首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
High-precision Nb, Ta, Zr, Hf, Sm, Nd and Lu concentration data of depleted mantle rocks from the Balmuccia peridotite complex (Ivrea Zone, Italian Alps) were determined by isotope dilution using multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS) and thermal ionisation mass spectrometry (TIMS). The Zr/Hf ratios of all investigated samples from the Balmuccia peridotite complex are significantly lower than the chondritic value of 34.2, and the most depleted samples have Zr/Hf ratios as low as 10. Correlated Zr/Hf ratios and Zr abundances of the lherzolites preserve the trend of a mantle residue that has been depleted by fractional melting. This trend confirms experimental studies that predict Hf to behave more compatibly than Zr during mantle melting. Experimentally determined partition coefficients imply that the major Zr and Hf depletion most likely occurred in the spinel stability field, with (DZr/DHf)cpx≈0.5, and not in the garnet stability field, where (DZr/DHf)grt is probably close to one. However, minor amounts of melting must have also occurred in a garnet facies mantle, as indicated by low Sm/Lu ratios in the Balmuccia peridotites. The Nb/Ta ratios of most lherzolites are subchondritic and vary only from 7 to 10, with the exception of three samples that have higher Nb/Ta ratios (18–24). The overall low Nb/Ta ratios of most depleted mantle rocks confirm a higher compatibility of Ta in the mantle. The uniform Nb/Ta ratios in most samples imply that even in ‘depleted’ mantle domains the budget of the highly incompatible Nb and Ta is controlled by enrichment processes. Such a model is supported by the positive correlation of Zr/Nb with the Zr concentration. However, the overall enrichment was weak and did barely affect the moderately incompatible elements Zr and Hf. The new constraints from the partitioning behaviour of Zr–Hf and Nb–Ta provide important insights into processes that formed the Earth’s major silicate reservoirs. The correlation of Zr/Hf and Sm/Nd in depleted MORB can be assigned to previous melting events in the MORB source. However, such trends were unlikely produced during continental crust formation processes, where Sm/Nd and Zr/Hf are decoupled. The different fractionation behaviour of Zr/Hf and Sm/Nd in the depleted mantle (correlated) and the crust (decoupled) indicates that crustal growth by a simple partial melting process in the mantle has little effect on the mass budget of LREE and HFSE between crust and mantle. A more complex source composition, similar to that of modern subduction rocks, is needed to fractionate the LREE, but not Zr/Hf and the HREE.  相似文献   

2.
The Deccan flows at Mahabaleshwar are divisible into a lower and an upper group, based on Nd and Sr isotopic ratios, which define two correlated trends. This distinction is supported by incompatible element ratios and bulk compositions. The data reflect contamination in a dynamic system of magmas from an LIL-depleted,εJUV ≥ +8 mantle by two different negative εJUV endmembers, one undoubtedly continental crust, the other either continental crust or enriched mantle. The depleted mantle source, anomalously high in (87Sr/86Sr), may have been in the subcontinental lithosphere or a region of rising Indian Ocean MORB mantle.  相似文献   

3.
Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial εNd = +3.8 to −5.7; initial 87Sr/86Sr= 0.7044−0.7072; 206Pb/204Pb= 17.49−19.14; 207Pb/204Pb= 15.55−15.65; 208Pb/204Pb= 37.24−39.11. In PbPb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary PbPb isochron age of ≈ 1000 Ma (μ1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226−0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19–75) that are significantly greater than those of MORB, and low TiO2 (0.39–0.69%)].Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the PbPb and Sm/Nd isochron ages; and (3) the need for a method of introducing an ancient (> 2−3 Ga) Pb component into subcontinental mantle that cannot be much older than 1 Ga leads to a model whereby the MAT were generated by the melting of sediment-contaminated arc mantle that was incorporated into the continental lithosphere during arc activity preceding the Grenville Orogeny (≈ 1000 Ma).  相似文献   

