point sources into the bay system.  相似文献   

16.
Influences of marine cage culture and monsoonal disturbances, northeasterly (NE) and southwesterly (SW) monsoons on the proximal marine environment were investigated across a gradient of sites in a semi-enclosed bay, Magong Bay (Penghu Islands, Taiwan). Elevated levels of ammonia produced by the cages were the main pollutant and distinguished the cage-culture and intermediary zones (1000 m away from the cages) from the reference zone in the NE monsoon, indicating currents produced by the strong monsoon may have extended the spread of nutrient-enriched waters without necessarily flushing such effluents outside Magong Bay. Moreover, the levels of chlorophyll-a, dissolved oxygen, and turbidity were distinguishable between two seasons, suggesting that resuspension caused by the NE monsoon winds may also influence the water quality across this bay. It indicated that the impacts of marine cage culture vary as a function of distance, and also in response to seasonal movements of water driven by local climatic occurrences.  相似文献   

17.
Response of 12 urban lakes with different trophic states in Beijing to variations of meteorological factors was studied in this research. Monthly water quality parameters, including total nitrogen (TN), total phosphorus (TP), chlorophyll a, chemical oxygen demand (COD), biological oxygen demand (BOD), dissolved oxygen, and water temperature, were analyzed from 2009 to 2011. Results indicated that TN in the urban lakes did not exhibit significant response to meteorological variations owing to relatively lower TN concentration in the urban soil. For the highly eutrophic lakes, TP, chlorophyll a, COD, and BOD were positively correlated with precipitation, and negatively correlated with wind speed (p < 0.05). Chlorophyll a showed significant positive correlation with TP and temperature. Moreover, the abrupt increase of TP occurred in spring, which was associated with higher temperature induced internal phosphorus loading. On average, temperature/precipitation and wind speed/sunshine duration contributed to 10.7–43.8 and 8.3–19.2 % of the variations in water quality. In contrast, lakes with mesotrophication/light eutrophication did not show significant sensitivity to meteorological variations owing to their better buffer capacity and regulation effect of algae growth. Beijing is undergoing increased temperature and heavy rainfall frequency as well as decreased wind speed during the past five decades; the above results infer that water quality of most urban lakes of Beijing is becoming worse under this climate change trend. This study suggested that urban lakes with different trophic states will respond differently to global climate change, and highly eutrophic lakes might face big challenges of water quality deterioration and algae bloom.  相似文献   

18.
Lake‐water quality is highly dependent on the landscape characteristics in its respective watershed. In this study, we investigated the relationships between lake‐water quality and landscape composition and configuration within the watershed in the Yangtze River basin of China. Water quality variables, including pH, electrical conductivity (EC), dissolved oxygen (DO), Secchi depth (SD), NO2?, NO3?, NH4+, TN, TP, chemical oxygen demand (CODMn), chlorophyll‐a (Chl‐a), and trophic state index (TSI), were collected from 16 lakes during the period of 2001–2003. Landscape composition (i.e. the percentage of vegetation, agriculture, water, urban, and bare land) and landscape configuration metrics, including number of patches (NP), patch density (PD), largest patch index (LPI), edge density (ED), mean patch area (MPA), mean shape index (MSI), contagion (CONTAG), patch cohesion index (COHESION), Shannon's diversity index (SHDI), and aggregation index (AI), were calculated for each lake's watershed. Results revealed that the percentage of agriculture was negatively related to NO2?, TN, TP, Chl‐a concentrations, and TSI, while the percentage of urban was significantly correlated with EC, NH4+, and CODMn concentrations. Among landscape‐level configuration metrics, only ED showed significant relationships with TN, TP concentrations, and TSI. However, at the class level, the PD, LPI, ED, and AI of agriculture and urban land uses were significantly correlated with two or more water quality variables. This study suggests that, for a given total area, large and clustered agricultural or urban patches in the watershed may have a greater impact on lake‐water quality than small and scattered ones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Accurate estimates of N and P loads were obtained for four contrasting UK river basins over a complete annual cycle. The fractionation of these loads into dissolved and particulate, and inorganic and organic components allowed a detailed examination of the nutrient load composition and of the factors influencing both the relative and absolute magnitude of these components. The particulate phosphorus (TPP) loads account for 26–75% of the annual total phosphorus (TP) transport and are predominantly inorganic. The inorganic (PIP) and organic (POP) fractions of the TPP loads represent 20–47% and 6–28% of the annual TP transport, respectively. In contrast, the particulate nitrogen loads (TPN) represent 8% or less of the annual total nitrogen (TN) loads and are predominately organic. For dissolved P transport, the dissolved inorganic fraction (DIP) is more important, representing 15–70% of the TP loads, whereas the dissolved organic fraction (DOP) represents only 3–9% of the TP loads. The TN loads are dominated by the dissolved component and more particularly the total oxidized fraction (TON), which is composed of nitrate and nitrite and represents 76–82% of the annual TN transport. The remaining dissolved N species, ammonium (NH4-N) and organic N (DON) account for 0·3–1·2% and 13–16% of the annual TN transport, respectively. The TPN and TPP fluxes closely reflect the suspended sediment dynamics of the study basins, which are in turn controlled by basin size and morphology. The dissolved inorganic nutrient fluxes are influenced by point source inputs to the study basins, especially for P, although the TON flux is primarily influenced by diffuse source contributions and the hydrological connectivity between the river and its catchment area. The dissolved organic fractions are closely related to the dissolved organic carbon (DOC) dynamics, which are in turn influenced by land use and basin size. The magnitude of the NH4-N fraction was dependent on the proximity of the monitoring station to point source discharges, because of rapid nitrification within the water column. However, during storm events, desorption from suspended sediment may be temporarily important. Both the magnitude and relative contribution of the different nutrient fractions exhibit significant seasonal variability in response to the hydrological regime, sediment mobilization, the degree of dilution of point source inputs and biological processes. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Tropical rivers display profound temporal and spatial heterogeneity in terms of environmental conditions. This aspect needs to be considered when designing a monitoring program for water quality in rivers. Therefore, the physico-chemical composition and the nutrient loading of the Upper Mara River and its two main tributaries, the Amala and Nyangores were monitored. Initial daily, and later a weekly monitoring schedule for 4 months spanning through the wet and dry seasons was adopted. Benthic macro-invertebrates were also collected during the initial sampling to be used as indicators of water quality. The aim of the current study was to investigate the physico-chemical status and biological integrity of the Upper Mara River basin. This was achieved by examining trends in nutrient concentrations and analyzing the structure, diversity and abundance of benthic macro-invertebrates in relation to varying land use patterns. Sampling sites were selected based on catchment land use and the level of human disturbance, and using historical records of previous water quality studies. River water pH, dissolved oxygen, electrical conductivity (EC), temperature, and turbidity were determined in situ. All investigated parameters except iron and manganese had concentration values within allowable limits according to Kenyan and international standards for drinking water. The Amala tributary is more mineralized and also shows higher levels of pH and EC than water from the Nyangores tributary. The latter, however, has a higher variability in both the total phosphorus (TP) and total nitrogen (TN) concentrations. The variability in TP and TN concentrations increases downstream for both tributaries and is more pronounced for TN than for TP. Macro-invertebrate assemblages responded to the changes in land use and water quality in terms of community composition and diversity. The study recommends detailed continuous monitoring of the water quality at shorter time intervals and to identify key macro-invertebrate taxa that can be used to monitor changes of the water quality in rivers of the Mara basin as a result of anthropogenic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号