4.
The hygromagmatophile element composition of basic lavas from several tectonic environments are compared with the estimated composition of the primordial mantle. The observed variations are used to subdivide mid-ocean ridge basalts (MORB) into two main types according to the tectonic character of the ridge segment from which they were erupted. Ridge segments with positive residual gravity, depth and heat flow anomalies erupt E-type MORB which are predominantly enriched in the more hygromagmatophile elements, but also include magma types which are depleted in most of these elements. Both enriched and depleted E-type MORB can be distinguished from the basalts erupted at normal ridge segments (N-type MORB) by their La/Ta ratios (in E-type MORB La/Ta ~10, in N-type MORB La/Ta is ~15) and by Hf/Ta ratios (in E-type MORB Hf/Ta> 7, in N-type MORB Hf/Ta> 7). E-type MORB can be distinguished from the basalts erupted at ocean islands by their higher Hf/Ta ratios (>2). A Th-Hf-Ta triangular diagram is used to discriminate between the different ocean floor basalts as well as those erupted at destructive plate margins, which are depleted in Ta and Nb. This diagram can also distinguish between silicic lavas from the different tectonic environments as well as identifying lavas that have been contaminated with continental crust.  相似文献   

5.
New rare earth element (REE) data for Archaean basalts and spinifex-textured peridotites (STP) show a range of La/Sm ratios (chondrite-normalized) from 0.36 to 3.5, with the bulk of the data in the range 0.7–1.3. This supports the hypothesis, based on Sr isotope initial ratios, that the Archaean mantle was chemically heterogeneous. We suggest that the bulk mantle source for Archaean basaltic magmas was close to an undepleted earth material. An average chemical composition of the Archaean mantle is estimated using chemical regularities observed in Archaean STP and high-magnesian basalts. TiO2 and MgO data show an inverse correlation which intersects the MgO axis at about 50% MgO (Fo92). TiO2 abundance in the mantle source is measured on this plot by assigning anMgO= 38% for the mantle. Concentrations of other elements are also estimated and these data are then used to obtain a composition for the bulk earth. We suggest an earth model with about 1.35 times ordinary chondrite abundances of refractory lithophile elements and about 0.2 times carbonaceous type 1 chondrite abundances of moderately volatile elements (such as Na, Rb, K, Mn). P shows severe depletion in the model earth relative to carbonaceous chondrites, a feature either due to volatilization or core formation (preferred). Our data support the hypothesis of Ringwood that the source material for the earth is a carbonaceous chondrite-like material.The generation of mid-ocean ridge basalts (MORB) is examined in the light of the model earth composition and Al2O3/TiO2, CaO/TiO2 ratios. It is suggested that for primitive basalts, these values can be used to predict the residual phases in their source. Comparison of chemical characteristics of inferred sources for 2.7-b.y. Archaean basalts and modern “normal” MORB indicates that the MORB source is severely depleted in highly incompatible elements such as Cs, Ba, Rb, U, Th, K, La and Nb, but has comparable abundances of less incompatible elements such as Ti, Zr, Y, Yb. The cause of the depletion in the MORB source is examined in terms of crust formation and extraction of silica-undersaturated melts. The latter seems to be a more likely explanation, since the degree of enrichment of highly incompatible elements in the crust only accounts for up to 40% of their abundances in the bulk earth and cannot match the depletion pattern in normal MORB. A large volume of material, less depleted than the source for normal MORB must therefore exist in the mantle and can serve as the source for the ocean island basalts and “normal” MORB.Three different mantle evolution models are examined and each suggests that the mantle is stratified with respect to abundances of incompatible trace elements. We suggest that no satisfactory model is available to fully explain the spectrum of geochemical and geophysical data. In particular the Pb and Sr isotope data on oceanic basalts, the depletion patterns of MORB and the balance between lithophile abundances in the crust and mantle, are important geochemical constraints to mantle models. Further modelling of the mantle evolution will be dependent on firmer information on the role of subduction, mantle convection pattern, and basalt production through geologic time together with a better understanding of the nature of Archaean crustal genesis.  相似文献   

6.
New major and trace element and Sr–Nd isotope data are presented for basaltic glasses from active spreading centers (Central Lau Spreading Center (CLSC), Relay Zone (RZ) and Eastern Lau Spreading Center (ELSC)) in the Central Lau Basin, SW Pacific. Basaltic lavas from the Central Lau Basin are mainly tholeiitic and are broadly similar in composition to mid-ocean ridge basalts (MORB). Their generally high 87Sr/86Sr ratios, combined with relatively low 143Nd/144Nd ratios are more akin to MORB from the Indian rather than Pacific Ocean. In detail, the CLSC, RZ and ELSC lavas are generally more enriched in large ion lithophile elements (Rb, Ba, Sr, and K) than average normal-MORB, which suggests that the mantle beneath the Central Lau Basin was modified by subducted slab-derived components. Fluid mobile/immobile trace element and Sr – Nd isotope ratios suggest that the subduction components were essentially transferred into the mantle via hydrous fluids derived from the subducted oceanic crust; contributions coming from the subducted sediments are minor. Compared to CLSC lavas, ELSC and RZ lavas show greater enrichment in fluid mobile elements and depletion in high field strength elements, especially Nb. Thus, with increasing distance away from the arc, the influence of subduction components in the mantle source of Lau Basin lavas diminishes. The amount of hydrous fluids also influences the degree of partial melting of the mantle beneath the Central Lau Basin, and hence the degree of melting also decreases with increasing distance from the arc.  相似文献   

7.
In contrast to most other arcs with oceanic plate subduction, the Aegean arc is characterized by continent–continent subduction. Noble gas abundances and isotopic compositions of 45 gas samples have been determined from 6 volcanoes along the arc, 2 islands in the back-arc region and 7 sites in the surrounding areas. The 3He/4He ratios of the samples ranged from 0.027RA to 6.2RA (RA denotes the atmospheric 3He/4He ratio of 1.4×10−6), demonstrating that even the maximum 3He/4He ratio in the region is significantly lower than the maximum ratios of most oceanic subduction systems, which are equal to the MORB value of 8±1 RA. Regional variations in the 3He/4He ratio were observed both along and across the arc. The maximum 3He/4He ratio was obtained from Nisyros volcano located in the eastern end of the arc, and the ratio decreased westward possibly reflecting the difference in potential degree of crustal assimilation or the present magmatic activity in each volcano. Across the volcanic arc, the 3He/4He ratio decreased with an increasing distance from the arc front, reaching a low ratio of 0.063RA in Macedonia, which suggested a major contribution of radiogenic helium derived from the continental crust. At Nisyros, a temporal increase in 3He/4He ratio due to ascending subsurface magma was observed after the seismic crisis of 1995–1998 and mantle neon was possibly detected. The maximum 3He/4He ratio (6.2RA) in the Aegean region, which is significantly lower than the MORB value, is not probably due to crustal assimilation at shallow depth or addition of slab-derived helium to MORB-like mantle wedge, but inherent characteristics of the subcontinental lithospheric mantle (SCLM) beneath the Aegean arc.  相似文献   

8.
Erciyes stratovolcano, culminating at 3917 m, is located in the Cappadocian region of central Anatolia. During its evolution, this Quaternary volcano produced pyroclastic deposits and lava flows. The great majority of these products are calc-alkaline in character and they constitute Kocdag and Erciyes sequences by repeated activities. Alkaline activity is mainly observed in the first stages of Kocdag and approximately first-middle stages of Erciyes sequences. Generally, Kocdag and Erciyes stages terminate by pyroclastic activities. The composition of lavas ranges from basalt to rhyolite (48.4–70.5 wt.% SiO2). Calc-alkaline rocks are represented mostly by andesites and dacites. Some compositional differences between alkaline basaltic, basaltic and andesitic rocks were found; while the composition of dacites remain unchanged. All these volcanics are generally enriched in LIL and HFS elements relative to the orogenic values except Rb, Ba, Nb depleted alkaline basalt. 87Sr/86Sr and 143Nd/144Nd isotopic composition of the volcanics range between 0.703344–0.703964, 0.512920–0.512780 for alkaline basalts and change between 0.704322–0.705088, 0.512731–0.512630 for alkaline basaltic rocks whereas calc-alkaline rocks have relatively high Sr and Nd isotopic ratios (0.703434–0.705468, 0.512942–0.512600). Low Rb, Ba, Nb content with high Zr/Nb, low Ba/Nb, La/Yb ratio and low Sr isotopic composition suggest an depleted source component, while high Ba, Rb, Nb content with high La/Yb, Ba/Nb, low Zr/Nb and low 87Sr/86Sr ratios indicate an OIB-like mantle source for the generation of Erciyes alkaline magma. These elemental and ratio variations also indicate that the different mantle sources have undergone different degree of partial melting episodes. The depletion in Ba, Rb, Nb content may be explained by the removal of these elements from the source by slab-derived fluids which were released from pre-collisional subduction, modified the asthenospheric mantle. The chemically different mantle sources interacted with crustal materials to produce calc-alkaline magma. The Ba/Nb increase of calc-alkaline samples indicates the increasing input of crustal components to Erciyes volcanics. Sr and Nd isotopic compositions and elevated LIL and HFS element content imply that calc-alkaline magma may be derived from mixing of an OIB-like mantle melts with a subduction-modified asthenospheric mantle and involvement of crustal materials in intraplate environments.  相似文献   

9.
Miocene to Quaternary large basaltic plateaus occur in the back-arc domain of the Andean chain in Patagonia. They are thought to result from the ascent of subslab asthenospheric magmas through slab windows generated from subducted segments of the South Chile Ridge (SCR). We have investigated three volcanic centres from the Lago General Carrera–Buenos Aires area (46–47°S) located above the inferred position of the slab window corresponding to a segment subducted 6 Ma ago. (1) The Quaternary Río Murta transitional basalts display major, trace elements, and Sr and Nd isotopic features similar to those of oceanic basalts from the SCR and from the Chile Triple Junction near Taitao Peninsula (e.g., (87Sr/86Sr)o = 0.70396–0.70346 and εNd = + 5.5  + 3.0). We consider them as derived from the melting of a Chile Ridge asthenospheric mantle source containing a weak subduction component. (2) The Plio-Quaternary (< 3.3 Ma) post-plateau basanites from Meseta del Lago Buenos Aires (MLBA), Argentina, likely derive from small degrees of melting of OIB-type mantle sources involving the subslab asthenosphere and the enriched subcontinental lithospheric mantle. (3) The main plateau basaltic volcanism in this region is represented by the 12.4–3.3-Ma-old MLBA basalts and the 8.2–4.4-Ma-old basalts from Meseta Chile Chico (MCC), Chile. Two groups can be distinguished among these main plateau basalts. The first group includes alkali basalts and trachybasalts displaying typical OIB signatures and thought to derive from predominantly asthenospheric mantle sources similar to those of the post-plateau MLBA basalts, but through slightly larger degrees of melting. The second one, although still dominantly alkalic, displays incompatible element signatures intermediate between those of OIB and arc magmas (e.g., La/Nb > 1 and TiO2 < 2 wt.%). These intermediate basalts differ from their strictly alkalic equivalents by having lower High Field Strength Element (HFSE) and higher εNd (up to + 5.4). These features are consistent with their derivation from an enriched mantle source contaminated by ca. 10% rutile-bearing restite of altered oceanic crust. The petrogenesis of the studied Mio-Pliocene basalts from MLBA and MCC is consistent with contributions of the subslab asthenosphere, the South American subcontinental lithospheric mantle and the subducted Pacific oceanic crust to their sources. However, their chronology of emplacement is not consistent with an ascent through an asthenospheric window opened as a consequence of the subduction of segment SCR-1, which entered the trench at 6 Ma. Indeed, magmatic activity was already important between 12 and 8 Ma in MLBA and MCC as well as in southernmost plateaus, i.e., 6 Ma before the subduction of the SCR-1 segment. We propose a geodynamic model in which OIB and intermediate magmas derived from deep subslab asthenospheric mantle did uprise through a tear-in-the-slab, which formed when the southernmost segments of the SCR collided with the Chile Trench around 15 Ma. During their ascent, they interacted with the Patagonian supraslab mantle and, locally, with slivers of subducted Pacific oceanic crust that contributed to the geochemical signature of the intermediate basalts.  相似文献   

10.
Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China.The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb/Sr and Nd/Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb/204Pb vs 206Pb/204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb/204Pb vs 206Pb/204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components—a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle beneath eastern China served as the reservoir for the EMI component, and that the MORB component was either introduced by subduction of the Kula-Pacific Ridge beneath the Asiatic plate in the Late Cretaceous, as proposed by Uyeda and Miyashiro, or by upwellings in the subcontinental asthenosphere due to subduction.  相似文献   

11.
The average chemical compositions of the continental crust and the oceanic crust (represented by MORB), normalized to primitive mantle values and plotted as functions of the apparent bulk partition coefficient of each element, form surprisingly simple, complementary concentration patterns. In the continental crust, the maximum concentrations are on the order of 50 to 100 times the primitive-mantle values, and these are attained by the most highly incompatible elements Cs, Rb, Ba, and Th. In the average oceanic crust, the maximum concentrations are only about 10 times the primitive mantle values, and they are attained by the moderately incompatible elements Na, Ti, Zr, Hf, Y and the intermediate to heavy REE.This relationship is explained by a simple, two-stage model of extracting first continental and then oceanic crust from the initially primitive mantle. This model reproduces the characteristic concentration maximum in MORB. It yields quantitative constraints about the effective aggregate melt fractions extracted during both stages. These amount to about 1.5% for the continental crust and about 8–10% for the oceanic crust.The comparatively low degrees of melting inferred for average MORB are consistent with the correlation of Na2O concentration with depth of extrusion [1], and with the normalized concentrations of Ca, Sc, and Al ( 3) in MORB, which are much lower than those of Zr, Hf, and the HREE ( 10). Ca, Al and Sc are compatible with clinopyroxene and are preferentially retained in the residual mantle by this mineral. This is possible only if the aggregate melt fraction is low enough for the clinopyroxene not to be consumed.A sequence of increasing compatibility of lithophile elements may be defined in two independent ways: (1) the order of decreasing normalized concentrations in the continental crust; or (2) by concentration correlations in oceanic basalts. The results are surprisingly similar except for Nb, Ta, and Pb, which yield inconsistent bulk partition coefficients as well as anomalous concentrations and standard deviations.The anomalies can be explained if Nb and Ta have relatively large partition coefficients during continental crust production and smaller coefficients during oceanic crust production. In contrast, Pb has a very small coefficient during continental crust production and a larger coefficient during oceanic crust production. This is the reason why these elements are useful in geochemical discrimination diagrams for distinguishing MORB and OIB on the one hand from island arc and most intracontinental volcanics on the other.The results are consistent with the crust-mantle differentiation model proposed previously [2]. Nb and Ta are preferentially retained and enriched in the residual mantle during formation of continental crust. After separation of the bulk of the continental crust, the residual portion of the mantle was rehomogenized, and the present-day internal heterogeneities between MORB and OIB sources were generated subsequently by processes involving only oceanic crust and mantle. During this second stage, Nb and Ta are highly incompatible, and their abundances are anomalously high in both OIB and MORB.The anomalous behavior of Pb causes the so-called “lead paradox”, namely the elevated U/Pb and Th/Pb ratios (inferred from Pb isotopes) in the present-day, depleted mantle, even though U and Th are more incompatible than Pb in oceanic basalts. This is explained if Pb is in fact more incompatible than U and Th during formation of the continental crust, and less incompatible than U and Th during formation of oceanic crust.  相似文献   

12.
The relationships between the major terrestrial volatile reservoirs are explored by resolving the different components in the Xe isotope signatures displayed by Harding County and Caroline CO2 well gases and mid-ocean ridge basalts (MORB). For the nonradiogenic isotopes, there is evidence for the presence of components enhanced in the light 124–128Xe/130Xe isotope ratios with respect to the terrestrial atmosphere. The observation of small but significant elevations of these ratios in the MORB and well gas reservoirs means that the nonradiogenic Xe in the atmosphere cannot be the primordial base composition in the mantle. The presence of solar-like components, for example U–Xe, solar wind Xe, or both, is required.For radiogenic Xe generated by decay of short-lived 129I and 244Pu, the 129Xerad/136Xe244 ratios are indistinguishable in MORB and the present atmosphere, but differ by approximately an order of magnitude between the MORB and well gas sources. Correspondence of these ratios in MORB and the atmosphere within the relatively small uncertainties found here significantly constrains possible mantle degassing scenarios. The widely held view that substantial early degassing of 129Xerad and 136Xe244 from the MORB reservoir to the atmosphere occurred and then ended while 129I was still alive is incompatible with equal ratios, and so is not a possible explanation for observed elevations of 129Xe/130Xe in MORB compared to the atmosphere. Detailed degassing chronologies constructed from the isotopic composition of MORB Xe are therefore questionable.If the present estimate for the uranium/iodine ratio in the bulk silicate Earth (BSE) is taken to apply to all interior volatile reservoirs, the differing 129Xerad/136Xe244 ratios in MORB and the well gases point to two episodes of major mantle degassing, presumably driven by giant impacts, respectively  20–50 Ma and  95–100 Ma after solar system origin assuming current values for initial 129I/127I and 244Pu/238U. The earlier time range, for degassing of the well gas source, spans Hf–W calculations for the timing of a moon-forming impact. The second, later impact further outgassed the upper mantle and MORB source. A single event that degassed both the MORB and gas well reservoirs at the time of the moon-forming collision would be compatible with their distinct 129Xerad/136Xe244 ratios only if the post-impact iodine abundance in the MORB reservoir was about an order of magnitude lower than current estimates. In either case, such late dates require large early losses of noble gases, so that initial inventories acquired throughout the Earth must have been substantially higher.The much larger 129Xerad/136Xe244 ratio in the well gases compared to MORB requires that these two Xe components evolve from separate interior reservoirs that have been effectively isolated from each other for most of the age of the planet, but are now seen within the upper mantle. These reservoirs have maintained distinct Xe isotope signatures despite having similar Ne isotope compositions that reflect similar degassing histories. This suggests that the light noble gas and radiogenic Xe isotopes are decoupled, with separate long-term storage of the latter. However, without data on the extent of heterogeneities within the upper mantle, this conclusion cannot be easily reconciled with geophysical observations without significant re-evaluation of present noble gas models. Nevertheless the analytic evidence that two different values of 129Xerad/136Xe244 exist in the Earth appears firm. If the uranium/iodine ratio is approximately uniform throughout the BSE, it follows that degassing events from separate reservoirs at different times are recorded in the currently available terrestrial Xe data.  相似文献   

13.
Alkali basalt, trachybasalt and basanite magmas, containing abundant xenoliths of upper mantle origin, were erupted during the Plio-Pleistocene (2.4-0.14 Ma) in northern Sardinia. The magmas are enriched in K, Rb, Th and Ba relative to mid-ocean ridge basalts (MORB) and most ocean island basalts (OIB), resulting in high K/Nb, Th/Nb, Ba/Nb and Rb/Nb ratios. The large number of spinel peridotite inclusions in these lavas suggests that these chemical features cannot be explained by combined assimilation and fractional crystallization within the continental crust. However, volcanic rock chemistry can be explained by the assimilation of sialic rocks by turbulently convecting, mafic magmas during their ascent to the surface. Fractionation of Ba and K from the light rare earth elements (LREE) is required to explain the positive correlation of K/La and Ba/La with 87Sr/86Sr(i). Consequently, bulk assimilation of crystalline basement rocks by rising, hot basaltic magmas cannot explain the observed chemical trends, and preferential melting of a low melting quartzo-feldspathic crustal component probably occurred, leaving the REE in residual phases such as apatite, zircon, sphene and amphibole. Alternatively, large ion lithophile element (LILE) enrichment may have been related to interaction of rising mafic lavas with metasomatized lithospheric mantle or enriched asthenosphere.  相似文献   

14.
Analyses for major and trace elements, including REE, and Sr, Nd and Pb isotopes are reported from a suite of Siluro-Devonian lavas from Fife, Scotland. The rocks form part of a major calc-alkaline igneous province developed on the Scottish continental margin above a WNW-dipping subduction zone. Within the small area (ca. 15 km2) considered, rock types range from primitive basalts and andesites (high Mg, Ni and Cr) to lavas more typical of modern calc-alkaline suites with less than 30 ppm Ni and Cr. There is a marked silica gap between these rocks (< 62%) and the rare rhyolites (> 74%), yet the latter can be generated by fractional crystallization from the more mafic lavas. In contrast, variation in incompatible element concentrations and ratios in the mafic lavas can not be generated by fractional crystallization processes. Increasing SiO2 is accompanied by increasing Rb, K, Pb, U and Ba relative to Sr and high field strength elements, increasing LREE enrichment and increasing Sr calculated at 410 Ma, and by decreasing HREE, Eu/Eu*, Sm/Nd and Nd (410). Nd and Sr are roughly anticorrelated and have more radiogenic compositions than the mantle array, in common with data reported elsewhere from this part of the arc. The correlation extrapolates up to cross the mantle array within the composition field of the contemporary MORB source, and extrapolates down towards the probable compositional range of Lower Palaeozoic greywackes, which may form the uppermost 8 km of the crust, or may be supplied to the source by subduction. One sample, however, lies within the mantle array, and closely resembles lavas from northwestern parts of the arc, where a mantle source with mild time-integrated Rb/Sr and LREE enrichment has been inferred. The lavas have relatively high initial 207Pb/204Pb for their 206Pb/204Pb, a feature which has been interpreted elsewhere as the result of incorporation of a sediment component into arc magmas. The systematic changes with increasing SiO2 in isotopic and chemical parameters can be explained by mixing of a greywacke-derived component with depleted mantle. The various possible mixing mechanisms are discussed, and it is considered most likely that mixing occurred in the mantle source through greywacke subduction. The bulk of the Rb, K, Ba and Pb in the lavas is probably recycled from the crust, whereas less than some 40% of the Sr and Nd is recycled. The calc-alkaline chemical trends are solely a function of mixing with the sediment component.  相似文献   

15.
Alkaline magmatism in the Southern Highlands Province, New South Wales, Australia is associated with continental rifting. Near-primary liquids have a wide range in Nd and Sr isotope composition that indicates gross isotopic and chemical heterogeneities in a mantle source region depleted in light rare earth elements (LREE) for much of Earth's history. The large-ion lithophile element and LREE-enriched nature of the primary lavas ((Ce)N = 95–182 and (Yb)N = 8.5–13.3) is consistent with an enriched mantle source region. This elemental enrichment may be accomplished by veining of the subcontinental mantle with volatile-rich phases like amphibole, apatite and carbonate which provide the volatile flux necessary to trigger anatexis.Degassing of mantle CO2 has led to migration of LREE-enriched fluids and local transformation of the lherzolitic mantle to pyroxenite veined by apatite ± kaersutite ± mica ± diopside. The mantle veining event may be related to upwelling of silica-undersaturated incompatible element-enriched magmas similar to the host magma of the Kiama xenoliths. In a relatively short period of time (100 m.y.), the Sr and Nd isotopes in essentially LREE-depleted mantle have evolved in response to low Sm/Nd and low Rb/Sr ratios, and now define a near-vertical vector on a isotope-isotope plot. From this rather unique signature we can infer that CO2- and LREE-rich, Rb-poor mantle is a potentially suitable mantle source region for the genesis of alkali-potassic volcanic rocks characterized by a narrow range in87Sr/86Sr ratio and a wide range in143Nd/144Nd ratio (e.g. Leucite Hills).  相似文献   

16.
Field observation showed that there are many irregular leucocratic intrusive rocks in pillow lavas in the Danfeng Group in the Xiaowangjian area, north Qinling orogenic belt. Photomicrographs indicated that the protoliths of those altered leucocratic intrusive rocks are dioritic rocks. Geochemical analyses showed that pillow lavas have a range of SiO2 from 47.35% to 51.20%, low abundance of TiO2 from 0.97% to 1.72%, and percentages of MgO (MgO#=41―49). Chondrite-normalized REE patterns of pillow lavas are even, indicative of a weak differentiation between LREE and HREE (La/YbN=1.52―0.99). N-MORB-normalized trace element abundances showed that pillow lavas are enriched in incompatible elements (e.g., K, Rb, and Ba). Leucocratic intrusive rocks in pillow lavas have a wide range of SiO2 from 53.85%―67.20%, low abundances of TiO2 from 0.51%―1.10%, and MgO (MgO#=40―51), and higher percentages of Al2O3 (13.32%―16.62%) and concentration of Sr (342-539 μg/g), ratios of Na2O/K2O (2―7) and Sr/Y (17―28). Chondrite-normalized REE patterns of leucocratic intrusive rocks showed highly differentiation between LREE and HREE (La/YbN=12.26―19.41). N-MORB-normalized trace element abundances showed that leucocratic intrusive rocks are enriched in incompatible elements (e.g., K, Rb, and Ba), and significantly depleted in HFSE (e.g., Nb, Ta, Zr and Ti), indicative of a relationship to subduction. Isotopically, leucocratic intrusive rocks have a similar εNd(t) ( 7.45― 13.14) to that of MORB ( 8.8― 9.7), which indicates that those leucocratic intrusive rocks sourced from depleted mantle most likely. SHRIMP U-Pb analyses for zircon showed that those leucocratic intrusive rocks were formed at 442±7 Ma, yielding an age of subduction in the early Paleozoic in the north Qinling orogenic belt.  相似文献   

17.
The North China Craton (NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction. This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts (OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast, mafic igneous rocks emplaced before and after this age exhibit both island arc basalts (IAB)-like trace element distribution patterns and enriched Sr-Nd isotope compositions. This difference indicates a geochemical mutation in the SCLM of North China at ~121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite not only with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at ~144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative εNd(t) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled asthenospheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying asthenospheric mantle peridotite to generate the ultramafic metasomatites that show positive εNd(t) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at ~121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by modern seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China.  相似文献   

18.
Late Cretaceous (66.2 ± 0.5 Ma amphibole and 66.7 ± 0.2 Ma phlogopite 40Ar/39Ar ages) nephelinitic volcanic rocks from Godzilla Seamount in the eastern North Atlantic (34°N latitude) have trace element and Sr–Nd–Pb–Hf-isotope compositions similar to the Enriched Mantle I (EM-I) endmember, except for their low 207Pb/204Pb relative to 206Pb/204Pb ratios (206Pb/204Pbin = 17.7, 207Pb/204Pbin = 15.34) plotting below the Northern Hemisphere Reference Line on the uranogenic Pb isotope diagram. O isotope data on amphibole separates are mantle-like (δ18O = 5.6–5.8‰). Age and location of the isolated Godzilla Seamount, however, preclude it from being derived from the Madeira or Canary hotspots, making a lower-mantle origin unlikely. Therefore we propose derivation from a shallow (lithospheric/asthenospheric) melting anomaly. As observed in mid-ocean-ridge and ocean-island basalts, there is a systematic decrease of 207Pb/204Pb ratios (and Δ7/4) in the individual EM-I endmember type localities towards northern latitudes with Godzilla lying on the extension of this trend. This trend is mirrored in ultra-potassic volcanic rocks such as lamproites and kimberlites, which reflect the composition of enriched subcontinental lithospheric mantle. Therefore, a global pattern in 207Pb/204Pb ratios and Δ7/4 is suggested. The geochemical composition of EM-I endmember type localities, including Godzilla lavas, and the enriched (DUPAL) anomaly in the southern hemisphere could reflect derivation from ancient, metasomatized subcontinental lithospheric mantle. We propose a two-stage model to explain the trace element and isotopic composition of the EM-I mantle endmember localities worldwide: 1) during the early history of the Earth, subcontinental lithosphere was metasomatized by melts from subducted slabs along convergent margins generating high μ (238U/204Pb) sources, and 2) as the Earth cooled, hydrous fluids replaced hydrous melts as the main slab component metasomatizing the subcontinental lithospheric mantle (generating EM-I sources with lower μ). In accordance with this model, the global variations in 207Pb/204Pb ratios and Δ7/4 could reflect geographic differences in μ and/or the age at which the transition from stages 1 to 2 took place in the Archaean lithosphere. The model would require a re-definition of the EM-I endmember to low 206Pb/204Pb, high 208Pb/204Pb (positive Δ8/4) but variable 207Pb/204Pb (positive and negative Δ7/4).  相似文献   

19.
We performed a complete noble gas study on eight different josephinites and one oregonite. The 4He/3He ratios range between 100,000 and 330,000 and are probably due to a combination of a MORB He-component from the Josephinite Peridotite massif, where these nickel-iron specimens are found, and either atmospheric He or radiogenic He from the underlying continental or subcontinental basement. The 40Ar/36Ar ratios of 302 to 381 are slightly higher than the ratio of air-argon. The neon, krypton and xenon isotopic ratios are identical to the corresponding air ratios. We cannot confirm large3He and21Ne excesses published earlier. The observed noble gas isotopic signatures are in agreement with a formation of josephinites near the surface. The data do not favour a deep mantle origin or a formation at the mantle-core boundary as proposed before.  相似文献   

20.
Karoo picrites are divided into a volumetrically dominant high Ti-Zr (HTZ) group and a less abundant low Ti-Zr (LTZ) group. Distinguished in this way, it is then possible to use the comparison of major element compositions with those of experimentally determined partial melts of mantle peridotites to constrain the depth of segregation for each magma type. This approach also identifies the nature of source and residual mantle materials from which such magma segregation may have occurred. The LTZ group show uniformly shallow pressures (ca. 13–15 kb) of magma segregation and the HTZ group show a range of pressures (10 kb to > 30 kb) of segregation. In the HTZ group a range of K2O, TiO2 and Zr contents is observed, with greater concentrations in picrites which have segregated at higher pressures (high-NaK# HTZ picrites) relative to a low-NaK# HTZ picrite group (NaK#=[Na/2O+K2O][Na2O+K2O+CaO]). If we measure the refractory character of a mantle source peridotite by its CaO and Al2O3 content then it is shown that the LTZ picrites have segregated from sources which are more refractory than MORB or OIB sources and which lack the strong K, Ti and Zr enrichments of HTZ sources. Mixing of at least two mantle components is required to fully explain the major element and isotopic data in the HTZ group and is combined with variations in composition produced by different depths of magma segregation. Consideration of the major element phase relations coupled with trace element abundances and isotope data leads us to suggest that one component is the Kaapvaal lithospheric mantle (incompatible element enriched but relatively refractory with respect to basaltic components) and the other is asthenospheric mantle. This lithospheric mantle component is most evident in the high-NaK# HTZ picrite end-member which has segregated at a greater depth (ca. 18–32 kb). The asthenospheric component is most closely represented by the low-NaK# HTZ picrites which have segregated at pressures of 10–22 kb. The LTZ source, more refractory mantle than MORB, is inferred to be the shallow sub-continental lithospheric mantle which may also be the source of the low-MgO tholeiites related to these picrites, and therefore the source for the main phase of Karoo basaltic eruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号